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Abstract
Automatic evaluation of the goodness of Generative Adver-
sarial Networks (GANs) has been a challenge for the field of
machine learning. In this work, we propose a distance com-
plementary to existing measures: Topology Distance (TD),
the main idea behind which is to compare the geometric and
topological features of the latent manifold of real data with
those of generated data. More specifically, we build Vietoris-
Rips complex on image features, and define TD based on the
differences in persistent-homology groups of the two man-
ifolds. We compare TD with the most commonly-used and
relevant measures in the field, including Inception Score (IS),
Fréchet Inception Distance (FID), Kernel Inception Distance
(KID) and Geometry Score (GS), in a range of experiments
on various datasets. We demonstrate the unique advantage
and superiority of our proposed approach over the aforemen-
tioned metrics. A combination of our empirical results and
the theoretical argument we propose in favour of TD, strongly
supports the claim that TD is a powerful candidate metric that
researchers can employ when aiming to automatically evalu-
ate the goodness of GANs’ learning.

Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) are a class of deep generative models that have
achieved unprecedented performance in generating high-
quality and diverse images (Brock, Donahue, and Simonyan
2019). They have also been successfully applied to a vari-
ety of image-generation tasks, e.g. super resolution (Ledig
et al. 2017), image-to-image translation (Zhu et al. 2017),
and text-to-image synthesis (Reed et al. 2016), to name a
few. The GAN framework consists of a generator G and a
discriminator D, where G generates images Xg that are ex-
pected to resemble real images Xr, while D discriminates
between Xg and Xr. G and D are trained by playing a two-
player minimax game in a competing manner. Such novel
adversarial training process is a key factor in GANs’ suc-
cess: It implicitly defines a learnable objective that is flexi-
bly adaptive to various complicated image-generation tasks,
in which it would be difficult or impossible to explicitly de-
fine such an objective.

One of the biggest challenges in the field of generative
models – including for GANs – is the automatic evaluation
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of the goodness of such models (e.g., whether or not the data
generated by such models are similar to the data they were
trained on). Unlike supervised learning, where the goodness
of the models can be assessed by comparing their predictions
with the actual labels, or in some other deep-learning models
where the goodness of the model can be assessed using the
likelihood of the validation data under the distribution that
the real data comes from, in most state of the art generative
models we do not know this distribution explicitly or can not
rely on labels for such evaluations.

Given that the data (or their corresponding features) in
such situations can be assumed to lie on a manifold embed-
ded in a high dimensional space (Goodfellow, Bengio, and
Courville 2016), tools from topology and geometry come
as a natural choice when studying differences between two
data set. We propose topology distance (TD) for the eval-
uation of GANs; it compares the the topological structures
of two manifolds, and calculates a distance between them to
evaluate their (dis)similarities. We compare TD with widely-
used and relevant metrics, and demonstrate that it is more ro-
bust to noise compared to competing distance measures on
GAN’s, and it is better suited to distinguish among various
shapes that the data might come in. TD is able to evaluate
GANs with new insights different from other existing mea-
surements. It can therefore be used either as an alternative
to, or in conjunction with other metrics.

Related Work
There have been multiple metrics proposed to evaluate the
performance of GANs. In this paper we focus on the most
commonly-used and relevant approaches (as follows); for a
detailed account see (Borji 2018; Sajjadi et al. 2018).

Inception Score (IS) The main idea behind IS (Salimans
et al. 2016) is that generated images of high quality are ex-
pected to meet two requirements: They should contain eas-
ily classifiable objects (i.e. the conditional label distribution
p(y|x) with low entropy) and should be diverse (i.e. the
marginal distribution p(y) with high entropy). IS measures
the average KL divergence between these two distributions:

IS = exp(Ex∼pg [KL(p(y|x) || p(y))]), (1)

where pg is the generative distribution. IS relies on a pre-
trained Inception model (Szegedy et al. 2016) for the classi-
fication of the generated images. Therefore, a key limitation

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7721



of IS is that it is unable to evaluate the image types that are
distinct from those that the Inception model was trained on.

