
Storage Fit Learning with Feature Evolvable Streams

Bo-Jian Hou, Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China
{houbj, yanyh, zhaop, zhouzh}@lamda.nju.edu.cn

Abstract

Feature evolvable learning has been widely studied in recent
years where old features will vanish and new features will
emerge when learning with streams. Conventional methods
usually assume that a label will be revealed after prediction at
each time step. However, in practice, this assumption may not
hold whereas no label will be given at most time steps. A good
solution is to leverage the technique of manifold regulariza-
tion to utilize the previous similar data to assist the refine-
ment of the online model. Nevertheless, this approach needs
to store all previous data which is impossible in learning with
streams that arrive sequentially in large volume. Thus we
need a buffer to store part of them. Considering that differ-
ent devices may have different storage budgets, the learning
approaches should be flexible subject to the storage budget
limit. In this paper, we propose a new setting: Storage-Fit
Feature-Evolvable streaming Learning (SF2EL) which incor-
porates the issue of rarely-provided labels into feature evo-
lution. Our framework is able to fit its behavior for different
storage budgets when learning with feature evolvable streams
with unlabeled data. Besides, both theoretical and empirical
results validate that our approach can preserve the merit of
the original feature evolvable learning i.e., can always track
the best baseline and thus perform well at any time step.

Introduction
Over the last several years, feature evolvable learning has
drawn extensive attentions (Zhang et al. 2016; Hou, Zhang,
and Zhou 2017a; Hou and Zhou 2018; Ye et al. 2018; Zhang
et al. 2020), where old features will vanish and new fea-
tures will emerge when data streams come continuously or
in an online manner. There are various problem settings
proposed in previous studies. For instance, in FESL (Hou,
Zhang, and Zhou 2017a), there is an overlapping period
where old and new features exist simultaneously when fea-
ture space switches. Hou and Zhou (2018) investigate the
scenario when old features disappear, part of them will sur-
vive and continue to exist with new arriving features. Zhang
et al. (2016) study that features of new samples are always
equal to or larger than the old samples so as to render trape-
zoidal data streams. Subsequent works consider the situ-
ation that features could vary arbitrarily at different time

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

steps under certain assumptions (Beyazit, Alagurajah, and
Wu 2019; He et al. 2019).

Note that the setting of feature evolvable learning is dif-
ferent from transfer learning (Pan and Yang 2010) or domain
adaptation (Jiang 2008; Sun, Shi, and Wu 2015). Trans-
fer learning usually assumes that data come in batches in-
stead of the streaming form. One exception is online trans-
fer learning (Zhao et al. 2014) in which data from both sets
of features arrive sequentially. However, they assume that
all the feature spaces must appear simultaneously during
the whole learning process while such an assumption does
not hold in feature evolvable learning. Domain adaptation
usually assumes the data distribution changes across the do-
mains, yet the feature spaces are the same, which is evidently
different from the setting of feature evolvable learning.

These conventional feature evolvable learning methods all
assume that a label can be revealed in each round. However,
in real applications, labels may be rarely given during the
whole learning process. For example, in an object detecting
system, a robot takes high-frame rate pictures to learn the
name of different objects. Like a child learning in real world,
the robot receives names rarely from human. Thus we will
face the online semi-supervised learning problem. We focus
on manifold regularization which assumes that similar sam-
ples should have the same label and has been successfully
applied in many practical tasks (Zhu, Lafferty, and Rosen-
feld 2005). However, this method needs to store previous
samples and render a challenge on storage. Besides, differ-
ent devices have different storage budget limitations, or even
the available storage in the same device could be different at
different times. Thus it is important to make our method ad-
just its behavior to fit for different storage budgets (known
as storage-fit issues) (Zhou et al. 2009; Hou, Zhang, and
Zhou 2017b) which means the method should fully exploit
the storage budget to optimize its performance.

In this paper, we propose a new setting: Storage-Fit
Feature-Evolvable streaming Learning (SF2EL) which con-
cerns both the lack of labels and the storage-fit issue
in the feature evolvable learning scenario. We focus on
FESL (Hou, Zhang, and Zhou 2017a), and other feature
evolvable learning methods based on online learning tech-
nique can also adapt to our framework since our framework
is not affected by specific forms of feature evolution. Due to
the lack of labels, the loss function of FESL cannot be used

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7729



anymore. We leverage manifold regularization technique to
convert its loss function to a “risk function” without the need
to consider if there exists a label or not. We also make use
of a buffer strategy named reservoir sampling (Vitter 1985)
when encountering the storage-fit problem. Our contribu-
tions are threefold as follows.

• Both theoretical and experimental results demonstrate
that our method is able to always follow the best baseline
at any time step. Thus our model can always perform well
during the whole learning process in new feature space
regardless of the limitation that only few data emerge in
the beginning. This is a very fundamental requirement in
feature evolvable learning scenario and FESL as well as
other feature evolvable learning methods cannot achieve
this goal when labels are barely given.

• In addition, the experimental results indicate that mani-
fold regularization plays an important role when there are
only few labels.

• Finally, we theoretically and experimentally validate that
larger buffer brings better performance. Therefore, our
method can fit for different storages by taking full advan-
tage of the budget.

