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Abstract

Protecting privacy in gradient-based learning has become in-
creasingly critical as more sensitive information is being used.
Many existing solutions seek to protect the sensitive gradients
by constraining the overall privacy cost within a constant bud-
get, where the protection is hand-designed and empirically
calibrated to boost the utility of the resulting model. However,
it remains challenging to choose the proper protection adapted
for specific constraints so that the utility is maximized. To this
end, we propose a novel Learning-to-Protect algorithm that
automatically learns a model-based protector from a set of non-
private learning tasks. The learned protector can be applied to
private learning tasks to improve utility within the specific pri-
vacy budget constraint. Our empirical studies on both synthetic
and real datasets demonstrate that the proposed algorithm can
achieve a superior utility with a given privacy constraint and
generalize well to new private datasets distributed differently
as compared to the hand-designed competitors.

Introduction
Trustworthy machine learning has recently drawn a great
attention in both industry and research communities (Tang
et al. 2017; Ding, Kulkarni, and Yekhanin 2017; Erlingsson,
Pihur, and Korolova 2014), due to the increasing awareness in
protecting the usage of sensitive data for training. Differential
Privacy (DP) (Dwork et al. 2006b; Dwork 2006) is considered
to be a de facto way to quantitatively protect the training data
and is widely studied in the machine learning community. In
DP, the privacy cost is measured by the probability difference
(i.e., privacy leakage) of a random mechanism aggregating
similar datasets. The smaller the difference becomes, the
less chance an attacker can get private information from the
output.

One major problem setting of DP studies is the differen-
tially private model publishing (Yu et al. 2019), where model
parameters are published given a constant DP budget for ac-
cessing the private dataset. For gradient-based learning, one
way to achieve this goal is protecting the gradients by pertur-
bation and constraining the accumulated privacy cost (Bassily,
Smith, and Thakurta 2014; Abadi et al. 2016; Wu et al. 2017).
Following the idea, variant protection strategies are proposed
with different model update rules (Wang, Ye, and Xu 2017),
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Figure 1: Illustration of the model-based protector and the
Learning-to-Protect framework. Two RNN cells, σ and π,
represent the adaptive noise scheduler and the utility projector
in a protector, respectively.

dynamic perturbation (Yu et al. 2019) or both (Lee and Kifer
2018). Despite the technical differences in these approaches,
the same practical target is to find a protection strategy max-
imizing utility (the quality of the published model) under a
given privacy budget constraint.

Both empirically (Abadi et al. 2016) and analytically
(Wang and Xu 2019), it has been shown that the best pro-
tection strategy including hyper-parameters of update rules,
budget schedule and etc., significantly depends on the budget
constraint. For a specific classes of objective functions, the
upper bound on the utility loss can be analytically derived as a
function of the protection strategy (Wang, Ye, and Xu 2017).
Minimizing the upper bound directly outputs a protection
strategy (the step budget and learning rates) parameterized by
the budget. However, the principle fails when there is no tight
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analytical bound, e.g., for optimizers, like Adam (Kingma
and Ba 2015) and model-based optimizers (Andrychowicz
et al. 2016; Li and Malik 2017), or for some non-smooth ob-
jectives. Alternatively, an empirical way can be used to find
such a strategy, such as performing random search and vali-
dating them privately (Chaudhuri, Monteleoni, and Sarwate
2011; Gupta et al. 2010; Hay et al. 2009) or non-privately
on public auxiliary datasets (Yu et al. 2019; Wu et al. 2017).
However, this is costly in privacy or could be inefficient
and far away from optimal when the hyper-parameter space
is huge, e.g., the model-based ones. Therefore, an efficient
search algorithm with fast descent instructions is strongly
demanded for a given constraint.

To address the aforementioned challenges, we propose
Learning to Protect (L2P) as shown in Fig. 1, that automati-
cally searches for a protector conducting an optimal protec-
tion strategy, on Stochastic Gradient Descent (SGD), which
protects the gradients and meanwhile maximizes the utility
within the budget constraint. A protector is composed of a
projector updating the model parameters, and a scheduler
allocating budgets at each iteration. We generalize the tradi-
tional hand-crafted protectors to model-based ones which is
meta-trained to maximize the utility by gradient descent. The
followed challenge is to meta-optimize the objective under
budget constraint which is solved by Lagrangian methods. In
summary, our contribution includes:
1) Propose a data-driven L2P framework to train a model-
based protector;
2) Develop a batch algorithm for L2P that improves the scal-
ability of the budget-constrained meta-learning;
3) Conduct extensive empirical evaluation of the optimal-
ity, generalization and scalability of the L2P framework on
convex and non-convex problems.