Fréchet Inception Distance (FID) and Kernel Inception
Distance (KID) Proposed by (Heusel et al. 2017), FID
relies on a pretrained Inception model, which maps each
image to a vector representation (or, features). Given two
groups of data in this vector space (one from the real and the
other from the generated images), FID measures their sim-
ilarities, assuming that the features are distributed as multi-
variate Gaussian; the distance will be the Fréchet distance
(also known as Wasserstein-2 distance) between the two
Gaussians:

FID(pr, pg) =
∥∥µr − µg

∥∥2
2
+Tr(Σr+Σg−2(ΣrΣg)

1
2 ) (2)

where pr and pg denote the feature distributions of real and
generated data, (µr, Σr) and (µg, Σg) denote the means and
covariances of the corresponding feature distributions, re-
spectively. It has been shown that FID is more robust to noise
(of certain types) than IS (Heusel et al. 2017), but its as-
sumption of features following a multivariate Gaussian dis-
tribution might be an oversimplification.

A similar metric to FID is KID (Mikołaj Bińkowski
2018), which computes the squared maximum mean dis-
crepancy (MMD) between the features (learned also from
a pretrained Inception model) of real and generated images:

KID(pr, pg) =Exr,x
′
r∼pr [k(xr,x

′
r)]

+Exg,x
′
g∼pg [k(xg,x

′
g)]

−2Exr∼pr,xg∼pg [k(xr,xg)]

(3)

where k denotes a polynomial kernel function k(x,x′) =
( 1
dx

Tx′ + 1)3 with feature dimension d. Compared with
FID, KID does not have any parametric form assumption
for feature distribution, and has a unbiased estimator.

Our proposed TD is closely related to FID and KID in
that it also measures the distance between latent features of
real and generated data. However, the key distinction of TD
is that the target distance is computed by considering the
geometric and topological properties of those latent features.

Geometry Score (GS) GS (Khrulkov and Oseledets 2018)
Geometry score is defined as l2 distance between means
of the relative living-times (RLT) vectors associated with
the two sets of images. RLT of a point cloud data (e.g., a
group of images in the feature space) is an infinite vector
(u1, u2, . . .) whose i-th entry is a measure of persistent in-
tervals having 1-persistent homology group rank equal to
i. That is, ui = 1

dn(n−1)/2

∑n(n−1)/2
j=1 Ij(dj+1 − dj), where

Ij equals 1 if the rank of persistent homology group of di-
mension 1 in interval [dj, dj+1] is i, and zero otherwise. Per-
sistent homology parameters di, i ∈ [0 . . . n(n − 1)/2] are
sorted distances in the observed point cloud data.

Geometry score exploits a similar idea to the TD, with the
difference being in the underlying point cloud data used, di-
mensionality of the homology group and distance measure
between the persistent diagrams. We claim that our method
better aligns with the existing theory in the area of computa-
tional algebraic topology and has superior experimental re-
sults.

Main Idea
According to the manifold hypothesis (Goodfellow, Bengio,
and Courville 2016), real world high dimensional data (and
their features) lie on a low dimensional manifold embedded
in a high dimensional space. The main idea of this paper is to
compare the latent manifold of the real data with that of the
generated data, based entirely on the topological properties
of the data samples from these two manifolds. Let Mr and
Mg be the latent manifolds of the real and generated data,
respectively. We aim to compare these two manifolds using
the finite samples of points Vr from Mr and Vg from Mg.

Most mainstream methods compare samples Vr and Vg

using the lower order moments (e.g. (Heusel et al. 2017))
– similar to the way we compare two functions using their
Taylor expansion, for instance. However, this would only be
valid if the underlying manifold is an Euclidean space (zero
curvature), as all moments of the samples are calculated us-
ing Euclidean distance. For a Riemannian manifold with a
nonzero curvature, this type of approach, at least in theory,
would not work, and using geodesic instead of Euclidean
distance would agree more with the hypothesis.

Here we propose the comparison of the two manifolds on
the basis of their topology and/or geometry. The ideal way
to compare two manifolds would be to infer if they are ge-
ometrically equivalent, i.e. isometric. This, unfortunately, is
not attainable. However, we could compare two manifolds
by the means of eigenvalues of the Laplace-Beltrami opera-
tor1 on them.

