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Abstract

Graph embedding aims to encode nodes/edges into low-
dimensional continuous features, and has become a crucial
tool for graph analysis including graph/node classification,
link prediction, etc. In this paper we propose a novel graph
learning framework, named graph game embedding, to learn
discriminative node representation as well as encode graph
structures. Inspired by the spirit of game learning, node em-
bedding is converted to the selection/searching process of
player strategies, where each node corresponds to one player
and each edge corresponds to the interaction of two players.
Then, a utility function, which theoretically satisfies the Nash
Equilibrium, is defined to measure the benefit/loss of players
during graph evolution. Furthermore, a collaboration and com-
petition mechanism is introduced to increase the discriminant
learning ability. Under this graph game embedding framework,
considering different interaction manners of nodes, we pro-
pose two specific models, named paired game embedding for
paired nodes and group game embedding for group interac-
tion. Comparing with existing graph embedding methods, our
algorithm possesses two advantages: (1) the designed utility
function ensures the stable graph evolution with theoretical
convergence and Nash Equilibrium satisfaction; (2) the in-
troduced collaboration and competition mechanism endows
the graph game embedding framework with discriminative
feature leaning ability by guiding each node to learn an opti-
mal strategy distinguished from others. We test the proposed
method on three public datasets about citation networks, and
the experimental results verify the effectiveness of our method.

Introduction
In recent years, graph has drawn increasing attention due to
its potential applications to ubiquitous irregular data such as
protein data (Fout et al. 2017; Borgwardt et al. 2007) and
social network (Cai, Zheng, and Chang 2018; Silva et al.
2010; Orsini, Baracchi, and Frasconi 2018; Wang, Cui, and
Zhu 2016; Yu et al. 2018). A graph is composed of a set of
nodes and a set of edges. The nodes often represent entities
in real world while the edges indicate connection relationship
between node pairs. In many graph-related tasks, graph em-
bedding is one of most fundamental topics. It aims to learn
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effective representation of nodes by using graph topologi-
cal structures or other characteristics (e.g., node attributes).
Nowadays, graph embedding has become a crucial graph
analysis technology in multiple practical applications, includ-
ing user recommendation system (Silva et al. 2010), social
network analysis (Orsini, Baracchi, and Frasconi 2018), face
recognition (Cheng et al. 2019; Jiang et al. 2017) and protein
function prediction (Borgwardt et al. 2007).

Various graph embedding methods have been proposed in
previous literatures, including supervised methods(Kipf and
Welling 2017; Veličković et al. 2018; Zhuang and Ma 2018)
and unsupervised methods(Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016; Veličković et al. 2019).
The unsupervised methods attempt to learn the embeddings
of nodes so that topological structure of graph is preserved
as much as possible in the embedding space. As the learn-
ing process is task-independent, the embedding features can
well favor many downstream tasks, e.g., often used as in-
put for the supervision learning case. Recently, graph con-
volution network (GCN) (Kipf and Welling 2017) arouses
researchers’ enthusiasm for graph embedding especially in
the semi-supervised case. Although considerable progress
has been achieved in both unsupervised and semi-supervised
cases, there still lacks an efficient mechanism to mine poten-
tial cues on those unlabelled nodes or fully unlabelled graph.
Most methods aim to preserve the connection relationship of
edges during the embedding process. But the discriminability
of node embeddings is as important as structure preservation
in many popular pattern classification tasks.

Inspired by the spirit of game learning (Roughgarden
2010), in this work, we propose a novel graph embedding
framework named graph game embedding to learn more dis-
criminative embeddings as well as encode graph structures.
Each node is treated as one game player, and one edge cor-
relates the interaction of two players during game learning.
Thus node embedding learning is converted to the selec-
tion/searching process of player strategies. To optimize node
embedding, we construct a utility function to measure the
benefit-loss of nodes. This utility function is designed to
satisfy the Nash Equilibriums condition, which well guides
graph evolution to good convergence with a theoretical guar-
antee. Further, we introduce the collaboration and competi-
tion modes to increase the discriminant learning ability. In
view of different interaction manners, we propose two spe-
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cific embedding models under the graph game embedding
framework, named paired game embedding for paired nodes
and group game embedding for group interaction. The ad-
vantages of our proposed game strategy are two folds: (1)
theoretical guarantee of convergence: our designed utility
function theoretically satisfies the Nash Equilibrium, which
ensures the stable graph evolution with good convergence;
(2) discriminative feature leaning ability: the introduced col-
laboration and competition mechanism in game may guide
each node to evolve into an optimal strategy distinguished
from others, which results in discriminative node represen-
tation. To evaluate the performance, we test our proposed
framework on three public graph structural datasets of cita-
tion networks. In this process, our proposed framework is
applied to fulfill node classification tasks in both unsuper-
vised and semi-supervised manners, and the performances
are comprehensively compared with existing state-of-the-art
methods. The experimental results verify the effectiveness
of our method. To summarize, the main contributions of this
paper are as follows:

• We proposed a novel and effective graph game embedding
framework for both unsupervised and semi-supervised
graph embedding by introducing game theory into graphs,
which may open up a new perspective for graph embedding
technology.