The rest of this paper is organized as follows. Section 2 in-
troduces the preliminary about the basic scenario on feature
evolution and the framework of our approach. Our proposed
approach with two corresponding analyses is presented in
Section 3. Section 4 reports experimental results. Finally,
Section 5 concludes our paper.

Preliminary and Framework
We focus on binary classification task. On each round of the
learning process, the learner observes an instance and gives
its prediction. After the prediction has been made, with a
small probability pl, the true label is revealed. Otherwise, the
instance remains unlabeled. The learner updates its predictor
based on the observed instance and the label, if any. In the
following, we introduce FESL that we are interested in.

FESL defines “feature space” by a set of features. And
“the feature space changes” means both the underlying
distribution of the feature set and the number of features
change. Figure 1 illustrates how data stream comes in FESL.
There are three repeating periods: in the first period a large
amount of data streams come from the old feature space S1;
then in the second period named “overlapping period”, few
of data come from both the old and the new feature space,
i.e., S1 and S2; soon afterwards in the third period, data
streams only come from the new feature space S2. These
three periods will continue again and again and form cycles.
Each cycle merely includes two feature spaces and thus, we
only need to focus on one cycle and it is easy to extend to
the case with multiple cycles. Besides, FESL assumes that
the old features in one cycle will vanish simultaneously ac-
cording to the example of ecosystem protection where all the
sensors share the same expected lifespan and thus they will
wear out at the same time. The case where old features van-
ish asynchronously has been studied in PUFE (Hou, Zhang,
and Zhou 2019), which can adapt to our framework as well.

Feature Evolution

D
ata Stream

ing

𝑆1 𝑆2 𝑆3 ⋯

𝐱1
𝑆1

…

𝐱𝑇1−𝐵
𝑆1

𝐱𝑇1−𝐵+1…𝑇1
𝑆1 𝐱𝑇1−𝐵+1…𝑇1

𝑆2

𝐱𝑇1+1
𝑆2

…
𝐱𝑇1+𝑇2
𝑆2

…

…

𝑇2

First Period

Second Period

𝑇1

Third Period

Figure 1: Illustration of how data stream comes.

Based on the above discussion, we only consider two fea-
ture spaces denoted by S1 and S2, respectively. Suppose that
in the overlapping period, there are B rounds of instances
both from S1 and S2. As can be seen from Figure 1, the
process can be summarized as follows.
• For t = 1, . . . , T1−B, in each round, the learner observes

a vector xS1
t ∈ Rd1 sampled from S1 where d1 is the

number of features of S1, T1 is the number of total rounds
in S1.

• For t = T1 − B + 1, . . . , T1, in each round, the learner
observes two vectors xS1

t ∈ Rd1 and xS2
t ∈ Rd2 from S1

and S2 where d2 is the number of features of S2.
• For t = T1 + 1, . . . , T1 + T2, in each round, the learner

observes a vector xS2
t ∈ Rd2 sampled from S2 where T2

is the number of rounds in S2. Note that B is small, so
we can omit the streaming data from S2 on rounds T1 −
B+1, . . . , T1 since they have minor effect on training the
model in S2.
FESL adopts linear predictor, whereas to be general, non-

linear predictor is chosen in our paper. Let Ki denote a
kernel over xSi and HKi

the corresponding Reproducing
Kernel Hilbert Space (RKHS) (Schölkopf and Smola 2002)
where i = 1, 2 that indexes the feature space. We define
the projection as ΠHK

(b) = argmina∈HK
‖a − b‖K . The

predictor learned from the sequence is denoted as f ∈
HK . Denote by fi,t, i = 1, 2 the predictor learned from
the ith feature space in the tth round. The loss function
`(f(x), y) is convex in its first argument such as logistic loss
`(f(x), y) = ln(1 + exp(−yf(x))), hinge loss `(f(x), y) =
max(0, 1− yf(x)), etc., for classification tasks.

If the label is fully provided, the risk suffered by the pre-
dictor in each round can be merely the prediction loss men-
tioned above. Then the most straightforward or baseline al-
gorithm is to apply online gradient descent (Zinkevich 2003)
on rounds 1, . . . , T1 with streaming data xS1

t , and invoke it
again on rounds T1 + 1, . . . , T1 + T2 with streaming data
xS2
t . The models are updated according to:

fi,t+1 = ΠHKi

(
fi,t − τt∇`(fi,t(xSi

t ), yt)
)
, i = 1, 2,

(1)
where ∇`(fi,t(xSi

t ), yt) is the gradient of the loss function
on fi,t and τt is a time-varying step size, e.g., τt = 1/

√
t.

7730



Nevertheless, the fundamental goal of FESL and other
feature evolvable learning methods is that the model can al-
ways keep the performance at a good level no matter in the
beginning of each feature space or at any other time. This
baseline method cannot achieve this goal since there are only
few data in the beginning of S2 and it is difficult to obtain
good performance with only training on these few data. A
fundamental idea of FESL and other feature evolvable learn-
ing methods is to establish a relationship between the old
feature space and the new one. In this way, the learning on
the new feature space can be assisted by the old well-learned
model and the goal can be achieved.