The Laplace-Beltrami spectrum can be regarded as the set
of squared frequencies that are associated to the modes of
eigenvalues of an oscillating membrane defined on the man-
ifold. The spectrum then, is an infinite sequence of eigen-
values, and satisfies some nice stability properties, whereby
a small perturbation in the metric of the underlying Rie-
mannian manifold results in a small perturbation of the
spectrum (Donnelly 2010; Birman 1963). Furthermore, the
Laplace-Beltrami spectrum is widely considered as a “fin-
gerprint” of a manifold. In 1966, in the famous paper “Can
one hear the shape of a drum?” (Kac 1966), M. Kac has
asked a question whether the eigenvalues of Laplace Bel-
trami operator alone are sufficient to uniquely (up to an
isometry) identify a manifold. The answer is unfortunately
not, but the isospectral manifolds are rare and when they ex-
ist, they share multiple topological and geometric features.

Furthermore, it is possible to translate this methodology
to a discrete setting, such that the spectrum calculated on the
discrete set relates closely to the spectrum on the manifold
itself.

Theorem 1 (Mantuano 2005) Given a discretisation G =
G(V, ε) of a compact Riemannian manifold M which has
non-negative sectional curvature κ, and non negative injec-
tivity radius, and for which Ricci(M, g) ≥ −(n − 1)κg,
where n is dimension of a manifold, g is a Riemannian met-
ric, then it is possible to associate the eigenvalues of Laplace
operator on a graph G, with the ones of the Laplace Bel-
trami operator on M(c1λk(G) ≤ λk(M) ≤ c2λk(G)), for

1Only for Riemannian manifolds
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all k < |V |.
The discretisation G(V, ε) of a manifold M, is a set of

points in M whose distance is at least ε and the union of the
balls centred in the points of V with radius ε which forms an
open cover of M, denoted by U . A version of this theorem
also holds for eigenvalues of higher dimensional version of
Laplace Beltrami operator, called Laplace–de Rham opera-
tor which reflects high dimensional topological and geomet-
ric properties of a manifold (Mantuano 2008). This effec-
tively means that for a sufficiently good sample V from M,
we can claim that calculating the eigenvalues on V would
effectively be as calculating them on M (see (Dey, Ranjan,
and Wang 2010) for more results).

In our case the manifold M is unknown, and all we know
is a sample of points from it: V. In order to calculate the
Laplace-Beltrami spectrum, we need to have a graph struc-
ture on V, which comes through Čech complex on its cover
U . To obtain the Čech complex, one needs radii of the balls
in the cover, i.e., ε. This in itself poses a problem, because
it is difficult to determine the right value of ε. There is little
hope in recovering spectral properties of M from the point
sample V, because we are unable to determine the right
value of ε.

A similar theorem to Theorem 1 applies to homology type
of a manifold and its sample.

Theorem 2 Given a Riemannian manifold M, and a sam-
ple of points from it, V, which is sufficiently dense, then a Vi-
etoris–Rips complex of V at scale ε is homologically equiv-
alent to M.

This theorem is a direct consequence of the famous nerve
theorem (Alexandroff 1928), but can also be seen as a con-
sequence of Theorem 1, due to a fact that the multiplicity of
eigenvalue zero on discretised space is exactly the rank of a
homology group of dimension zero on the same spacee.

In practice, as before, one does not know how to choose
scale for ε, but unlike before, in this setting we have avail-
able a tool that can, and is specifically designed to, deal with
the uncertainty of scale: persistent homology. We chose to
utilise persistent homology to extract information about the
geometry and topology of M, because persistent homology,
measured on the sample V, is a reliable shape quantifier of
M.

Preliminaries
Intuitively speaking, topological space is any space on which
the notion on neighbourhood can be defined. Hence, all met-
ric spaces (and consequently all examples considered in this
work) are topological spaces; the opposite is not true (i.e.,
not all topological spaces can be endowed with a metric).

It is very difficult to directly assess whether two topolog-
ical spaces are equivalent (homeomorphic); instead topolo-
gists use proxies to measure their similarity. One of these
proxies are homology groups, denoted by Hk, k ∈ N0,
which loosely speaking encode the information on different
types of loops (of different dimensions) that can be observed
in the topological space. In this work we will only be con-
cerned with a special class of topological spaces called sim-
plicial complexes. Simplicial complex, commonly denoted

by K, is a topological space consisting of vertices in a set
V and a set of faces chosen from the partitive set of V,
P(V), with the requirement that if W ∈ K, then all the
subsets of W are also in K. One way to visualise the sim-
plicial complex is to consider vertices as points in Rn and
m-dimensional faces as convex hulls of m + 1 vertices, i.e.
edges, triangles, tetrahedra, etc.