• The designed utility function satisfies the Nash Equilib-
rium with theoretical guarantee, which well guides the
graph to evolve stably until a good convergence.

• The introduced collaboration and competition mechanism
makes the strategy of each node distinguished from others,
which results in discriminative node embedding.

• We comprehensively evaluate our algorithm on multiple
graph-structural datasets, and the results demonstrate the
state-of-the-art performance.

Related Work
In this section, we briefly overview existing works related to
our proposed framework, including graph embedding learn-
ing methods and game theory based algorithms.

Graph Embedding Learning
Graph embedding aims to map a D-dimensional graph into a
d-dimensional continuous space by considering local graph
structure, where generally d� D. The motivation of graph
embedding learning is to make those originally connected
nodes be still close in the embedded space. Thus, graph em-
bedding learning may provide robust node embeddings for
downstream machine learning tasks such as node classifi-
cation. According to different embedding manners, graph
embedding algorithms can be roughly divided into three cat-
egories: factorization based, random walk based and deep
learning based methods. Factorization based methods obtain
graph embedding by factorizing the adjacent matrices. For in-
stance, Laplacian Eigenmaps(Belkin and Niyogi 2002) aims
to keep the embedding of two nodes close if their connection
strength is strong. Besides, Graph Factorization(Ahmed et al.
2013), GraRep(Cao, Lu, and Xu 2015) and HOPE(Ou et al.

2016) are also representative factorization based methods.
Random walk based methods obtain the graph embedding
by learning from generated paths where different walk strate-
gies have been employed, e.g. the first order random walk
in DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) and the
second order partial random walk in node2vec (Grover and
Leskovec 2016). On the other hand, the growing research on
deep learning has led a deluge of deep neural networks based
methods to be applied to graphs. For example, SDNE(Wang,
Cui, and Zhu 2016) and SDGR(Cao, Lu, and Xu 2016) utilize
deep auto-encoder to generate the embedding models that
can capture non-linearity in graphs, while GCN (Kipf and
Welling 2017) defines a convolution operator with powerful
feature representation ability by diffusing information among
connected nodes on graphs.

Game Theory
In recent years, game theory has been widely used in biol-
ogy (Hauert, Holmes, and Doebeli 2006), economics (Magur-
ran and Dugatkin 1998), international relations (Ekman
2001), computer science (Van Rooij 2007), political sci-
ence (Philippe 1994), military strategy (Eguiluz and Tes-
sone 2009), and many other fields. Generally speaking, game
theory can be seen as a theory of quantitative analysis for
the study of conditions and mediums, which results in the
unification and harmonization of conflicts(Myerson 2013).
Classical game theory can be classified into two categories:
non-cooperative and cooperative games(Akkarajitsakul et al.
2011). Due to the simplicity in modeling and solving, non-
cooperative games have often been used in resource competi-
tion and detection of attackers(Oulaourf et al. 2017; Moura
and Hutchison 2017). On the other hand, cooperative games
have been applied to resource allocation or issue sharing in
virtual networks(Manshaei et al. 2013; Akkarajitsakul et al.
2011). Nash Equilibrium (NE)(Nash 1950) is a very impor-
tant concept in game theory in which condition no player
can benefit by changing strategies if the other players keep
theirs unchanged. And it has also been applied in steady-
state searching of network evolution (Santos, Rodrigues, and
Pacheco 2005). The study of network evolutionary games
begins with the study of Prisoner’s Dilemma game on two-
dimensional squares of Nowak and May (Nowak and May
1992). In recent years, with the booming of complex net-
works, game research on networks has attracted extensive
attention and made huge progress (Szabo and Fath 2007; Perc
and Szolnoki 2010).

Besides, our method belongs to unsupervised learning, in
which those contrastive learning (Hadsell, Chopra, and Le-
Cun 2006; He et al. 2020; Arora et al. 2019; Chen et al. 2020;
Kipf, van der Pol, and Welling 2019) methods are related to
ours. Contrastive learning methods usually learn represen-
tation by encoding what makes two things similar or differ-
ent. There are two main differences between graph game
learning and contrastive learning. First, contrastive learning
does not consider the structural relationship between samples,
but only focuses on the similarities and differences of the
samples themselves. Graph game learning makes full use of
topological relationship between nodes during representation
learning. Second, graph game learning can reach the Nash
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Equilibrium point (please see the section named Theoretical
Analysis), which thus has a good theoretical guarantee, but
contrastive learning only learns representation by simply op-
timizing reconstruction error, which lacks a strong support
of theory. From the perspective of information theory, game
learning has a broader category than contrastive learning, so
our method is more general for unsupervised learning.