Specifically, FESL learns a mapping ψ : Rd2 → Rd1 be-
tween S1 and S2 by least squares during the overlapping
period. Then when S1 disappears, we can leverage this map-
ping to map the new data from S2 into S1 to recover the
data from S1, i.e., ψ(xS2

t ). At this rate, the well-learned
model f1,T1

from S1 can make good prediction on the re-
covered data ψ(xS2

t ) and update itself with them. Concur-
rently, a new model is learned in S2 and another predic-
tion on xS2

t is also made. At the beginning, the S1’s pre-
diction f1,t(ψ(xS2

t )) is good with the good predictor f1,t
and S2’s prediction f2,t(xS2

t ) is bad due to limited data. But
after some time, f1,t(ψ(xS2

t )) may become worse because
of the cumulated error brought by the inaccurate mapping
and f2,t(xS2

t ) will be better with more and more accurate
data. FESL dynamically combines these two changing pre-
dictions with weights by calculating the loss of each base
model. With this strategy, it achieves the fundamental goal
in feature evolvable learning, i.e., can always follow the best
base model at any time step and thus always perform well
during the whole learning process in the new feature space.

Unfortunately, however, we cannot always obtain a label
in each round. Thus (1) cannot be calculated so that FESL
and other feature evolvable learning methods cannot achieve
the goal. We leverage manifold regularization technique to
mitigate this problem such that we can continue to calcu-
late our risk function even when no labels are provided. But
this operation requires the calculation of similarity between
each observed sample and the current sample. This brings
huge burdens on the storage and computation, which is not
allowed in streaming learning or online learning scenario.
Therefore, we incorporate the buffering strategy which only
uses a small buffer to store representative samples. Consider-
ing that different devices provide different storage budgets,
and even the same device will provide different available
storages, we need to fit our method for different storages
to maximize the performance (known as storage-fit issue),
which can be accomplished by our buffering strategy.

So far, our framework is clear, that is:

• We first exploit manifold regularization to mitigate the
problem where labels are rarely given, and then the on-
line gradient descent can be calculated again;

• Based on the modification in the first step, we can derive
our learning procedure from FESL naturally, yet with a
potential problem of storage and computation;

• Finally, we use a buffering strategy to solve the stor-

age and computation problem and subsequently solve the
storage-fit issue based on this strategy.

Our Approach
Based on the framework described in the end of the last sec-
tion, in this section, we introduce our approach along the
way of considering “manifold regularization”, “combining
base learners” and “buffering”. In the end of this section, we
also provide two analyses with respect to the fundamental
goal and the storage-fit issue respectively.

Manifold Regularization

With limited labels, we will face an online semi-supervised
learning problem. There are several convex semi-supervised
learning methods, e.g., manifold regularization and multi-
view learning. Their batch risk is the sum of convex func-
tion in f . For these convex semi-supervised learning meth-
ods, one can derive a corresponding online semi-supervised
learning algorithm using online convex programming (Gold-
berg, Li, and Zhu 2008). We focus on manifold regulariza-
tion while the online versions of multi-view learning and
other convex semi-supervised learning methods can be de-
rived similarly.

In online learning, the learner only has access to the input
sequence up to the current time. We thus define the instan-
taneous regularized risk Ji,t(fi,t) at time t to be

Ji,t(fi,t) =
T

l
δ(yt)`(fi,t(xSi

t ), yt) +
λ1
2
‖fi,t‖2Ki

+λ2

t−1∑
s=1

(fi,t(xSi
s )− fi,t(xSi

t ))2wst, i = 1, 2.
(2)

where l is the number of labeled samples, ` is the loss func-
tion which is convex in its first argument, fi,t is the predictor
learned in ith feature space andwst is the edge weight which
defines a graph over the T samples such as a fully connected
graph with Gaussian weights wst = e−‖xs−xt‖2/2σ2

. The
last term in Ji,t involves the graph edges from xSi

t to all
previous samples up to time t. Tl in the first term of (2) is
the empirical estimate of the inverse label probability 1/pl,
which we assume is given and easily determined based on
the rate at which humans can label the data at hand.

The online gradient descent algorithm applied on the in-
stantaneous regularized risk Ji,t will derive

fi,t+1 = ΠHki

(
fi,t − τt∇Ji,t(fi,t(xSi

t ))
)
, i = 1, 2, (3)

where τt is a time-varing step size. Thus even if no label is
revealed, we can still update our model fi,t according to (3).
Then in round t > T1, the learner can calculate two base pre-
dictions based on models f1,t and f2,t: p1,t = f1,t(ψ(xS2

t ))

and p2,t = f2,t(xS2
t ). By ensemble over the two base pre-

dictions in each round, our SF2EL is able to follow the best
base prediction empirically and theoretically. The initializa-
tion process to obtain the relationship mapping ψ and f1,T1

during rounds 1, . . . , T1 is summarized in Algorithm 1.