Homology groups are algebraic constructions defined by

Hk(K,R) = Zk(K,R)/Bk(K,R), (4)

where k is a non-negative integer, Zk(K,R) is a vector space
of k-dimensional cycles and Bk(K,R) a k-dimensional
boundaries, obtained as per-images and images of the
boundary mapping on a chain complex, for more detailed
account see (Hatcher 2009). Typically a rank of a homology
group of dimension zero would be the number of connected
components of K, rank of H1 would be the number of one
dimensional holes in K, rank of H2 would be the number of
cavities, and so on.

A persistent homology, is a homology of a topological
space measured at ”different resolutions”. More precisely,
we study a nested sequence of topological spaces (i.e., fil-
tration K : K0 ⊂ K1 ⊂ . . . ⊂ KN) and measure (calcu-
late) homology at every step. As an example let’s observe
the sequence of Vietoris-Rips complexes on a point set V:
A Vietoris-Rips complex on a vertex set V and a diameter ε
is a simplicial complex,in which v0, . . . , vk is a simplex iff
d(vi, vj) < ε for every i, j ≤ k.

An example of a filtration would be VR : VR(V, ε0) ⊆
VR(V, ε1) ⊆ . . . ⊆ VR(V, εn), where 0 = ε0 ≤ ε1 ≤
. . . ≤ εn (see Figure 1 (top)). In other words, persistent ho-
mology quantifies a change of topological invariants in VR
with a change of parameter ε.

Formally,

Hi,j
k (VR) = Zi

k/B
j
k ∩ Zi

k, (5)

where the j-th persistent homology group of dimension
k of the i-th filtration complex VR(V, εi) is denoted by
Hi,j

k (VR). Intuitively, the persistent homology group records
the “cycles” at the filtration step i, which have not become
“boundaries” (i.e. which have not effectively disappeared )
at filtration step j. For detailed account see (Edelsbrunner
and Harer 2008).

The main insight when it comes to persistent homology
is that the evolution of topological invariants over increase
in parameter ε, can be encoded compactly in the form of a
persistent diagram PD and a barcode.

PDk(VR) = {(bi, di) | i ∈ N, bi, di ∈ {ε0, . . . , εn}}, (6)

where bi in the pair ((bi, di)) records the appearance (or
birth) of a k-dimensional homology group and di records
its disappearance (also referred to as “death”). In the event
that homology group persists, i.e. it does not disappear dur-
ing the end of filtration, we set di = ∞. This set of points
is represented in the upper triangle of the first quadrant of
the R2 (see Figure 1 (bottom)). Another, representation is a
barcode where each bar is mapped to a point ((bi, di)) with
the starting point bi and ending point di.
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Figure 1: (top) The 4 step filtration of Vitoris Rips complex
on the set of 7 points with increasing radius 0 = ε1 ≤
. . . ≤ ε4. (bottom) The persistent diagram corresponding
to the filtration in the figure on top: b-axis denotes “birth”
or appearance of persistent homology group, and d-axis de-
notes “death” or disappearance. Red points represent persis-
tent homology groups of dimension 0, and the green ones of
dimension 1.

There is a natural measure of distance defined on per-
sistent diagrams, ∞-Wasserstein distance, also known in
the community as the bottleneck distance, which has de-
sirable stability properties with respect to small perturba-
tions (Chazal et al. 2016), but is sensitive to outliers and
mostly unsuitable for use in practice. On the other hand, p-
Wasserstein distance

Wq(Lp)(PD0
k,PD

1) =[
inf

η:PD0
k→PD

1
k

∑
u∈PD0

k

‖ u− η(u) ‖q
]1/p

, (7)

where 1 ≤ p, q ≤ ∞, and η ranges over all bijections be-
tween sets of persistent intervals in diagramsPD0 andPD1,
shows more potential as presented in (Chazal et al. 2018),
but is computationally demanding.

In practice, much of the applications of persistent homol-
ogy have used neither of the two distances, but have relied on
ad-hoc distances between persistent diagrams, which do not
have a strong backing in theory (e.g. (Bendich et al. 2016;
Khrulkov and Oseledets 2018). Endowed with any distance
measure described above, the space of persistent diagrams is
a metric space.

Method
The method we propose for evaluation of the performance
of generative models rests on measuring the differences be-
tween the set of images generated by GANs and set of origi-
nal images. We measure the distance on the point cloud data

in feature space. Let Fr be the set of features of the real, and
Fg of the generated images represented in: Rm.