Related Work
Private Learning. Recent years witnessed increasing atten-
tion to the privacy risk associated to learning from sensitive
training data. For example, an attacker could retrieve the
training data from the models generated by the widely-used
empirical risk minimization (ERM) (Fredrikson, Jha, and
Ristenpart 2015). Many efforts have been devoted toward
privacy-preserving learning. With the introduction of dif-
ferential privacy (DP) (Dwork 2006), we are now able to
measure and defend the risk quantitatively (Bassily, Smith,
and Thakurta 2014; Kifer, Smith, and Thakurta 2012; Rubin-
stein et al. 2012; Talwar, Guha Thakurta, and Zhang 2015).
The main idea is to introduce stochastic perturbations to the
learning process, and the perturbations can be done in any
query operations (Dwork 2008), such as gradient compu-
tations (Abadi et al. 2016) or objective evaluation (Chaud-
huri, Monteleoni, and Sarwate 2011). When proper noise is
introduced before publishing the model, such as Gaussian
mechanism (Dwork and Roth 2013), one can no longer easily
retrieve the training data by resampling (Fredrikson, Jha, and
Ristenpart 2015).
Adaptive Privacy Perturbation. The key to achieving high
utility in privacy-preserving learning is the perturbation con-
trol. (Zhang et al. 2013) improved the performance of models
in a stochastically private manner by selecting the gradient

Algorithm 1 Protected Stochastic Gradient Descent
Require:Total privacy budget ρtot with max iteration number
Tmax, dataset D = ∪T−1

t=0 Dt, with D ⊆ DN , random
batches Dt, a loss function f : Θ×DN → R in parameter
space Θ, gradient clipping norm Cg , and initial model
parameter θ1.

1: for t ∈ 1, · · · , Tmax do
2: ∇t,i ← ∇θf(θ;xi)|θ=θt , ∀xi ∈ Dt

3: ∇t ←
∑L
i=1∇t,i/max(1, ‖∇t,i‖2 /Cg)

4: gt, ρt ← Protect(∇t), e.g., gt = ∇t + CgσtN (0, I),
ρt = ρ(σt) or Algorithm 2

5: ρt ← fS (ρt; q = |Dt|/|D|)
6: if fC(ρ1:t) > ρtot then break
7: θt+1 ← θt + gt
8: Output θt, fC(ρ1:t−1)

candidates. (Lee and Kifer 2018) proposed adaptively and
privately querying the effects of the noised gradient updates.
Both mechanisms rely on querying the model outputs for sev-
eral times via an exponential noise mechanism (Dwork 2006)
which degrades the effectiveness. Instead, (Balle and Wang
2018) showed a simple adaptive scaling based on the noised
value is capable for reducing expectation error. Inspired by
this idea, our gradient protector sequentially predicts opti-
mization updates based on current and previous protected
gradients which reduce both query times and privacy costs.
Meta-Learning and Knowledge Transfer between (Pri-
vate and Public) Tasks. The Learning-to-Learn (L2L), by
gradients (Andrychowicz et al. 2016; Li and Malik 2017)
or by extracted optimization information (Chen et al. 2016),
trains a sequential model from a set of learning problems,
which predicts the model updates for a new task according
to the current gradients. The L2L is shown to greatly reduce
the effort in tuning parameters. The proposed L2P shares the
same spirit and transfers the privacy protection knowledge
from an auxiliary task to a new private task. One benefit is
that no extra privacy cost will be introduced when the aux-
iliary task uses public data. Closely related approaches are
(Wu et al. 2017) which uses public data for hyper-parameter
tuning, (Yu et al. 2019) which leverages the public valida-
tion set for dynamically scheduling the privacy noise and
(Zhou, Wu, and Banerjee 2020) which learns projection by a
small public set. Moreover, Papernot et al.transfer the private
knowledge to public tasks (Papernot et al. 2018). The line of
literature provides evidence of transferability of knowledge
between private and public learning tasks.