7731



Algorithm 1 Initialize
1: Initialize f1,1 ∈ HK randomly;
2: for t = 1, 2, . . . , T1 do
3: Receive xS1

t ∈ Rd1 and predict pt = f1,t(xS1
t ) ∈ R;

4: Receive the target yt ∈ R with small probability pi, and
suffer instantaneous risk Ji,t according to (2);

5: Update f1,t using (3) where τt = 1/
√
t;

6: if t > T1 −B then
7: Learn ψ by least squares;
8: end if
9: end for

Combining Base Learners
We propose to do ensemble by combining base learners with
weights based on exponential of the cumulative risk (Cesa-
Bianchi and Lugosi 2006). The prediction of our method at
time t is the weighted average of all the base predictions:

p̂t =
2∑
i=1

αi,tpi,t, (4)

where αi,t is the weight of the ith base prediction. With the
previous risk of each base model, we can update the weights
of the two base models as follows:

αi,t =
e−ηJi,t∑2
j=1 e

−ηJj,t

, i = 1, 2, (5)

where η is a tuned parameter and Ji,t is the cumulative risk
of the ith base model until time t: Ji,t =

∑t
s=1 Ji,t, i =

1, 2. The risk of our predictor is calculated by

Jt =

2∑
i=1

αi,tJi,t. (6)

We can also rewrite (5) in an incremental way, which can
be calculated more efficiently:

αi,t+1 =
αi,te

−ηJi,t∑2
j=1 αj,te

−ηJi,t
, i = 1, 2. (7)

The updating rule of the weights shows that if the risk
of one of the models on previous round is large, then its
weight will decrease in next round, which is reasonable and
can derive a good theoretical result shown in Theorem 1.
Thus the procedure of our learning is that we first learn a
model f1,T1

using (3) on rounds 1, . . . , T1, during which,
we also learn a relationship ψ for t = T1 − B + 1, . . . , T1.
Then for t = T1 + 1, . . . , T1 + T2, we learn a model f2,t on
each round with new data xS2

t from feature space S2:

f2,t+1 = ΠHk2

(
f2,t − τt∇J2,t(f2,t(xS2

t ))
)

(8)

and keep updating f1,t on the recovered data ψ(xS2
t ):

f1,t+1 = ΠHk1

(
f1,t − τt∇J1,t(f1,t(ψ(xS2

t )))
)
, (9)

where τt is a varied step size. Then we combine the predic-
tions of the two models by weights calculated in (7).

In order to compute (8) and (9), we first need to compute
their gradients ∇Ji,t(fi,t(xSi

t )), i = 1, 2. We express the
functions in ith feature space fi,1, . . . , fi,t, i = 1, 2 using a
common set of representers xSi

1 , . . . , x
Si
t , i = 1, 2, i.e.,

fi,t =
t−1∑
s=1

β
(t)
i,sKi(xSi

s , ·), i = 1, 2. (10)

To obtain fi,t+1, i = 1, 2, we need to calculate the co-
efficients β(t+1)

i,1 , . . . , β
(t+1)
i,t . We follow the kernel online

semi-supervised learning approach (Goldberg, Li, and Zhu
2008) to update our coefficients by writing the gradient
∇Ji,t(fi,t(xSi

t )), i = 1, 2 as

T

l
δ(yt)`

′(fi,t(xSi
t ), yt)Ki(xSi

t , ·) + λ1fi,t

+2λ2

t−1∑
s=1

(fi,t(xSi
s )− fi,t(xSi

t ))wst(Ki(xSi
s , ·)−Ki(xSi

t , ·)),

(11)
in which we compute the derivative according to the repro-
ducing property of RKHS, i.e.,

∂fi,t(xSi
t )/∂fi,t = ∂〈fi,t,Ki(xSi

t , ·)〉/∂fi,t = Ki(xSi
t , ·),

where i = 1, 2. `′ is the (sub)gradient of the loss function `
with respect to fi,t(xSi

t ), i = 1, 2. Putting (11) back to (8)
or (9), and replace fi,t with its kernel expansion (10), we can
obtain the coefficients for fi,t+1 as follows:

β
(t+1)
i,s = (1− τtλ1)β

(t)
i,s − 2τtλ2(fi,t(xSi

s )− fi,t(xSi
t ))wst,

(12)
where i = 1, 2 and s = 1, . . . , t− 1, and

β
(t+1)
i,t = 2τtλ2

t−1∑
s=1

(fi,t(xSi
s )− fi,t(xSi

t ))wst

− τt
T

l
δ(yt)`

′(fi,t(xSi
t ), yt), i = 1, 2.

(13)

Buffering
As can be seen from (12) and (13), when updating the model,
we need to store each observed sample and calculate the
weights wst between the new incoming sample and all the
other observed ones. These operations will bring huge bur-
dens on computation and storage. To alleviate this problem,
we do not store all the observed samples. Instead, we use a
buffer to store a small part of them, which we call buffering.