Seen as the point cloud data in Rm, one can calculate the
distances between the points in Fr. It is worth noting here
again, that even though we calculate all the distances us-
ing Euclidean metric, the algorithm will effectively use only
“small” distances, and this is in agreement with potential
non-zero curvature of the manifold(refer to Theorem 1 and
Theorem 2 for full statement of this fact).

Assume that there are n data points in Fr and Fg, and let
0 = dr

0 ≤ dr
1 ≤ . . . ≤ dr

n(n−1)/2 and 0 = dg
0 ≤ dg

1 ≤
. . . ≤ dg

n(n−1)/2 be an array of sorted distances among vec-
tors in Fr, Fg, respectively. Then we observe the following
filtration: VR(Fr) : VR(Fr, d

r
0) ⊆ . . . ⊆ VR(Fr, d

r
k) and

VR(Fg) : VR(Fg, d
g
0) ⊆ . . . ⊆ VR(Fg, d

g
l ), where the

distance dr
k is the minimal distance d for which correspond-

ing Vietoris Rips complex becomes fully connected. Same is
true for dr

l . The 0 dimensional persistent homology groups
are calculated on the aforementioned filtrations. One conse-
quence of studying only 0th dimensional persistent homol-
ogy group, is that the rank of the persistent homology group
at time 0 will be exactly n, and persistent diagram will con-
sist of n pairs (bi, di), where bi denotes the point in filtration
where the observed homology group has appeared for the
first time (In our case bi = 0, for every i, due to the choice of
filtration), and di denotes a point in filtration where the ob-
served homology group(connected component) has merged
with another one, or is equal to∞ otherwise. This observa-
tion holds for both Fr and Fg.

A commonly used distance between persistence diagrams
in the field of TDA is bottleneck distance. However,in ad-
dition to being sensitive to outliers bottleneck distance ef-
fectively ignores noise, and while this might be beneficial in
some cases, in our use case is the opposite: the noise is one
of the main indicators of image quality and must not be ig-
nored by the distance metric. Hence, we’ve used the inherent
properties of our filtration method to define distance metric
suitable to the use case. We assign a n-dimensional vector
l(Fr) = (d0−b0, . . . , dn−bn), called the longevity vector
to the persistent diagram which represents the sorted living
times of each homology group for point set Fr. Same for Fg.

We define the Topology Distance (TD) between two per-
sistent diagrams, and consequently between two corpuses of
images to be l2 distance between their longevity vectors, i.e.
TD(Fr,Fg) =‖ l(Fr)− l(Fg) ‖2, where l(Fr) and l(Fg) are
the longevity vectors of persistent diagrams of filtrations of
set of original and generated image features, respectively.

As some persistent pairs may contain∞ we will assume
that the difference between two infinite coordinates in 0, and
the difference between∞ and non-infinite coordinate in our
algorithm is a some fixed value larger than the maximum
finite longevity. The TD algorithm is summarised in Algo-
rithm 1 and Algorithm 2.

Experiments
Datasets and Experimental Setup We compared our pro-
posed TD (lower is better) with IS (higher is better), FID
(lower is better), KID (lower is better) and GS (lower is bet-
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Algorithm 1 This algorithm is to compute the longevity vec-
tor l for a set of images. l is of length n, which represents
living times of all n homology classes throughout filtration
(see Method section for more details).

Require: f∗θ : a pretrained feature extractor with parame-
ters θ.
Require: RC(p): a function for computing Vietoris-Rips
Filtration over the given input points p.
Require: PD(c): a function for computing persistent ho-
mology in dimension 0 of filtration c.
Input: X ∈ RN×H×W×C: a set of images of size H×W
with C channels.
Compute: F← f∗θ (X)
Compute: C← RC(F)
Compute: l← PD(C)

Algorithm 2 This algorithm is to compute Topology Dis-
tance (TD) between real and generated images.

