
Slimmable Generative Adversarial Networks

Liang Hou,1,2* Zehuan Yuan,3† Lei Huang,4 Huawei Shen,1,2† Xueqi Cheng,1,2 Changhu Wang3

1CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3ByteDance AI Lab

4SKLSDE, Institute of Artificial Intelligence, Beihang University
{houliang17z, shenhuawei, cxq}@ict.ac.cn, {yuanzehuan, wangchanghu}@bytedance.com, huanglei@nlsde.buaa.edu.cn

Abstract
Generative adversarial networks (GANs) have achieved re-
markable progress in recent years, but the continuously grow-
ing scale of models makes them challenging to deploy widely
in practical applications. In particular, for real-time gener-
ation tasks, different devices require generators of different
sizes due to varying computing power. In this paper, we
introduce slimmable GANs (SlimGANs), which can flexi-
bly switch the width of the generator to accommodate vari-
ous quality-efficiency trade-offs at runtime. Specifically, we
leverage multiple discriminators that share partial parameters
to train the slimmable generator. To facilitate the consistency
between generators of different widths, we present a stepwise
inplace distillation technique that encourages narrow genera-
tors to learn from wide ones. As for class-conditional gener-
ation, we propose a sliceable conditional batch normalization
that incorporates the label information into different widths.
Our methods are validated, both quantitatively and qualita-
tively, by extensive experiments and a detailed ablation study.

Introduction
One of the main reasons for the tremendous success of deep
learning in recent years is the increasing scale of models.
In the branch of deep generative models, generative adver-
sarial networks (GANs) (Goodfellow et al. 2014) have re-
ceived widespread attention and evolved from the original
simple multi-layer perceptrons to the vast BigGAN frame-
work (Brock, Donahue, and Simonyan 2019) with residual
blocks (He et al. 2016) and self-attention layers (Zhang et al.
2019) to synthesize realistic images nowadays. The arms
race on increasing the model size is endless, while the com-
putational power and budget of devices are limited, espe-
cially for mobile phones. Several GAN applications such
as photograph (Kupyn et al. 2018) and autonomous driv-
ing (Zhang et al. 2018) require short response time and
hopefully run on devices with limited computing power. Re-
cently, researchers began to develop lightweight GAN mod-
els. However, different devices usually require customized
models of different sizes to meet the given response time
budget. Moreover, even a single device needs models of dif-
ferent sizes due to several switchable performance modes,

*Work done as an intern at ByteDance AI Lab.
†Corresponding authors

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

e.g., the high-performance mode and power-saving mode.
Consequently, numerous models need to be trained and de-
ployed for a single task, which is also heavy work.

In this work, we are committed to developing a “once-
for-all” generator, which we only train and deploy once but
can flexibly switch the model size at runtime to address the
practical challenges. Inspired by slimmable neural networks
(SNNs) (Yu et al. 2019), we focus on developing a genera-
tor with configurable widths, where the width refers to the
number of channels in layers. In addition to saving inference
time, customization on width can reduce memory footprint
during the layer-by-layer inference, while reducing depth
cannot take this advantage.

Although several discriminative tasks such as image clas-
sification and object detection are well studied in SNNs,
applying slimmable operators to GANs suffers from three
following challenges: First, how to accurately and appropri-
ately estimate the divergence between generators at differ-
ent widths and the real data through discriminators? Second,
how to ensure consistency between generators of different
widths? Here, the consistency means that the generated im-
ages should be similar between these generators given the
same latent code. Third, how to incorporate the label in-
formation into generators at different widths in the class-
conditional generation?

In this paper, we propose slimmable generative adver-
sarial networks (SlimGAN) to combat the aforementioned
problems. First, we present discriminators with partially
shared parameters to serve the generators at different widths.
Second, to improve the consistency between generators at
different widths, we introduce a novel stepwise inplace dis-
tillation technique, which encourages narrow generators to
learn from the wide generators. Third, we propose a slice-
able conditional batch normalization (scBN) to incorpo-
rate the label information into different widths on the ba-
sis of switchable batch normalization (sBN) (Yu et al. 2019)
for the class-conditional generation. Extensive experiments
across several real-world datasets and two neural network
backbones demonstrate that SlimGAN can compete with or
even outperform the individually trained GANs. Remark-
ably, our proposed scBN achieves better performance with
fewer parameters. A systematic ablation study verifies the
effectiveness of our design, including network framework
and loss function.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7746