Problem Description
A graph can be denoted with a tuple G = (V, E), where V is
a set of N nodes (i.e., |V| = N ) and E is a set of M edges
(i.e., |E| = M ). Each edge indicates the connection of a pair
of nodes. Here we study undirected graphs whose edges are
undirected, but our method could be extended to directed
graphs. In an undirected graph, each node might be endowed
with an attribute vector or an initial state vector. If exists,
we denote the initial state vector of node vi with x̃i ∈ Rd.
All edge connection relationships can be represented with
an adjacent matrix A ∈ {0, 1}N×N . If the two nodes vi
and vj are connected, Aij = 1, otherwise 0. Sometimes one
edge might be given a connection strength or connection
probability. At this time, the adjacent relationship becomes
Aij ∈ R, i.e., A ∈ RN×N . Graph embedding is to learn
node representations by preserving topological structures as
well as taking advantage of other properties.

Inspired by the spirit of game learning, we treat one node
vi of a graph as one player, and the embedding learning on
nodes as the strategy selection for players. At one stage, one
player chooses a strategy for next action based on the current
situation. All possible strategies of the i-th player are col-
lected to form a strategy set/space Si, which may be discrete
or continuous. One player may definitely choose an certain
element si ∈ Si, named pure strategy, or probabilistically
choose each strategy in Si, name mixed strategy. In game
learning, one player determines the next strategy according
to the state of the player itself as well as the opponent states.
For graph embedding learning, analogically, one node should
update its representation based on the node’s state itself and
its contextual states. Viewed as game players, graph nodes
collaborate and compete with each other for optimal poten-
tials. It means that the states of nodes can be evolved into an
balance situation through game learning. Hence, graph em-
bedding can be framed into game learning on graph, where
nodes update their states through collaboration and competi-
tion on each other. In the following section, we introduce our
proposed method from a new perspective of game learning.

Graph Game Embedding
In this section, we first introduce how to infer
states/strategies1 of nodes, next pose two embedding
frameworks including paired game case and group game
case, and a parameterized method for graph embedding, fi-
nally summarize into algorithms and analyze the convergence
as well as complexity.

1Due to the clear context, we sometimes do not distinguish
some concepts such as “node” versus “player” and “state” versus
“strategy” in the presentation.

Strategy Inference
Given an undirected graph G = (V , E), we define a la-
tent embedding space Si ⊆ Rd (i.e., a strategy space)
for each node vi. When one strategy is chosen, there re-
turns a positive/negative reward, which could be used for
constraining graph learning. To characterize rewards, we
may define a utility function Ui for each node vi. There-
after, we can represent one game graph with a triple tu-
ple ΓG = (G, {Si|vi ∈ V}, {Ui|vi ∈ V}), where i) G is
a plain graph defined above, and each node corresponds
to one player, ii) Si is the strategy/state space of the i-th
node, and iii) Ui is a utility function to map a strategy list
into the corresponding pay-off of the i-th player, defined as
Ui : Πvj∈V−iSj × Si → R with V−i = V − {vi}.

Suppose the graph G is embedded in a d-dimensional space,
each node vi has its strategy space Si ∈ Rd. In graph embed-
ding, the strategy spaces of all nodes are often assumed to be
equal, i.e., S1 = S2 = · · · = SN ∈ Rd. Our aim is to find a
strictly dominant strategy list s∗ = (s∗1, s

∗
2, · · · , s∗N ), where

s∗i ∈ Si, i = 1, · · · , N . A strategy list is strictly dominant, if
and only if this strategy list satisfies the following condition
on node utilities,

Ui(s
∗
i , s
∗
−i) ≥ Ui(s′i, s∗−i), ∀s′i ∈ Si, ∀vi ∈ V . (1)

where the symbol −i denotes a set of all indices except the
index i, i.e., −i = {1, 2, · · · , i − 1, i + 1, · · · , N}. At this
time, the strategy list s∗ is a Nash Equilibrium point during
game learning. To obtain a Nash Equilibrium point, we can
use the best-response method that maximizes the utility of
each node. The best-response strategy is defined as a set
mapping Bi(s−i) : S−i → Si, formally,

Bi(s−i) = {s∗i |s∗i = arg max
si∈Si

Ui(si, s−i)}, ∀vi ∈ V . (2)

In this case, the strategy selected by each node should be
given the best response to all possible strategies of other
nodes. The solution of the above formula is a fixed point in
Nash Equilibrium. However, the best response strategy often
takes high computational cost because all strategies need to
be considered. Instead we use the better-response method:

B′i(s) = {s′i|s′i ∈ Si, Ui(s′i, s−i) ≥ Ui(si, s−i)},
B′i(s) : S → Si, ∀vi ∈ V .