Input: Xr ∈ RN×H×W×C: a set of real images of size
H×W with C channels.
Input: Xg ∈ RN×H×W×C: a set of generated images of
size H×W with C channels.
Compute: lr with Xr using Algorithm 1.
Compute: lg with Xg using Algorithm 1.
Compute: TD(Xr,Xg)←‖ lr − lg ‖2

ter) as introduced in Related Work section. In addition to
some simulated data, which we will introduce in the next
Section, our experiments were carried out on the follow-
ing four datasets: Fashion-MNIST (Xiao, Rasul, and Voll-
graf 2017), CIFAR10, corrupted CIFAR100 (CIFAR100-
C) (Hendrycks and Dietterich 2019) and CelebA (Liu et al.
2015). Wherever features were required for computing the
metric, we used a ResNet18 model (He et al. 2016) trained
from scratch for Fashion-MNIST images, and the Inception
model (Szegedy et al. 2016) pretrained on ImageNet (Deng
et al. 2009) for all other datasets.

We implemented our algorithm using Python version
of GUDHI1 for topology-related computation and Py-
Torch (Paszke et al. 2019) for building and training neural
network models.

Comparison with FID and KID The idea of basing the
distance measure entirely on the first two moments (e.g., a
la FID) can be an oversimplification of the underlying distri-
butions at times, as describing certain distributions require
the use of higher order statistics (e.g., third or fourth mo-
ments). Furthermore, if two distributions have identical mo-
ments of all orders, it is still possible for them to be different
distributions (Romano and Siegel 1986). This leads to a con-
clusion that any distance metric based entirely on moments
cannot successfully distinguish between all probability dis-
tributions.

In order to assess how such theoretical considerations will
affect FID score’s performance, we first compared TD and

1http://gudhi.gforge.inria.fr/

Figure 2: Heat maps of distance matrices between 5 sample
sets (each of which has 600 samples randomly sampled from
a single Gaussian distribution, denoted by s1i ), and another 5
sample sets (each containing 600 samples from a mixture of
two Gaussian distributions, denoted by s2i ). All sji s have the
same first and second moments. (a) FID. (b) KID. (c) GS.
(d) TD.

FID on a synthetic dataset. As shown in Figure 2 we aim
to calculate the distance between a single Gaussian distribu-
tion and a mixture of two Gaussian distributions (the mix-
ture has the same mean and variance as the single Gaus-
sian). Given the identical first and second moments of the
two point clouds in this case, as expected, FID cannot dis-
criminate between the two, whereas the difference is very
obvious when using TD. KID has similar limitations as FID,
as demonstrated in Figure 2.

Next, we compared TD with FID and KID on real im-
ages, randomly sampled from CelebA dataset; the goal was
to compare the actual images with their manipulated coun-
terparts. More specifically, we performed three types of ma-
nipulations designed by (Liu et al. 2018), which resulted in
three new image datasets; we then computed the distance be-
tween each one of these manipulated image datasets and the
original image dataset, using TD, FID and KID.

The three image manipulations include: 1) pixel noise
(i.e., adding a random noise to each pixel, where the noise
is uniformly sampled from the following interval: 1 ± 0.13
times the maximum intensity of the image), 2) patch mask (7
out of 64 evenly-divided regions of each image were masked
by a random pixel from the image), and 3) patch exchange
(2 out of 16 evenly-divided regions of each image were ran-
domly exchanged with each other, performed twice). Some
example images after manipulation are shown in Figure 3.
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Figure 3: Comparison of FID, KID (×100) and TD on ma-
nipulated images (with pixel noise, patch mask and patch ex-
change). Results are averaged over 10 groups, each consist-
ing of 500 real images (randomly sampled from the CelebA
dataset) and the corresponding manipulated counterparts.

It is clear that the image quality increasingly worsens as we
go from pixel noise, to patch mask and patch exchange; we
expect to see this trend in the metrics.

However, FID and KID show a decreasing trend (indicat-
ing increasingly better quality) over pixel noise, patch mask
and patch exchange, which is apparently opposite the hu-
man judgements. They fail to capture the worsening of im-
age quality, as expected from qualitative assessments pre-
sented in (Liu et al. 2018); unlike TD, which captures the
change in the quality of the manipulated images very well.
Since all three metrics are based on the features extracted
by the same Inception model, this experiment demonstrates
that the superiority of TD over FID and KID is due to its ef-
fective assessment of the topological properties of the point
clouds (rather than their lower-order statistics).

Comparison with GS So far, we have attempted to
demonstrate the effectiveness of topology in assessing the
(dis)similarities of two point clouds. On the other hand, both
topology distance and geometry score exploit the idea of us-
ing topology to quantify dissimilarities between the latent
manifolds of data. There are two major differences between
TD and GS. The first one is in the core method and the way
topology is used to construct the distance. The second one
is that TD measures distances between point cloud data in
the feature space, whereas geometry score is defined on raw
pixels.