Private Learning with Budget Constraint
A traditional private learning is Private Stochastic Gradient
Descent (PSGD) (Algorithm 1) which was first proposed by
Bassily, Smith, and Thakurta (2014). In each step, a mini-
batch of randomly selected private samples are used to com-
pute gradients which will be protected by Gaussian noise.
The iterations will terminate when the privacy risk is over our
expectation, namely privacy budget. To quantify the privacy
risk, the Differential Privacy is used. In the following, we

7703



present the fundamentals for calculating the privacy cost of
publishing the last-iterate model.

Privacy Measurement
In Algorithm 1, the privacy computation involves three basic
operations: Gaussian noising ρ(σt), dynamic composition
fC(ρ1:t) and subsampling amplification fS(ρt; q). In this pa-
per, we use (ρ,∞)-tCDP (or ρ-zCDP) for computing the
privacy cost of Gaussian noising, (ρ, ω)-tCDP for composi-
tion and subsampling amplification. Though ω could vary
on need, the privacy cost of the output model is determined
by the minimal ω of all privacy operations1. Since the it-
eration privacy cost will not be over the budget, the ω is
lower bounded by a constant ωa and ρ is upper bound by
ρa. In addition, constraint also result in different conditions
for the subsampling amplification, including the bound of
ρ when subsampling. The varying ω will introduce addi-
tional complexity in computing total privacy cost2, which
should be avoided by using its lower bound ωa. To distin-
guish from tCDP, We call the (ρ, ωa)-tCDP with ρ ≤ ρa
as the (ρ, a)-ctCDP (Definition 0.1) where a represents a
constraint constant.

Definition 0.1 ((ρ, a)-ctCDP). Let a > 0, ωa = (1 +

a) +
√
a(a+ 1), and 0 < ρ ≤ ρa where ρa is defined as

ε
√
a(a+ 1)[a+ 1−

√
a(a+ 1)]−1[

√
a(a+ 1)− a]−1. A

randomized algorithm M : Dn → R satisfies a-constrained
(ρ, ωa)-tCDP or (ρ, a)-ctCDP if, for all adjacent inputs
d, d′ ∈ Dn with only one different entry,

Dα(M(d)‖M(d′)) ≤ ρα, ∀α ∈ (1, ωa)

where Dα(·‖·) denotes the Rényi divergence (Rényi 1961)
of order α.

With the notion of (ρ, a)-ctCDP, the corresponding basic
privacy operations are ρ(σt) = 1/(2σ2

t ) (Gaussian mecha-
nism), fC(ρ1:t) =

∑t
i=1 ρi (Dynamic composition) where

ρi could differ by iteration and fS(ρ; q) = O(q2ρ) (Subsam-
pling amplification). A brief comparison of (ρ, ω)-tCDP to
other privacy metrics is as follows.

• (ε, δ)-DP with advanced composition (Bassily, Smith, and
Thakurta 2014) does not support non-uniform privacy bud-
get allocation.

• (ε, δ)-DP with Moment Accountant (Abadi et al. 2016)
has a tight bound (in a limited range of ε and δ) on the
composition which, however, is expansive to compose
privacy costs in the sense of time complexity. Our metric
has a linear composition which is efficient and simple.

• ρ-zCDP has linear composition operation but a weak sub-
sampling amplification property under shuffle subsampling
(Yu et al. 2019), i.e., fS(ρ, q)O(qρ) for one epoch.

• (α, ε)-RDP (Mironov 2017) have similar privacy opera-
tions. But it is less tight than (ρ, ω)-tCDP (Bun et al. 2018).

1The ρ is also determined by ω (see Theorem .4).
2Intensive comparison of ρ and ω has to take place to satisfy the

conditions of privacy operations.

Algorithm 2 Model-based Protection
Require:A gradient clipping norm Cg , an optimizer model
(σ(·), π(·)), initial hidden states zg1 , zσ1 .

1: st ←
√
‖∇t‖22 + (2|Dt| − 1)C2

gσgζt, ζt ∼ N (0, 1)

2: σt, zσt+1 ← σ(st/|Dt|, zσt )

3: ∇̃t ← 1
|Dt| (∇t + Cgσtνt), νt ∼ N (0, I)

4: gt, z
g
t+1 ← π(∇̃t, zgt )

5: ρt ← fC(ρ(σg), ρ(σt))
6: Output: gt, ρt

When (ρ, a)-ctCDP maintains the privacy operations of
(ρ, ω)-tCDP, it simplifies the privacy parameters by using
a constant a, which makes handling privacy parameters eas-
ier. More details of the ctCDP and its basic operations are
discussed in appendix. Empirical comparisons of the DP
bounds and time complexity are enclosed in appendix.