(3)

At each time step, one node chooses a proper strategy to im-
prove its utility, while the states of other nodes are preserved
invariant. Thus node strategies could be iteratively optimized
to reach a stable state. Formally, at the (t + 1)-th step, we
may infer a better-response strategy for each node vi,

si(t+ 1) ∈ B′i(s(t)). (4)

Paired Game Embedding
Definition 1 (Pair Graph Game) For a graph game with
the triple tuple ΓG = (G, {Si|vi ∈ V}, {Ui|vi ∈ V}), the
subject of the game is the node in the graph. For any vi ∈ V ,
its utility function satisfies: Ui(s) =

∑
j u(si, sj). The graph

game called Pair Graph Game.
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In the game graph ΓG , each edge connects an interaction of
two involved nodes. During the learning of graph embedding,
pairwise nodes are required to collaborate/compete with each
other to achieve a certain stability. We call such an paired-
node game mode on graph as paired game embedding. In or-
der to conduct cooperative and competitive games in graphs,
the nodes in one graph are divided into different groups. In
view of graph topological structures, we partition the node
set V of one graph into two groups with respect to each ref-
erence node vi: N (vi) and N (vi). N (vi) is a set of nodes
adjacent to the node vi, andN (vi) = V −{vi}−N (vi). We
name those adjacent nodes N (vi) as collaborative players,
while the non-adjacent nodes N (vi) as competitive players.
Accordingly, the utility function of each node consists of col-
laboration utility and competition utility, which are defined
as follows

U+
i (si, sN (vi)) =

∑
vj∈N (vi)

Aij × u(si, sj),

U−i (si, sN (vi)
) =

∑
vk∈N (vi)

Aik × u(si, sk).
(5)

where Aij denotes the weight of the edge bridging nodes i
and j, Aij denotes an unreachable probability between nodes
i and j, and u is a paired-node utility function. The compu-
tation of unreachable matrix Aij = 1−

∑K−1
k=0 A

(k)
ij , where

A(k) is the reachable probability when randomly walking k
steps, and K is the receptive field size. To reduce the affect
of scales, the adjacent weights of each node are often nor-
malized to

∑
j Aij = 1. The cooperation utility of Eqn. 5

preserves topological structures of graph, while the compe-
tition utility increases the discriminability of embeddings.
Concretely, we instantiate the utility function as follows

u(si, sj) = exp
〈si, sj〉
‖si‖‖sj‖

, ∀vi ∈ V . (6)

where 〈·, ·〉 denotes the inner product operation on two vec-
tors.

To overcome the scale affect, we define the total utility
function for node vi as

Ui(s) = U+
i (si, sN (vi))/U

−
i (si, sN (vi)

). (7)

As the denominator might be close to zero, we formulate the
object function as a relative logarithm ratio operation,

arg max
si

`(si) = logU+
i (si, sN (vi))

− log(U+
i (si, sN (vi)) + U−i (si, sN (vi)

)).
(8)

Group Game Embedding
Definition 2 (Group Graph Game) For a graph game with
the triple tuple ΓG = (G, {Si|vi ∈ V}, {Ui|vi ∈ V}),
if the game object of one node is the aggregation of its
neighborhood, that is to say, its utility function satisfies:
Ui(s) = u(si, AGGj∈Ni

sj), The graph game called Group
Graph Game.

Different from paired game embedding, the group game
method is to take a group of nodes as one game player. In
contrast to Eqn. (6), the utility function can be redefined as

u(si, sg) = exp
〈si, sg〉
‖si‖‖sg‖

,

sg =
∑
vj∈Vg

Wij × sj .
(9)

where Vg ⊆ V is a specified group set, and Wij is the weight
coefficient between node i and j. Analogical to paired game
embedding, we can construct a collaboration group setN (vi)
and a competition group set N (vi) for each node vi. For the
weight matrix, we may set Wij = Aij in collaboration, and
Wij = Aij in competition. The objective function becomes
to maximize the following formula,

arg max
si

`(si) = logUi(si, sg1)

− log(Ui(si, sg1) + Ui(s
′
i, sg2)),

s.t. , sg1 =
∑

vj∈V(vi)

Aij × sj ,

sg2 =
∑

vk∈V(vi)

Aik × sk.