We denote by B the buffer and let its size be b. In order to
make the samples in buffer more representative, it is better
to make each sample in the buffer sampled by equal quality.
Therefore, we exploit the reservoir sampling technique (Vit-
ter 1985) to achieve this goal which enables us to use a fixed
size buffer to represent all the received samples. Specifically,
when receiving a sample xSi

t , we will directly add it to the
buffer if the buffer size b > t. Otherwise, with probability
b/t, we update the buffer B by randomly replacing one sam-
ple in B with xSi

t . The key property of reservoir sampling
is that samples in the buffer are provably sampled from the

7732



original dataset uniformly. Then the instantaneous risk will
be approximated by

Ji,t(fi,t(xSi
t )) =

T

l
δ(yt)`(fi,t(xSi

t ), yt) +
λ1
2
‖fi,t‖2Ki

+λ2
t− 1

b

∑
s∈B

(fi,t(xSi
s )− fi,t(xSi

t ))2wst, i = 1, 2,
(14)

where the scaling factor t−1
b keeps the magnitude of the

manifold regularizer comparable to that of the unbuffered
one. Accordingly, the predictor will become

fi,t =
∑
s∈B

β
(t)
i,sKi(xSi

s , ·), i = 1, 2. (15)

If the buffer size b > t, we will update the coefficients
by (12) and (13) directly. Otherwise, if the new incoming
sample replaces some sample in the buffer, there will be two
steps to update our predictor. The first step is to update fi,t
to an intermediate function f ′ represented by b+ 1 elements
including the old buffer and the new observed sample xSi

t as
follows.

f ′ =
∑
s∈B

β′i,sKi(xSi
s , ·) + β′i,tKi(xSi

t , ·), (16)

where

β′i,s = (1− τtλ1)β
(t)
i,s − 2τtλ2(fi,t(xSi

s )− fi,t(xSi
t ))wst,

(17)
in which i = 1, 2 and s ∈ B, and

β′i,t = 2τtλ2
t− 1

b

∑
s∈B

(fi,t(xSi
s )− fi,t(xSi

t ))wst

− τt
T

l
δ(yt)`

′(fi,t(xSi
t ), yt), i = 1, 2.

(18)

The second step is to use the newest sample xSi
t to replace

the sample selected by reservoir sampling, say xSi
s and ob-

tain fi,t+1 which uses b base representers by approximating
f ′ which uses b+ 1 base representers:

min
β
(t+1)
i

‖f ′ − fi,t+1‖

s.t. fi,t+1 =
∑
s∈B

β
(t+1)
i,s Ki(xSi

s , ·), i = 1, 2.
(19)

This can be intuitively regarded as spreading the replaced
weighted contribution β′i,sKi(xSi

s , ·) to the remaining sam-
ples including the newly added β′i,tKi(xSi

t , ·) in the buffer.

The optimal β(t+1)
i in (19) can be efficiently found by

matching pursuit (Vincent and Bengio 2002).
If the new incoming sample does not replace the sample

in the buffer, fi,t+1 will still consist of the representers from
the unchanged buffer. Then only the coefficients of the rep-
resenters from the buffer will be updated as follows.

β
(t+1)
i,s = (1− τtλ1)β

(t)
i,s − 2τtλ2(fi,t(xSi

s )− fi,t(xSi
t )),

(20)
where i = 1, 2 and s ∈ B.

Algorithm 2 summarizes our SF2EL.

Algorithm 2 SF2EL
1: Initialize ψ and f1,T1 during 1, . . . , T1 using Algorithm 1;
2: α1,T1 = α2,T1 = 1

2
;

3: Initialize f2,T1+1 randomly and f1,T1+1 by f1,T1 ;
4: for t = T1 + 1, T1 + 2, . . . , T1 + T2 do
5: Receive xS2

t ∈ RS2 ;
6: Predict p1,t = f1,t(ψ(xS2

t )) and p2,t = f2,t(xS2
t );

7: Predict p̂t ∈ R using (4);
8: Receive the target yt ∈ R with small probability pi, and

suffer instantaneous risk Jt according to (6);
9: Update base predictions’ weights using (7);

10: Update f1,t and f2,t using (9) and (8) respectively with
buffering strategy in Section where τt = 1/

√
t− T1.

11: end for

Analysis
In this section, we borrow regret from online learning to
measure the performance of SF2EL. Specifically, we give
a risk bound which demonstrates that the performance will
be improved with the assistance of the old feature space. We
define that J S1 and J S2 are two cumulative risks suffered
by base models on rounds T1 + 1, . . . , T1 + T2, J S1 =∑T1+T2

t=T1+1 J1,t, J S2 =
∑T1+T2

t=T1+1 J2,t, and J S12 is the cu-
mulative risk suffered by our method according to the def-
inition of our predictor’s risk in (6): J S12 =

∑T1+T2

t=T1+1 Jt.
Then we have (proof is deferred to supplementary file):

Theorem 1. Assume that the risk function Jt takes value
in [0,1]. For all T2 > 1 and for all yt ∈ Y with t = T1 +
1, . . . , T1+T2,J S12 with parameter η =

√
ln 2/T2 satisfies

J S12 ≤ min(J S1 ,J S2) +
√
T2 ln 2. (21)

Remark 1. This theorem implies that the cumulative risk
J S12 of Algorithm 2 over rounds T1 + 1, . . . , T1 + T2 is
comparable to the minimum of J S1 and J S2 . Furthermore,
we define C =

√
T2 ln 2. If J S2 − J S1 > C, it is easy to

verify that J S12 is smaller than J S2 . In summary, on rounds
T1 + 1, . . . , T1 + T2, when f1,t is better than f2,t to certain
degree, the model with assistance from S1 is better than that
without assistance.