Learning to Protect
In traditional private learning, the privacy schedule strategy
and optimizer hyper-parameters are determined by tuning on
the public dataset (Wu et al. 2017) or using private tuning
algorithm (Gupta et al. 2010; Hay et al. 2009). Using pri-
vate data for such parameter tuning can be expensive. In fact,
knowledge from similar learning experiences can be trans-
fered. Perhaps the most representative and relevant example
is the learning-to-learn (Andrychowicz et al. 2016) where we
revise the gradient based on the experience from other learn-
ing tasks. And the choice of such auxiliary learning tasks is
commonly not sensitive to learning process. Motivated by
the prior successful work, we propose to leverage knowledge
of learning tasks from public auxiliary datasets to perform
privacy parameter tuning, which effectively saves privacy
budgets during the tuning process.

Model-Based Protection
The most attractive attribute of machine learning, especially,
deep learning, is the powerful generalization ability of the
model learned from data. To cast the protector search problem
as a learning problem, it is natural to leverage the generaliza-
tion ability of Deep Neural Networks (DNNs) and design the
protector as a DNN model. In comparison, hand-designed
can also be learned only if its objective function is differen-
tiable w.r.t. its hyper-parameters. Now, the method is a direct
extension from L2L to the privacy task as Algorithm 2 where
we use the properties of ctCDP to compute the privacy costs.
Due to the simple properties of the ctCDP, we can easily
compute the privacy cost by linear operations and pay a small
number of costs for using small noise.

Technically, the protector is composed of: Scheduler (σ(·))
predicts the step noise scale σt corresponding to the budget
allocation; Projector (π(·)) predicts the step update gt aiming
to boost the optimization performance. In Algorithm 2, we
omit the parameters of the two models in formulations and
introduce the latent states (z) to pass history information.

7704



More generally, the protector models can hand-designed ones
such as the SGD or Adam with uniform schedule.

Both σ(·) and π(·) are Recurrent Neural Networks (RNNs)
in this paper. Inherently, RNNs can approximate the second
order information by memorizing history gradients, which
is shown to be beneficial in reducing (noise) variance, e.g.,
private SVRG (Wang, Ye, and Xu 2017) In addition, the
model-based scheduler can introduce dynamics such that the
privacy budget is allocated adaptively for each step. There-
fore, it is possible to enhance the resulting model by avoiding
waste of budget on unnecessary places (Lee and Kifer 2018).

When model-based σ(·) and π(·) are used, we show in
Theorem 0.1 that the learning algorithm could still satisfy the
preset privacy constraint.

Theorem 0.1 (Privacy guarantee of model-based gradient
descent). Suppose a gradient-based algorithm Algorithm 1
is protected by Algorithm 2 and σ(·) and π(·) are crafted
fully independently from the private data. The output of the
algorithm, i.e., θt (assuming the loop stop at step t), is ρ̂-
ctCDP where ρ̂ ≤ ρtot, if fC(·), fS(·) and ρ(·) are defined
under ctCDP.

Proof. In brief, the privacy guarantee is because the noise
lowers the probability of information leakage, then the σ(·)
and π(·) uses the noised gradients without further leakage,
and last the privacy losses in iterations are composable. The
detailed proof is delayed to Theorem .5.

Meta-Optimization with Constraint
Considering the general optimizers characterized above, we
propose learning the gradient-based private optimizer by gra-
dient descent. A full L2P training starts from selecting a pub-
lic auxiliary dataset, according to the non-private attributes of
the private dataset, e.g., data type (image). Then, meta-train
the protector (σ(·), π(·)) on the auxiliary dataset by solving

min
π,σ,T

E
[
F̃ (σ, π, T )

]
, s.t. hT (σ; ρtot) = 0 (1)

where expectation is w.r.t. both the unrolled optimiza-
tion process and the variety of loss functions. For
clarity we use the following brief notations: ft ,
f(θt;π, σ), σt , σ(st, z

σ
t ), ht(σ; ρ) , fC({ρ(σt)}Tt=1) −

ρ, and F̃ (σ, π, T ) , f (θT ;π, σ) = fT where F̃ is the ran-
dom meta-objective, θt is depending on θt−1 by unrolling
the optimization (Algorithm 1). Though ∇t−1 depends on
the θt−1, for tractability we treat it as a constant observation
with zero gradient. π, σ and T are alternately updated until
converged.