(10)

Parameterized Learning
For the given graph G = (V , E), each strategy si is derived
through parameterized learning. Similar to graph convolu-
tion (Defferrard, Bresson, and Vandergheynst 2016; Kipf and
Welling 2017), we assume that each player makes decisions
by considering the states of the neighbours. It means that the
strategy is calculated by aggregating the neighbour informa-
tion. Formally, for the i-th node, the strategy is computed
by:

si = Agg|Kk=1(σ1(
∑

vj∈N (vi)

AijW
kx̃j + bk)). (11)

where x̃j is the initial state of node vj , Agg is an aggrega-
tion operation (such as concatenation or average) on multiple
responses, Wk ∈ Rd′×d,bk is the k-th filter and the cor-
responding bias, K denotes the number of filters, σ1 is a
non-linear activation function and assigned to Relu here.

Thus graph embedding is reduced to learn these filter pa-
rameters {Wk,bk}|Kk=1. It may be implemented with one
module of network, and we can further stake multiple such
modules to form deep network architecture.

Algorithms
Both algorithms of paired game embedding and group game
embedding are summarized in Algorithm 1. Given one node,
the number of competition nodes (i.e., negative examples) is
huge. To reduce the computation cost, we randomly sample
some of them as negative examples as illustrated in step 6.
In step 8, we solve the object function in Eqn. (8) for paired
game embedding, or Eqn. (10) for group game embedding
by using the gradient descent method. In practice, due to the
iterative batch processing, we need not to solve their optimal
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Algorithm 1 Graph Game Embedding Algorithm

Input: Input graph G = (V, E) with N nodes.
Output: Graph embeddings s∗.

1: Initialization: initialize network parameters and node
states.

2: for batch processing do
3: Randomly sample a subset V ′ ⊆ V of batch-size nodes

to be updated.
4: for vi ∈ V ′ do
5: Collect the adjacent node set N (vi) for collabora-

tion by using edge connections in E .
6: Randomly sample a subset V(vi) from nonadjacent

nodes as competition nodes.
7: Infer the current states of nodes in {vi} ∪ N (vi) ∪

Vi by parameterized models in subsection named
Parameterized Learning.

8: Solve Eqn. (8) for paired game embedding or
Eqn. (10) for group game embedding by using gra-
dient descent method. i.e., Θ← Θ + δ∇Θ`, where
Θ = {Wk,bk}|Kk=1 is the model parameter set.

9: end for
10: end for

values for Eqn. (8) or Eqn. (10), but only need to update them
by one-time gradient descent. The computation mainly costs
in forward inference and gradient computation in the steps
7∼8. Considering one-time update of one node with one
layer network, the computation complexity is O((|N (vi)|+
|N (vi)|)Kdd′), where K is the number of filters, d, d′ are
the dimension numbers of input and output, |N (vi)| � N
and |N (vi)| � N due to the sparsity of edges and sampling
strategy of negative examples respectively.

Convergence Analysis Here we only analyze the case of
paired game embedding, because group game embedding
has a similar derivation. At the t-th step, suppose the state si
of node vi will be updated. After the gradient descent step,
Θ← Θ + δ∇Θ`(si), we can infer the new state s′i for node
vi, and the loss should satisfy `(s′i) ≥ `(si). We can further
expand the loss in Eqn. (8) into

log
U+
i (s′i, sN (vi))

U+
i (s′i, sN (vi)) + U−i (s′i, sN (vi)

)
≥

log
U+
i (si, sN (vi))

U+
i (si, sN (vi)) + U−i (si, sN (vi)

)
.

(12)

After a series of derivation, we can have the inequation
U+

i (s′i,sN(vi)
)

U−i (s′i,sN(vi)
)
≥ U+

i (si,sN(vi)
)

U−i (si,sN(vi)
)
. According to the definition

of the total utility in Eqn. (7), we further have Ui(s′i, s−i) ≥
Ui(si, s−i). Thus, s′i is a better-response strategy, i.e., s′i ∈
B′i(s), based on Eqn. (3). Therefore, the algorithm is conver-
gent and could reach a Nash Equilibrium point according to
the literature (Young and Zamir 2014). For a detailed theoret-
ical analysis of the existence of Nash Equilibrium in graph
game, please refer to the section named Theoretical Analysis.

Extend to Semi-Supervision
Considering an extensive application to semi-supervised
learning in graph-structural data, we further adapt the pro-
posed method to the corresponding semi-supervised versions.
In semi-supervised task, a part of node labels are accessi-
ble, and provide the optimal/target strategies for supervised
learning. To further take advantage of the supervision infor-
mation, we define the semi-supervised objective constraint
on the basis of the unsupervised versions. In this case, for
each labelled node, the semi-supervised utility comes from
not only the competition incomes versus neighbours, but also
the similarity between the predicted strategy and the target
one. Accordingly, we can add a supervised cross-entropy loss
term into the above loss function in Eqn. (8) and Eqn. (10) as
semi-supervise graph game embedding.