Related Work
Generative Adversarial Networks
Generative adversarial networks (GANs) (Goodfellow et al.
2014) were implemented by multi-layer perceptrons at
the beginning. To improve the capability of the generator
and the discriminator, convolutional layers were introduced
in DCGAN (Radford, Metz, and Chintala 2015). Later,
WGAN-gp (Gulrajani et al. 2017) not only established flex-
ible Lipschitz constraints but also brought the ResNet (He
et al. 2016) backbone into the GAN literature. To further
impose the Lipschitz constraint, SNGAN (Miyato et al.
2018) introduced spectral normalization to the discrimina-
tor, which is also applied to the generator in SAGAN (Zhang
et al. 2019). For class-conditional generation tasks, cGAN-
pd (Miyato and Koyama 2018) injected the label information
to the generator by employing conditional batch normal-
ization (cBN) (de Vries et al. 2017), and the discriminator
with projection technique. Recently, BigGAN (Brock, Don-
ahue, and Simonyan 2019) was capable of generating di-
verse and realistic high-resolution images, mainly attributed
to the massive model.

Model Compression in GANs
The arms race on developing increasingly bloated network
architecture hinders the extensive deployment of GANs in
practical applications. To reduce the size of the genera-
tor, Aguinaldo et al. (2019) compressed GAN models us-
ing knowledge distillation techniques. Li et al. (2020) pro-
posed a compression method for conditional GAN models.
Meanwhile, Yu and Pool (2020) developed a self-supervised
compression method that uses the trained discriminator to
supervise the training of a compressed generator. AutoGAN-
Distiller (Fu et al. 2020) compressed GAN models using
neural architecture search. Recently, Wang et al. (2020a) de-
veloped a unified GAN compression framework, including
model distillation, channel pruning, and quantization.

Dynamic Neural Networks
Unlike model compression, dynamic neural networks can
adaptively choose the computational graph to reduce com-
putation during training and inference. For example, Liu and
Deng (2018) presented an additional controller network to
decide the computational graph depends on the input. Sim-
ilarly, Hu et al. (2019) proposed to reduce the test time
by introducing an early-exit gating function. Different from
adjusting the depth of neural networks, slimmable neural
networks (SNNs) (Yu et al. 2019) trained neural networks
that can be executable at different widths, allowing imme-
diate and adaptive accuracy-efficiency trade-offs at runtime.
Later, US-Net (Yu and Huang 2019b) extended SNN to uni-
versally slimmable scenarios and proposed improved train-
ing techniques. AutoSlim (Yu and Huang 2019a) utilized
model pruning methods to obtain accuracy-latency optimal
models but introduced additional storage consumption. RS-
Nets (Wang et al. 2020b) proposed an approach to train neu-
ral networks which can switch image resolutions during in-
ference.

Nevertheless, the aforementioned approaches are de-
signed for discriminative tasks with a single neural net-
work, while we focus on generative tasks based on GANs.
Since GAN consists of two networks, i.e., the generator and
discriminator network, modifying the operational mecha-
nism of the generator may destroy the stability of the entire
system, which makes the training process of GAN with a
slimmable generator challenging.

Preliminaries
Generative Adversarial Networks
Generative adversarial networks (GANs) (Goodfellow et al.
2014) are typically composed of a generator and a discrimi-
nator. Specifically, the generator G : Z → X learns to gen-
erate fake samples by mapping a random noise vector z ∈ Z
in the latent space endowed with a predefined prior PZ (e.g.,
multivariate normal distribution) to a sample x ∈ X in
the high-dimensional complex data space. The discrimina-
tor D : X → [0, 1] attempts to distinguish the synthetic
examples generated by the generator from real data. In con-
trast, the goal of the generator is to fool the discriminator
by mimicking real data. Formally, the objective function of
GAN is formulated as follows:

min
G

max
D

Ex∼Pdata [log(D(x))]+

Ez∼PZ
[log(1−D(G(z)))],

(1)

where Pdata represents the underlying distribution of real
data. As proved in (Goodfellow et al. 2014), this minimax
game is considered as minimizing the Jansen Shannon (JS)
divergence between the real data distribution and the gener-
ated one. Ideally, the generator is supposed to converge until
PG = Pdata. The JS divergence estimated by the discrimi-
nator can be replaced with other f -divergences (Nowozin,
Cseke, and Tomioka 2016) or even true metrics such as
Wasserstein distance (Arjovsky, Chintala, and Bottou 2017)
by modifying the objective function.

Slimmable Neural Networks
Slimmable neural networks (SNNs) (Yu et al. 2019) can in-
stantly adjust the network width according to the demands of
various devices with different capacities. Unlike other train-
ing lightweight model methods such as neural architecture
search and model compression, SNN is more flexible be-
cause it only needs to be trained and deployed once to ob-
tain multiple models at different widths from a pre-specified
width listW . In order to avoid the discrepancy of mean and
variance between networks at different widths, SNN pro-
posed a switchable batch normalization (sBN), i.e., using
independent BN learnable parameters for each width:

x′wi
= γwi

xwi
− µ(xwi

)

σ(xwi
)

+ βwi
, (2)

where xwi
represents the data batch at current width wi ∈

W . Specifically, µ(·) and σ(·) compute the mean and stan-
dard deviation of this batch, γwi

and βwi
are learnable scale

and shift, respectively, of the sBN at width wi.