Optimize projector. Optimizing π follows the standard
gradient descent and additional tricks can be found in
(Andrychowicz et al. 2016). Notably, the value of T varies if
the scheduler is dynamic. Since the sole purpose of projector
training is finding the proper updates and does not depend
on the private constraint, we can continue training it when
budget is used up. Thus, in the training we use a constant T
that is larger than the maximal iteration.

Optimize scheduler. For simplicity, let us first consider
the case when T is fixed and the objective is constrained by

the budget as shown in Eq. (1). Given a constant T , we define
the meta-objective as F (σ) = E[f (θT ;π, σ)]. The optimiza-
tion can be practically solved using Augmented Lagrangian:

Laug(σ; ρtot) = F (σ)− zhT + ‖hT ‖22 /(2µ) (2)

where hT = hT (σ; ρtot), µ is a positive hyper-parameter
and z is the Lagrangian multiplier. Augmented Lagrangian
algorithm has been well studied in literatures, for example,
(Nocedal and Wright 1999) (Chapter 17). The detailed algo-
rithm and analysis on the gradient effects of the objective
are in appendix. Also, we provide principled analysis of the
influence of σt (characterized by derivatives). In brief, we
show that a decaying schedule of σ and denoising π will be
preferred for the utility of the final model.

Private meta-optimization. When public auxiliary
dataset is unavailable, we may use the private dataset to
meta-train the projector and scheduler. One method is pro-
posed by Li et al. (2020) for meta-training initialization which
is a straightforward gradient noising mechanism. For the
gradient-based meta-learning, the strategy is similar by ex-
tending the number of unrolling iterations from 1 to T . The
meta-gradients are privatized by injecting DP Gaussian noise
which consumes some privacy cost from the overall budget.
Such an algorithm result in a problem of the trade-off be-
tween auxiliary and major tasks. If more privacy budgets are
used for auxiliary task, then the major task may not have
enough budget for accurate learning. In reverse, if few auxil-
iary budget is available for training, the major task can also
be less accurate. In traditional private algorithms, a similar
trade-off occurs between private hyper-parameter tuning and
private training. Such a discussion may be beyond our focus.
Thus, we leave it as an open problem for the future.

Softly Constrained Optimization for Scheduler
Directly optimizing the objective in Eq. (1) has two chal-
lenges. The first is gradient vanishing, and the more critical
one is the requirement of T to be differentiable w.r.t. σ due
to the coupling of σ and T . To tackle this issue, we reformu-
late the problem by defining the indicating function which
is 1 on 0 input and 0 otherwise: F̃ (σ) =

∑T
t=1 Itft, It =

I(ht(σ; ρtot)), where we assume ht(σ) could be zero at some
integer t. Now, the hard constraint is implicitly embedded
into the weights when T could be any constant such that
the loss can converge. However, this objective is still non-
differentiable w.r.t σ. To resolve the issue, let I(·) be a dif-
ferentiable approximation of the hard indicating function.
Then, we rewrite the objective function: F̃ (σ) ≈ F̂ (σ) =∑T

t=1 Itft/
∑T
t=1 It, It = I(ht(σ)) which is normalized

to formulate a weighted average. The gradients over σ can
be easily obtained as:

∂F̂ (σ) =

∑T
t=1 It∂ft∑T
t=1 It

+

∑T
t=1(ft − F̂ )∂It∑T

t=1 It
, (3)

where we omit the partial differential denominator for brevity.
Remarkably, the first term is the weighted gradient descent
of utility objective while the second is to find the time when
ft = F̂ or ft = ft+1 for t s.t. It > 0. In practice, let Tρ
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be the number of steps when the privacy budget is just used
up and we adopt a tent function: I(ht(σ; ρ)) = max{1 −
|ht(σ; ρ)|/ρ, 0}I(t ∈ T ) where T = {Tρ − ∆T, · · · , Tρ +
∆T − 1} for some constant ∆T . The approximated function
always includes ∆T steps within the weighted-average. Thus,
the It ≡ 0 will not be a possible solution.