Theoretical Analysis
In this section, we first give the definition of Nash Equilib-
rium in graph game. In order to prove that there must be a
Nash Equilibrium state in the graph game, we introduce the
Brouwer’s fixed point theorem.
Definition 3 (Nash Equilibrium in Graph Game) In the
graph game ΓG = (G, {Si|vi ∈ V}, {Ui|vi ∈ V}), if
there exists a strategy set with s∗ = (s∗1, s

∗
2, · · · , s∗N ), where

s∗i ∈ Si, i = 1, · · · , N . When other nodes fix the selected
strategy, any node can not change its own strategy to obtain
higher benefits. Which can be formalized as:

Ui(s
∗
i , s
∗
−i) ≥ Ui(s′i, s∗−i), ∀s′i ∈ Si, ∀vi ∈ V . (13)

Theorem 1 (Brouwer’s fixed point theorem) Suppose
S ⊆ Rd is a nonempty, compact and convex set, f : S → S
is a continuous mapping. Then in the set S, there is at least
one fixed point of f . Which means there is at least one point
x∗ ∈ S, satisfies x∗ = f(x∗). That’s the Brouwer’s fixed
point theorem (Nikaido 1989).
Theorem 2 In graph game, mixed strategy equilibrium is
allowed, and there must be Nash equilibrium in every limited
strategic game.
Proof In graph game ΓG = (G, {Si|vi ∈ V}, {Ui|vi ∈ V}),

∀s ∈ S, s =
n∏
i=1

si, it is the map of S → S. For any σ ∈

S and node vi, set Ui(σ−i) = arg max
σi∈Si

ui(σi, σ−i) is the

optimal response hybrid strategy of node vi in Si to the
independent hybrid strategy combination σ−i of other nodes.

For any σi ∈ Ui(σ−i), σ
′

i ∈ Ui(σ−i), λ ∈ [0, 1]. Let

σ
′′

i = λσi + (1− λ)σi

Obviously, σ
′′

i ∈ Si.

ui(σ
′′

i , σ−i) =
∑
k

σ
′′

ikui(sik, σ−i)

= λ
∑
k

σikui(sik, σ−i) + (1− λ)
∑
k

σ
′

ikui(sik, σ−i)

≥ λui(σ̃i, σ−i) + (1− λ)ui(σ̃i, σ−i)

= ui(σ̃i, σ−i), ∀σ̃i ∈ Ui(σ−i)
(14)
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Therefore, σ
′′

i ∈ Ui(σ−i), and Ui(σ−i) is convex set.
According to ui(σi, σ−i) =

∑
k σikui(sik, σ−i), and Si

is a finite set. So there is a k that makes ui(sik, σ−i) =
max
l

[ui(sil, σ−i)] stand. That means Ui(σ−i) is a nonempty
set. Now we construct a function R, it maps the points from
S to the subset of S:

R(σ) =
n∏
i=1

Ui(σ−i), σ ∈ S

For any i = 1, · · · , n, Ui(σ−i) always a nonempty convex
set, so R(σ) is also a nonempty convex set. Let’s prove that
R is upper half continuous.

Suppose {σk}∞k=1 and {τk}∞k=1 are converge sequence.

σk ∈ S, τk ∈ R(σk), k = 1, 2, · · ·

and σ = lim
k→∞

σk, τ = lim
k→∞

τk. In order to prove R is upper

half continuous, we need to prove that τ ∈ R(σ). Because
of:

ui(τ
k
i , σ

k
−i) ≥ ui(σi, σk−i), ∀σi ∈ Si, k = 1, 2, · · ·

Obviously, the expected utility function Ui is a continuous
function on S , and:

ui(τi, σ−i) ≥ ui(σi, σ−i), ∀σi ∈ Si
Therefore, for every i, τi ∈ Ui(σ−i), which means τ ∈ R(σ).
And R is the upper half continue map of S to itself.

According to the Brouwer’s fixed point theorem, there ex-
ists a hybrid strategy combination σ in strategy set S sat-
isfies σ ∈ R(σ). Which means for every i ∈ [1, · · · , n],
σi ∈ Ui(σ−i), and σ is the (hybrid) Nash Equilibrium of ΓG .

Experiments
In this section, we conduct comprehensive experiments to
evaluate the proposed models. We first introduce the used
datasets and experimental setup, then show the experimental
results and compare them with state-of-the-art methods, and
finally make some discussion about the convergence.

Dataset and Experimental Setup
Three citation networks, named Cora, Citeseer and Pubmed,
are employed to evaluate our proposed method. Cora dataset
consists of 2708 scientific publications of seven classes with
5429 existing links, while Citeseer dataset consists of 3312
scientific publications classified into one of six classes with
totally 4732 links. As the largest dataset among the three,
Pubmed citation network consists of 19717 scientific publi-
cations of three classes with 44338 links. To describe each
publication, for either the Cora or Citeseer dataset, a dictio-
nary is constructed to encode a publication into a 0/1-valued
word vector indicating the absence/presence of the corre-
sponding word, where the unique words in the dictionaries
of Cora and Citeseer are 1433 and 3703, respectively. For
Pubmed dataset, each publication is described with a TF/IDF
weighted word vector by a dictionary containing 500 unique
words.