Furthermore, we prove that larger buffer can bring bet-
ter performance by leveraging our buffering strategy. Con-
cretely, let Rt be the last term of the objective (2), which
is formed by all the observed samples till the current itera-
tion. Denote by R̂t the approximated version formed by the
observed samples in the buffer. Then we have:

Theorem 2. With the reservoir sampling mechanism, the
approximated objective is an unbiased estimation of objec-
tive formed by the original data, namely, E[Rt] = E[R̂t].

Remark 2. Theorem 2 demonstrates the rationality of the
reservoir sampling mechanism in buffering. The objective
formed by the observed samples in the buffer is provably un-
biased to that formed by all the observed samples. Further-
more, the variance of the approximated objective will de-
crease with more observed samples in a larger buffer, lead-
ing to a more accurate approximation, which suggests us to

7733



make the best of the buffer storage to store previous ob-
served samples. Since various devices have different stor-
age budgets and even the same device will provide different
available storages, we can fit our method for different stor-
ages to maximize the performance by taking full advantage
of the budget. This proof can be found in supplementary file.

Experiments
In this section, we conduct experiments in different scenar-
ios to validate the three claims presented in Introduction.

Compared Methods
We compare our SF2EL to 7 baseline methods:

• NOGD: (Naive Online Gradient Descent): mentioned in
Preliminary, where once the feature space changes, the
online gradient descent algorithm will be invoked from
scratch.

• uROGD (updating Recovered Online Gradient Descent):
utilizes the model learned from feature space S1 by online
gradient descent to do predictions on the recovered data
and keeps updating with the recovered data.

• fROGD (fixed Recovered Online Gradient Descent): also
utilizes the model learned from S1 to do predictions on
the recovered data like uROGD but keeps fixed.

• NOGD+MR: NOGD boosted by manifold regularization
(MR).

• uROGD+MR: uROGD boosted by MR.

• fROGD+MR: fROGD boosted by MR.

• FESL-Variant: FESL (Hou, Zhang, and Zhou 2017a) can-
not be directly applied in our setting. For fair compari-
son, we modify the original FESL to a non-linear version
which only updates on the rounds when there is a label re-
vealed. FESL-Variant is actually the SF2EL without MR.

Note that NOGD, uROGD, fROGD and FESL-Variant do
not update on rounds when no label is revealed while
NOGD+MR, uROGD+MR, fROGD+MR and our SF2EL
keep updating on every round. We want to emphasize that
it is sufficient to validate the effectiveness of our framework
by merely comparing our method to these baselines men-
tioned above in the scenario of FESL since our goal is: (1)
our model can be comparable to these base models, (2) the
manifold regularization is useful and (3) our method can fit
for the storage budget to maximize its performance. With
the manifold regularization and buffering strategy, other fea-
ture evolvable learning methods based on the online learning
technique can also adapt to our framework similarly.

Evaluation and Parameter Setting
We evaluate the empirical performances of the proposed ap-
proaches on classification task on rounds T1+1, . . . , T1+T2.
We assume all the labels can be obtained in hindsight. Thus
the accuracy is calculated on all rounds. Besides, to verify
that Theorem 1 is reasonable, we present the trend of aver-
age cumulative risk. Concretely, at each time t′, the risk J̄i,t′
of every method is the average of the cumulative risk over

1, . . . , t′, namely J̄i,t′ = (1/t′)
∑t′

t=1 Ji,t. The probability
of labeled data pl is set as 0.3. We also conduct experiments
on other different pl and our SF2EL also works well. The
performances of all approaches are obtained by average re-
sults over 10 independent runs.

Datasets
We conduct our experiments on 7 datasets from different
domains including economy and biology, etc.1 Note that in
FESL 30 datasets are used. However, over 20 of them are
the texting datasets which do not satisfy the manifold char-
acteristic. The datasets used in our paper all satisfy the man-
ifold characteristic and the Swiss dataset (like a swiss roll) is
the perfect one. Swiss is a synthetic dataset containing 2000
samples and is generated by two twisted spiral datasets. As
Swiss has only two dimensions, it is convenient for us to
observe its manifold characteristic. As can be seen from
Figure 3(a), Swiss satisfies a pretty nice manifold property.
Other datasets used in our paper also have such property but
as a matter of high dimension, we only use Swiss as an ex-
ample. To generate synthetic data of feature space S2, we ar-
tificially map the original datasets by random matrices. Then
we have data both from feature space S1 and S2. Since the
original data are in batch mode, we manually make them
come sequentially. In this way, synthetic data are completely
generated. As for the real dataset, we use “RFID” dataset
provided by FESL which satisfies all the assumptions in
Preliminary. “HTRU 2” and “magic04” are two large-scale
datasets which contain 17898 and 19020 instances respec-
tively and we only provide their accuracy results in Table 1
due to page limitation. Other results on these two datasets
can be found in the supplementary file.