Batch Algorithm for Long-Unrolling
Optimization

One critical challenge in the L2P is the unrolling length,
i.e., T (the number of iterations that the protector runs).
To constrain the privacy cost within the budget, we need
to unroll the optimization until the budget is used up and
then back-propagate gradients from the last step to the first
step. It is well known that sequential models, e.g., LSTM,
will suffer from the the gradient vanishing. Moreover, the
unrolled iterations has to be stored in memory waiting for
back-propagation, which will consumes T times the space
complexity of the model size. To mitigate the issue, in
(Andrychowicz et al. 2016), a batch algorithm is used where
a series of non-overlapped short spans of optimization are
unrolled consecutively and optimized independently. For the
projector, we can ignore the constraint by using a fixed sched-
uler and therefore the batch meta-optimization can be applied
directly. In addition, we extend the idea to the constrained
meta-optimization posed by the L2P.

Briefly, we decouple the averaged objective in Eq. (1) into
B batches:

F̄ (σ, π, T ) =
1

B

∑B

b=1
F̄i, F̄i =

1

|Bb|
∑

t∈Bb
ft, (4)

where Bb is a batch of steps, namely a subset of {1, · · · , T}
for b ∈ {1, · · · , B}. Without loss of generality, we as-
sume each batch is of the same size, consecutive and non-
overlapped.

Batch augmented Lagrange algorithm. The augmented
objective in Eq. (2) cannot be decomposed into batches, due
to the quadratic term in the objective. We first break the con-
straint into B batch constraints and one global constraint.
Now, let r be a set of constants {r1, · · · , rB}, we can decom-
pose the constraints into:

hb , h(σ; rb,Bb) = fC({ρ(σt)}t∈Bb)− rb,
hr , h(r; ρtot) = fC({rb}Bb=1)− ρtot.

The decomposition enables us to use augmented Lagrange
by introducing µb and zb for each batch constraint. For r, we
optimize the following simplified objective:

Laug(r) =
∑B

b=1

‖ρ̂b − rb‖22
2µb

− zrhr +
‖hr‖22
2µr

(5)

where ρ̂b = fC({ρ(σt)}t∈Bb)− zbµb and µb and zb are the
AL variables. The formulation and algorithm is straightfor-
ward as shown in appendix.

Softly-constrained batch meta-optimization. To save
the memory, we want to immediately forget the used batch
data but only keep the F̄i and necessary variables. We find
the first term in the augmented loss is the surrogate utility

loss, since the ρ̂ will increase for reducing the noise in batch
and enhancing the utility as a result. Thus, there is no need
to maintain the batch information except ρ̂i. Notice that in
Eq. (3), the first term is merely the weighted-average utility
loss gradients while the second term is due to the soft con-
straint. Thus, we construct a new objective to trade-off utility
and constraint:

Laug(r) =
∑B

b=1

1

2µb
‖ρ̂b − rb‖22 + F̂ (r), (6)

F̂ (r) =

∑
b∈TB I(hb)F̄b∑
b∈TB I(hb)

(7)

where TB = {Bρ−∆B, · · · , Bρ + ∆B− 1} and Tρ ∈ BBρ
whereBρ such that

∑Bρ−1
b=1 ρb−ρ ≤ 0 and

∑Bρ−1
b=1 ρb−ρ >

0. We assume Fi(σ, π) is non-differentiable w.r.t. σ to avoid
the back-propagation between batches. Practically, we use
∆B = 1 to avoid involving too many batches, as using more
batches requires a more strict stability of the loss. Therefore,
the optimal condition is F̄i = F̂ (r) or F̄i = F̄j according to
Eq. (3) with ∂F̄i = 0. Furthermore, we can show:

P

(∣∣∣∣∑t∈Bj
ft/|Bi| −

∑
t∈Bi

ft/|Bi|
∣∣∣∣ > ε

)
≤ 2 Var[ft]

ε2|Bi|
,

which means the failure possibility of the optimal condition is
decreased by the batch size. This is stabler than the non-batch
algorithm (see appendix).

Experiments
In this section, we demonstrate the effectiveness of the L2P
training. We study the following: the optimality of the pro-
posed L2P on maximizing utility on the auxiliary datasets
in comparison to the baselines; the generalization of L2P
optimizers to tasks on data of different distributions; and its
scalability on the different unrolling lengths. In the following
experiments, we use a 2-layer coordinate-wise Long-Short
Term Memory (LSTM) (Andrychowicz et al. 2016) both for
π(·) and σ(·). Unless otherwise specified, 20 units of hidden
variables are used in each LSTM and ctCDP is the privacy
measurement. Implementation details and additional experi-
ments are available in appendix.