Models Cora Citeseer Pubmed
Raw_feature 47.9 49.3 69.1
LP 68.0 45.3 63.0
DeepWalk 67.2 43.2 65.3
AttentionWalk 67.9 51.5 -
GAE 77.3 58.2 74.6
DGE 73.9 62.8 75.6
DGI 76.9 62.9 73.6
CAN 79.2 63.2 75.8

U-PGE(Ours) 80.1 63.8 75.4
U-GGE(Ours) 79.6 62.7 76.1

Table 1: Results of unsupervised node classification on the
Cora, Citeseer and Pubmed datasets.

Models Cora Citeseer Pubmed
Planetoid 75.7 64.7 77.2
Chebyshev 81.2 69.8 74.4
GCN 81.5 70.3 79.0
GraphSAGE 74.7 63.0 78.9
GWNN 81.6 71.7 79.1
GraphStar 82.1 71.0 77.2
APPNP 82.2 70.0 79.4
GAT 83.0 72.5 79.0
DGCN 83.5 72.6 79.6
LGGCN 83.3 73.0 79.5

S-PGE(Ours) 83.6 71.9 79.3
S-GGE(Ours) 84.0 72.7 80.0

Table 2: Results of Semi-supervised node classification on
the Cora, Citeseer and Pubmed datasets.

We perform two tasks on the three citation datasets includ-
ing node classification and link prediction. For node classi-
fication task, we adopt the widely used protocol in (Yang,
Cohen, and Salakhudinov 2016) for fair comparison. For all
three datasets, there are 20 samples in each class for training,
500 samples for validation, and 1000 samples for testing.
The accuracy metric is used for measurement, and the per-
formance is calculated by averaging the results of 20 runs.
We test both group and paired game embeddings in semi-
supervised and unsupervised classification tasks. In this pro-
cess, the architectures of the models are kept the same while
slight difference exists in parameter settings and implemen-
tation details. For both tasks, in Eqn. (11) of parametrized
learning, we stack the function f(·) twice in the model and
set K to be 8. Specifically, the projection matrix Wk yields a
64-dimensional output vector in unsupervised learning while
a 128-dimensional vector in semi-supervised learning. For
node sampling, the number of negative samples is set twice
of the positive, where the positive number is set as 5 for all
experiments. Specifically, positive samples come from the
neighbours while negative samples are chosen from the nodes
that cannot reach the central node in two steps. For unsuper-
vised classification in the testing stage, the cosine similarity
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between strategies is calculated.
For the link prediction task, the parameter setting is

set almost the same with the node classification task, and
just different in the dataset split protocol. All experiments
strictly follow the dataset split protocol of GAE (Kipf and
Welling 2016). The results of the baseline methods, except
CAN (Meng et al. 2019), all come from the public reported
results in previous literature as they follow the same protocol.
Specifically, for the CAN method, we run its source code on
the unified protocol and report the results.

Experimental Results

Unsupervised Graph Embedding. In the unsupervised task,
we compare our unsupervised group game embedding (U-
GGE) and unsupervised pair game embedding (U-PGE) mod-
els with multiple unsupervised graph learning methods, in-
cluding deep graph infomax (DGI), Deepwalk, attention
work, etc. The experimental results are shown in Table 1.
Different from the method of training a classifier by DGI
to evaluate the embedding quality, we adopt a completely
nonparametric method to evaluate the embedding quality.
Specifically, we use the embedded nearest neighbor relation-
ship between the testing set and the training set to classify
the test samples (the label of the tested sample is the training
sample label of the nearest neighbor). In order for the fairness
of comparing, we use the same test method to test the em-
bedding obtained by other unsupervised methods. In general,
the proposed U-PGE model achieves the better result than
the U-GGE model. Compared with other existing methods,
our U-PGE model achieves the best performance on all three
citation networks, and outperforms the recent state-of-the-art
method, i.e. DGI, with the performance gain of 3.2%, 0.9%
and 1.8% on Cora, Citeseer and Pubmed respectively.