Results
We have three claims mentioned in Introduction. The first is
that our method can always follow the best baseline at any
time and thus achieve the fundamental goal of feature evolv-
able learning: always keeps the performance at a good level.
The second is that manifold regularization brings better per-
formance when there are only a few labels. The last one is
that larger buffer will bring better performance and thus our
method can fit for different storages by taking full advantage
of the budget. In the following, we show the experimental
results that validate these three claims.

Following the Best Baseline Figure 2 shows the trend
of risk of our method and the baselines boosted by mani-
fold regularization. We only compare SF2EL with baselines
boosted by MR because those without MR cannot calculate
a risk when there is no label. The smaller the cumulative
risk is, the better. fROGD+MR’s risk sometimes increases
because it does not update itself. Note that our goal is let our
model be comparable to the best baseline yet is not neces-
sary to be better than them. We can see that our method’s risk
is always comparable with the best baseline which validates
Theorem 1. And surprisingly, as can be seen from Table 1,

1The details of the datasets including their sources, descriptions
and dimensions can be found in supplementary file.

7734



500 1000 1500 2000 2500
Time

0.7

0.8

0.9

1.0

1.1
R

is
k

NOGD+MR 
uROGD+MR 
fROGD+MR 
SF2EL(ours)

(a) Credit-a

1000 2000 3000
Time

1

2

3

4

R
is

k

NOGD+MR 
uROGD+MR 
fROGD+MR 
SF2EL(ours)

(b) Diabetes

1000 2000 3000 4000 5000
Time

0.7

0.75

0.8

0.85

R
is

k

NOGD+MR 
uROGD+MR 
fROGD+MR 
SF2EL(ours)

(c) Svmguide3

2000 4000 6000 8000
Time

0.70

0.75

0.80

0.85

R
is

k

NOGD+MR 
uROGD+MR 
fROGD+MR 
SF2EL(ours)

(d) Swiss

100 200 300 400
Time

0.8

0.9

1.0

1.1

R
is

k

NOGD+MR 
uROGD+MR 
fROGD+MR 
SF2EL(ours)

(e) RFID

Figure 2: The trend of risk with NOGD+MR, uROGD+MR, fROGD+MR and SF2EL. We only compare SF2EL with these baselines because
those without MR cannot calculate a risk when there is no label. The smaller the cumulative risk is, the better. All the average cumulative risk
at any time of our method is comparable to the best baselines. Note that our goal is to be comparable to the best baseline and is not necessary
to be better than them. fROGD+MR’s risk sometimes increases because it does not update itself.

Dataset Credit-a Diabetes Svmguide3 Swiss RFID HTRU 2 magic04

NOGD .690±.051 .643±.029 .657±.036 .711±.044 .687±.042 .885±.022 .580±.120

NOGD+MR •.706±.049 •.672±.019 •.668±.037 •.807±.026 •.688±.042 • .907±.001 •.616±.058

uROGD .740±.038 .658±.021 .675±.045 .694±.071 .571±.036 .943±.014 .550±.172

uROGD+MR •.760±.034 •.678±.015 •.680±.048 •.824±.050 •.572±.036 •.944±.010 •.603±.079

fROGD .672±.087 .633±.056 .648±.035 .702±.073 .560±.045 .757±.179 .550±.172

fROGD+MR •.697±.079 •.654±.041 •.659±.037 • .811±.067 •.561±.045 •.943±.020 •.649±.001
FESL-Variant .759±.028 .666±.018 .686±.039 .855±.034 .688±.040 .885±.022 .556±.162

SF2EL (ours) •.768±.029 •.685±.011 •.694±.040 •.939±.020 •.690±.040 •.912±.008 •.649±.001

Table 1: Accuracy (mean±std) comparisons between baselines and SF2EL when buffer size is 60. “+MR” means the baselines are boosted
by manifold regularization(MR). Better result in each grid is marked by •. The best one among all the methods is bold. Note that our goal is
to be comparable to the best baseline and is not necessary to be better than them.

-10 -5 0 5 10
Dimension 1

-10

-5

0

5

10

D
im

en
si

on
 2

Class 1
Class 2

(a)

10 20 40 60
Buffer Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Credit_a
Diabetes
Svmguide3
Swiss
RFID

(b)
Figure 3: (a) is the manifold of Swiss dataset. (b) exhibits the
impact of buffer size on accuracy.

our method’s accuracy results on classification tasks almost
outperform those of the baseline methods (6 out of 7).

MR Brings Better Performance In Table 1, we can see
that MR makes NOGD, fROGD and uROGD better, and
our method also benefits from it. Specifically, our SF2EL is
based on the ensemble of uROGD+MR and NOGD+MR,
which makes it the best in all datasets. FESL-Variant is
based on NOGD and uROGD. Although it is better than
NOGD and uROGD, it is worse than our SF2EL.