Baseline Methods
We compare the L2P with four state-of-the-art differen-
tial privacy algorithms: a) SGD-Adv (Bassily, Smith, and
Thakurta 2014), which achieves differential privacy by
adding Gaussian noise to stochastic mini-batch gradients;
b) SGD-MA (Abadi et al. 2016), which uses Moments Ac-
countant to determine the variance of the Gaussian noise
being added to the gradients; c) OutPert (Zhang et al. 2017),
which first updates the parameters by a fixed number of
vanilla gradient descent steps and then adds noise on the
parameters, using up all privacy budget in a single step; d)
ObjPert (Kifer, Smith, and Thakurta 2012), which adds linear
perturbations to a convex loss functions; e) AGD (Lee and
Kifer 2018), which adaptively determines the privacy budget
for each update step during gradient descent for improved
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utility. Notably, AGD is the state-of-the-art adaptive perturba-
tion method which significantly outperforms other adaptive
methods (Lee and Kifer 2018). Therefore, we only include
AGD as the baseline of adaptive methods. Results of the non-
private method (denoted as NonPrivate) will be shown as the
upper bound of all DP algorithms. The non-private method
optimizes the loss function using unperturbed gradients. Ex-
perimental setup and hyper-parameters tuning of baselines
follows (Lee and Kifer 2018) and their code.

Learning Objectives and Datasets
We conduct experiments on both convex learning problems
and non-convex ones. For convex we use logistic regression
and for non-convex ones we use Multi-Layer Perceptron
(MLP) (2 layers by default) with sigmoid activation and
20 units in the hidden layers. The learning tasks use above
objectives to build binary classification models on three com-
monly used datasets, including IPUMS-BR, IPUMS-US and
MNIST35. Under a given (ε, δ)-DP constraint, we compare
the utility performance by test accuracies and final training
losses averaged on 10 repetitions.

To simulate the realistic scenario when public auxiliary
datasets are available and effective for improving the utility
of private tasks, we design experiments using the following
two datasets, IPUMS and MNIST35. In IPUMS, we consider
the case of conducting analysis on detailed census data of
a local community, which may leak residents’ information.
The other scenario is building a system using a handwritten
dataset collected from a small group of individuals. In these
cases, public census dataset and handwritten datasets are
available and can be used as auxiliary datasets.

IPUMS. IPMUS-International census database (Ruggles
et al. 2018) and its processed version is from (Lee and Kifer
2018). The dataset includes population surveys from different
countries. Individual information is recorded in IPUMS-BR
and IPUMS-US for two similar tasks, querying the range
of individuals’ monthly (> $300) or annual (> $25, 000) in-
come. Notably that they are from different distribution (Brazil
(BR) and America (US), respectively) and disjoint. Specif-
ically, IPUMS-US (IPUMS-BR) includes 40, 000 (38, 000)
records of 58 (53) features which are scaled into [0, 1]. We
randomly select 20% (80%) of the data for testing (training).

MNIST35. The MNIST dataset (Lecun et al. 1998) in-
cludes 70, 000 gray-scale handwritten digits. The 28-by-28
images are vectorized and scaled into [0, 1]. Classifiers are
applied for classifying digits. We use the official training-
testing splits for evaluating the learning algorithms, and we
only utilize two classes (e.g., digit 3 and 5) to build a binary
classification task.

Protection Strategies Learned by L2P
Results on IPUMS dataset with SVMs. We compare our
method with the AGD on losses and budget usage of itera-
tions. SVMs are trained using L2P and AGD on the IPUMS-
US dataset. The results are shown in Fig. 2 after 100 repeti-
tions. The budget curve of L2P is more smooth as compared
to AGD. AGD needs to query the objective value irregu-
larly for budget, whereas L2P adaptively allocates budgets
by leveraging historical information, and is therefore stabler.

Figure 2: Training SVMs of (0.05, 10−8)-DP using a trained
L2P protector and the AGD algorithm on the IPUMS-US
dataset. The L2P protector is trained on the IPUMS-BR
dataset. The iterate number for AGD is the times of gradient
queries. Standard deviations are plotted as filled bonds.