Semi-supervised Graph Embedding. In the semi-
supervised task, the results of our models named semi-
supervised GGE (S-GGE) and semi-supervised PGE (S-
PGE) are shown in Table 2, and also compared with other
state-of-the-art methods including Planetoid(Yang, Cohen,
and Salakhudinov 2016), Chebyshev(Defferrard, Bresson,
and Vandergheynst 2016), GCN(Kipf and Welling 2017),
graph attention networks (GAT)(Veličković et al. 2018),
LGGCN(Gao, Wang, and Ji 2018), DGCN(Zhuang and Ma
2018), etc. Specifically, comparing the S-GGE model with
S-PGE, we can see that S-GGE outperforms S-PGE on all
three datasets, which is different from the result in the un-
supervised task after additionally involving label in guiding
the game evolution. Comparing with existing methods, our
S-GGE model achieves the best performance on Cora and
Pubmed datasets, and also obtains the comparable accuracy
with the GAT on Citeseer dataset.

Link Prediction. In the Link prediction task, We compare
our pair game embedding (PGE) models with multiple base-
line methods, and the comparison results are summarized in
Table 3. Our PGE achieves the best performance, and outper-
forms the recent state-of-the-art method, i.e. CAN, with the
performs gain of 3.8%, 5.4% and 1.5% on Cora, Citeseer and
Pubmed in AUC criteria respectively.

Models Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

GCNII 76.5 76.4 73.8 73.8 79.9 80.6
GraphSAGE 79.5 76.3 80.2 79.1 84.0 82.9
GAE 91.0 92.0 89.5 89.9 96.4 96.5
VGAE 91.4 92.6 90.8 92.0 94.4 94.7
CAN 93.4 94.2 93.2 93.9 96.2 96.1
DGE 90.8 - 95.5 - 84.3 -

PGE (Ours) 97.2 96.7 98.6 98.9 97.7 97.4

Table 3: Results of Link prediction on the Cora, Citeseer and
Pubmed datasets.

(A) Raw_feature (B) GCN 
(Semi-Supervised)

(C) S-PGE (Ours) 
(Semi-Supervised)

(D) DGI 
(Unsupervised)

(E) U-PGE (Ours) 
(Unsupervised)

Figure 1: t-SNE embeddings of the nodes in Cora dataset
from the Raw_feature (A) and features from two different
supervision modes: semi-supervised (GCN (B) and S-PGE
(C)) and unsupervised (DGI (D) and U-PGE (E)).

Discussion on Convergence
Besides performance evaluation, it’s also interesting for us
to discuss the model convergence, which is dominated by
Nash Equilibrium in our framework. So, we conduct several
additional experiments:

• Visualizing the features under convergence. The learned
features of two pairs of methods, i.e. our S-PGE versus
semi-supervised GCN and our U-PGE versus unsupervised
DGI, are visualized after projected into 2D plane. Please
see Fig. 1.

• Quantitative evaluation of convergence. The silhouette
scores (Rousseeuw 1987) corresponding to the four meth-
ods in Fig. 1 are computed and compared in Table 4.

• Visualization of utility/MI (Mutual Information) curves in
training process. The curves of our U-PGE, U-GGE and
unsupervised DGI. Please see Fig. 2.

Based on the results above, we have the following observa-
tions:

• Our graph game embedding framework dominated by
Nash Equilibrium possesses better convergence states.
Fig. 1 intuitively shows both better clustering quality and
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Figure 2: Convergence curves of U-PGE, U-GGE and DGI
on Cora dataset.

Supervision mode Models Before t-SNE After t-SNE
Raw_feature −0.002 0.375

Semi-supervised
GCN 0.346 0.490

S-PGE (ours) 0.417 0.506

Unsupervised
DGI 0.124 0.430

U-PGE (ours) 0.234 0.463

Table 4: Silhouette scores on Cora dataset. Before t-SNE
means obtained from original features, and after t-SNE means
calculated after projected into 2D space.

linear separability of our proposed models. And this is also
quantitatively verified by the statistical silhouette scores in
Table 4.

• Nash Equilibrium also promotes the convergence speed
of our framework. According to Fig. 2, comparing to the
recent state-of-the-art DGI, both the proposed U-PGE and
U-GGE models converge to relatively stable points with
higher speed, especially in the starting stage.

Conclusion

In this paper, a novel graph game embedding framework
was proposed to learn discriminative node embeddings for
given graphs. By leveraging game theory for graph inference,
we converted the task of node embedding to strategy selec-
tion/searching processes of players. Then, a utility function
satisfying Nash Equilibrium condition was designed to mea-
sure the benefit/loss of players. Besides, a collaboration and
competition mechanism was further introduced to facilitate
the discriminative feature leaning. Under this proposed frame-
work, considering different interaction manners of nodes, we
proposed two specific embedding models, named PGE for
paired nodes and GGE for group interaction. In this process,
we provided the theoretical proof of the Nash Equilibrium
satisfaction, and analysed the complexity of the proposed
models. The experimental results verified the effectiveness of
our models in both unsupervised and semi-supervised tasks,
and also demonstrated better convergence of our framework.
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