Storage Fit Figure 3(b) and Table 2 provides the perfor-
mance comparisons between different buffer sizes from both
the perspective of numerical values and figure. We can see
that larger buffer brings better performance which validates
Theorem 2. With this regard, our method SF2EL can fit for
different storages to maximize the performance by taking
full advantage of the budget. We can also see that the Swiss

Buffer Credit-a Diabetes Svmguide3 Swiss RFID

10 .659±.052 .631±.066 .644±.103 .290±.070 .542±.056

20 .737±.036 .666±.025 .655±.064 .617±.067 .650±.059

40 .755±.039 .676±.016 .683±.034 .861±.031 .662±.054

60 .768±.029 .685±.011 .694±.040 .939±.020 .690±.040

Table 2: Accuracy (mean±std) comparisons with different buffer
sizes. The best ones among all the buffers are bold. We can find
that larger buffer brings better performance.

dataset which possesses the best manifold property enjoys
most the increasing of the buffer size.

Conclusion
Learning with feature evolvable streams usually assumes
that a label can be revealed immediately in each round. How-
ever, in reality this assumption may not hold. We introduce
manifold regularization into FESL and let FESL work well
in this scenario. Other feature evolvable learning can also
adapt to our framework. Both theoretical and experimental
results validate that our method can follow the best base-
lines and thus work well at any time step. Besides, we the-
oretically and empirically demonstrate that a larger buffer
can bring better performance and thus our method can fit for
different storages by taking full advantage of the budget.

7735



Acknowledgements
This research was supported by NSFC (61921006). We
would like to thank all the reviewers for their helpful com-
ments and thank Zhi-Hao Tan for valuable discussions.

References
Beyazit, E.; Alagurajah, J.; and Wu, X. 2019. Online Learn-
ing from Data Streams with Varying Feature Spaces. In Pro-
ceedings of the 33rd AAAI Conference on Artificial Intelli-
gence, 3232–3239.

Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, Learn-
ing, and Games. Cambridge University Press.

Goldberg, A. B.; Li, M.; and Zhu, X. 2008. Online Mani-
fold Regularization: A New Learning Setting and Empirical
Study. In Proceedings of the 19th European Conference on
Machine Learning and Principles of Knowledge Discovery
in Databases, 393–407.

He, Y.; Wu, B.; Wu, D.; Beyazit, E.; Chen, S.; and Wu,
X. 2019. Online Learning from Capricious Data Streams:
A Generative Approach. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, 2491–
2497.

Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2017a. Learning with
Feature Evolvable Streams. In Advances in Neural Informa-
tion Processing Systems 30, 1417–1427.

Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2017b. Storage
Fit Learning with Unlabeled Data. In Proceedings of the
26th International Joint Conference on Artificial Intelli-
gence, 1844–1850.

Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2019. Pre-
diction with Unpredictable Feature Evolution. CoRR
abs/1904.12171.

Hou, C.; and Zhou, Z.-H. 2018. One-Pass Learning with
Incremental and Decremental Features. IEEE Transactions
on Pattern Analysis and Machine Intelligence 40(11): 2776–
2792.

Jiang, J. 2008. A literature survey on domain adapta-
tion of statistical classifiers. URL: http://sifaka. cs. uiuc.
edu/jiang4/domainadaptation/survey 3: 1–12.

Pan, S. J.; and Yang, Q. 2010. A Survey on Transfer Learn-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing 22: 1345–1359.

Schölkopf, B.; and Smola, A. J. 2002. Learning with Ker-
nels: support vector machines, regularization, optimization,
and beyond. Adaptive computation and machine learning
series. MIT Press.

Sun, S.; Shi, H.; and Wu, Y. 2015. A survey of multi-source
domain adaptation. Information Fusion 24: 84–92.

Vincent, P.; and Bengio, Y. 2002. Kernel Matching Pursuit.
Machine Learning 48(1-3): 165–187.

Vitter, J. S. 1985. Random Sampling with a Reservoir. ACM
Transactions on Mathematical Software 11(1): 37–57.

Ye, H.-J.; Zhan, D.-C.; Jiang, Y.; and Zhou, Z.-H. 2018. Rec-
tify Heterogeneous Models with Semantic Mapping. In Pro-
ceedings of the 35th International Conference on Machine
Learning, 1904–1913.
Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; and
Wu, X. 2016. Online Learning from Trapezoidal Data
Streams. IEEE Transactions on Knowledge and Data En-
gineering 28: 2709–2723.
Zhang, Z.-Y.; Zhao, P.; Jiang, Y.; and Zhou, Z.-H. 2020.
Learning with Feature and Distribution Evolvable Streams.
In Proceedings of the 37th International Conference on Ma-
chine Learning, 11317–11327.
Zhao, P.; Hoi, S.; Wang, J.; and Li, B. 2014. Online Transfer
Learning. Artificial Intelligence 216: 76–102.
Zhou, Z.-H.; Ng, M. K.; She, Q.-Q.; and Jiang, Y. 2009.
Budget Semi-supervised Learning. In Proceedings of 13th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 588–595.
Zhu, X.; Lafferty, J.; and Rosenfeld, R. 2005. Semi-
supervised learning with graphs. Ph.D. thesis, Carnegie
Mellon University, language technologies institute, school
of computer science.
Zinkevich, M. 2003. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In Proceedings of the
20th International Conference on Machine Learning, 928–
936.

7736