In Fig. 2, a small amount of privacy budget is allocated
by L2P at the beginning. It leads to larger noise in practice
when the loss increases fast as witnessed in the loss curve.
Also, this enables the protector to explore a wider range of
the parameter space, and therefore this may help the opti-
mizer get out of some local optimal regions and converge
to a better solution. Due to the effort of the utility projector
in L2P, the loss could be continuously lowered down while
less privacy budget usage is needed than AGD. Specifically,
when the privacy budget is inadequate, the L2P can flexibly
allocate budgets and efficiently optimize the objective with
private gradients. Because the step budgets are scheduled
adaptively and the iterations will be terminated differently,
the loss curves in the figure will abnormally fluctuate espe-
cially for AGD. The optimal condition of the soft-constrained
objective (Eq. (3)) can be witnessed here. Namely, the L2P
protector schedule the privacy budgets such that the optimiza-
tion will not be terminated due to budget constraint until no
obvious loss declines can be observed.

Generalization of L2P Optimizers
Given the L2P optimizer is trained on public auxiliary
datasets, one critical concern is on the generalization of such
an optimizer to new private dataset. In this section, we study
the generalization of L2P to different private datasets. For
clarity, there are three types of data in this study: 1) Auxiliary
meta-training data, which should be publicly available (or
with no privacy concern) and used for training protectors
or tuning hyper-parameters; 2) (Protected) private training
data, which serve as the training data for private learning
tasks using the trained optimizer; 3) Testing data is where the
privately trained models will be evaluated.

Setup. L2P optimizer is trained on the auxiliary dataset.
For fair comparison, the auxiliary dataset is also used for
pre-training models and validating hyper-parameters of other
methods. The validation using public datasets was discussed
in (Wu et al. 2017). Another protocol uses experience-based
hyper-parameters, e.g., (Iyengar, Near, and Song 2019).

Generalization to different data distribution. We alter-
natively use one of IPUMS-US and IPUMS-BR as auxil-
iary datasets while the other is for private training. On the
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Figure 3: Test performance (top) and training loss values (bottom) by varying ε of logistic and MLP classifiers on IPUMS and
MNIST35 datasets. The error bar presents the size of standard deviations. For better visualization, some horizontal offsets are
added to every point.

Figure 4: Performance on MNIST35 datasets using L2P pro-
tectors trained on varying auxiliary tasks. Each task contains
two classes from the MNIST dataset.

MNIST2 dataset, The L2P protector is trained using all im-
ages of digits 4 and 6 and then is applied to learn to differen-
tiate 3 and 5 (MNIST35). The protector is trained by a total
of 50 batches of 20 steps and 100 epochs (1 epoch includes 1
scheduler update and 5 projector updates).

Results. We use the test accuracy and the final training loss
value to gauge the utility performance. The privacy parameter
δ is fixed as 10−8 while ε varies from 0.0125 to 0.8. Results
are shown in Fig. 3. The non-private results are referenced
as an upper bound of these algorithms. Remarkably, when
the privacy requirement is high (i.e., low ε for differential pri-
vacy), L2P outperforms others with notable margins. When
ε ≥ 0.4, the accuracies are less distinguishable for most meth-
ods. This is because that the DP noise is quite small when
ε ≥ 0.4 and the adaptive strategies do not make an obvious
difference. The SGD-MA is only effective in a narrow range
of ε (Balle and Wang 2018) but has a good performance when
ε is more than 0.8. Because that ε in SGD-MA is computed
afterwards based on T , it has a different range.

Compatibility of auxiliary data. To test the influence of
the auxiliary tasks, we report the performance on {3, 5}when
protectors are trained on different auxiliary datasets in Fig. 4

with (0.05, 10−8)-differential privacy using logistic models.
Though all the protectors outperform the best baseline, 75.5%
(AGD), we see that they are substantially influenced by the
auxiliary tasks. The worst is achieved by {1, 2} due to the
obvious visual differences between the two tasks. We may
conclude that when the auxiliary dataset is more visually like
the private task, the transferring will perform better.

We also evaluate the optimizations for SVMs and quadratic
problems in ?? . Since training optimizers for MLP is tech-
nically non-trivial due to the variety of parameter scales
across different layers, for the purpose of reproducibility, we
discussed the issue in appendix. The scalability of batch algo-
rithms is discussed in appendix. Extra experiments are in the
supplementary to show the generalization to different data
domains.

Conclusion
In this paper, we proposed a Learning-to-Protect (L2P) frame-
work, that learns a gradient protector from a set of auxiliary
learning tasks, to protect the privacy and improve the utility
during the learning of a sensitive task. Extensive experimental
results showed that L2P outperformed hand-designed meth-
ods in small privacy budgets. Discussions, for example, the
transferability of public tasks and the denoising effect of
projectors, are included in ?? .
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