Figure 2c shows the heatmap of the distance matrix cal-
culated between a single Gaussian distribution and a mix-
ture of two Gaussian distributions using GS. It is clear that
TD better discriminates between the samples from the two
aforementioned distributions (see Figure 2d).

We then performed perturbation consistency comparison
between TD and GS using the CIFAR100-C dataset, in

which 16 different types of perturbations (grouped in four,
namely noise, blur, weather and digital) are applied to the
original CIFAR100 images; for each type of perturbation
there are five levels of severity. 5,000 images were randomly
sampled from the real dataset, and split into 10 groups (each
with 500 images); for each group, scores are calculated com-
paring the perturbed images and the original. For every per-
turbation, as severity increases, the average score (across 10
groups) should increase monotonically with it.

As shown in Figure 4, TD is able to capture levels of per-
turbation severity much better and consistently than GS for
many types of perturbations (e.g. Gaussian noise, frost, and
elastic transform). This demonstrates that TD trend is more
consistent with perturbation trend than GS, which further
demonstrates the advantages of using features over pixels
when computing topological properties.

Comparison with IS We then compared TD with IS on
CelebA dataset where there are only face images and thus
no distinct classes exist. We trained a GAN model (WGAN-
GP (Gulrajani et al. 2017)) on the training set of CelebA;
original images were cropped to be of size 64×64, and the
model was then trained on them for 200 epochs with a batch
size of 64. We recorded TD and IS along with the training
process: every 4 epochs we fed the randomly sampled noise
vector (remained fixed for different epochs) to the trained
model so far; we then computed TD and IS on the generated
and real images.

Figure 5 shows that TD has a great correspondence to the
quality of generated images (i.e., decreasing trend with the
improved quality of images). By contrast, IS fails to do so;
at the early stages of training (before 20 epochs) it decreases
as the quality of the generated images increases – in contrast
to what is expected – and eventually loses its discrimination
power at the remaining epochs. In summary, TD shows su-
periority over IS for evaluating the quality of images from
datasets such as CelebA.

Pixels vs. Features Finally we performed an ablation
study to compare the usage of pixels vs features when com-
puting TD. We trained two WGAN-GP models, respectively,
on Fashion-MNIST (trained for 100 epochs) and CIFAR10
(trained for 200 epochs) datasets. We then computed pixel-
based and feature-based TD between images generated by
WGAN-GP trained for different number of epochs and real
images, randomly sampled from each dataset.

As can be seen clearly from Figure 6, for both datasets,
feature-based TD is able to demonstrate better performance
in terms of discrimination and consistency. This attributes to
the better generalisation of learned features than raw pixels,
which is one of the most significant advances of deep neural
networks (Bengio, Courville, and Vincent 2013).

We also preformed a comprehensive comparison of im-
age quality correlation among FID, KID, GS, IS and TD,
and showed TD demonstrates better (vs. GS and IS) or com-
parable (vs. FID and KID) performance. The results can be
found in the supplementary material.1

1https://arxiv.org/abs/2002.12054
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Figure 4: Comparison of perturbation consistency between TD and GS (×1000) on CIFAR100-C dataset. Results are aver-
aged over 10 groups, each of which consists of 500 real images (randomly sampled from the CIFAR100-C dataset) and the
corresponding images with perturbation.

Figure 5: Comparison of TD and IS on generated images
by WGAN-GP along with training process on the CelebA
dataset. Results are averaged over 10 groups, each of which
consists of 500 real images (randomly sampled from the
original dataset) and generated images.

Conclusion
In this work, we introduced Topology Distance (TD), a novel
metric to evaluate GANs by considering the topological
structures of latent manifold of real and generated images.
In a range of experiments we have compared TD with IS,
FID, KID, and GS, and have demonstrated its advantages

Figure 6: Comparison of TD based on pixels and features
on different datasets. Results are averaged over 10 groups,
each of which consists of 500 real images (randomly sam-
pled from the original dataset) and generated images. (a)
Fashion-MNIST. (b) CIFAR10.

and superiority over them in terms of consistency with hu-
man judgement, as well as other quantitative measures of
change in image quality. TD is capable of providing new in-
sights for the evaluation of GANs, and it thus can be used in
conjunction with other metrics when evaluating GANs.
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