7747

𝐺!.##(𝑧)

𝐺#.$%(𝑧)

𝐺#.%#(𝑧)

𝐺#.&%(𝑧)

𝐷!.##(𝑥)

𝐷#.$%(𝑥)

𝐷#.%#(𝑥)

𝐷#.&%(𝑥)

𝑧

𝐷

𝑥
𝐷!.##

𝐷#.$%

𝐷#.%#

𝐷#.&%

𝐷'()*+,

𝐺

𝐺!.##

𝐺#.$%

𝐺#.%#

𝐺#.&%

Figure 1: Illustration of SlimGAN with width multiplier listW = [0.25, 0.5, 0.75, 1.0]×. Wide generators contain the channels
of narrow ones. Multiple discriminators share first several layers. Blue dashed lines indicate the stepwise inplace distillation.

Methods
We aim to develop a size-flexible generator that can switch
its size to accommodate various computing power. Approx-
imatively, the size-flexible generator implies multiple gen-
erators: Gθ1 , Gθ2 , · · · , GθN with N incremental parameters
θ1 ⊆ θ2 ⊆ · · · ⊆ θN , respectively. In this work, we fo-
cus on slimming the width (number of channels) of the
generator network instead of depth as reducing width can
save memory footprint during the layer-by-layer inference.
The width-slimmable generator contains several generators:
Gw1

, Gw2
, · · · , GwN

at N = |W| incremental widths w1 <
w2 < ... < wN (wi ∈ W), respectively. Particularly,
we train the generator via adversarial training and call our
method slimmable GAN (SlimGAN) 1.

Slimmable GAN Framework
We illustrate the overall framework of SlimGAN in Figure 1.
Specifically, the SlimGAN consists of a slimmable genera-
tor with multi-width configurations and multiple discrimi-
nators that share the first several layers. Each discriminator
guides the generator at the corresponding width. Here, using
multiple shared discriminators, instead of a single discrim-
inator or multiple independent discriminators, is critical for
our SlimGAN model. This is also the first major novelty of
this model. The idea is motivated by two insights. On one
hand, using a single discriminator for all the generators with
different widths limits the flexibility and capability of dis-
criminators to discriminate generated data from real data,
and finally fails to obtain well-performed generators. On the
other hand, although assigning one discriminator for each
generator offers high flexibility, it is incapable of leverag-
ing the characteristic of data generated by slimmable gener-
ators. Therefore, we borrow the idea of multi-task learning
and design multiple parameter-shared discriminators. This
design not only offers high flexibility of discriminators but
also leverages the similar characteristic of data generated
by slimmable generators to improve the training of genera-
tors. In addition, sharing parameters with other tasks offers a

1Code is available at https://github.com/houliangict/SlimGAN

kind of consistency regularization on discriminators, which
potentially improves the generalization of discriminators,
and hence promotes the performance of generators (Thanh-
Tung, Tran, and Venkatesh 2019).

As for training the generator-discriminator pair at width
wi, we utilize the Hinge version loss (Lim and Ye 2017;
Tran, Ranganath, and Blei 2017), which is prevalent and suc-
cessful in GAN literature.

max
D

Ex∼Pdata [min(0,−1 +Dwi
(x))]+

Ez∼PZ
[min(0,−1−Dwi(Gwi(z)))]

max
G

Ez∼PZ
[Dwi

(Gwi
(z))], i = 1, 2, · · · , N

(3)

Stepwise Inplace Distillation
Although a single slimmable generator implies multiple sub-
generators, we expect these generators to maintain the con-
sistency between them, like an identical generator. Imagine
that, a trained slimmable generator is deployed as clients
on various devices, and these devices may choose differ-
ent width configurations according to their diverse energy
budgets. We expect these clients to generate consistent sam-
ples for the same command (e.g., the latent code z), which
is broadcasted by the server. We characterize this require-
ment as spatial translation consistency. In addition, since a
single device has different performance modes, e.g., high-
power mode or power-saving mode, even the same device
may choose generators of different sizes. We also expect
this device to generate a consistent sample for the same la-
tent code at any mode, which is considered as time trans-
lation consistency. However, the adversarial training objec-
tive function cannot explicitly guarantee the consistency be-
tween generators of different widths because the discrimi-
nator only distinguishes real from fake but not distinguishes
similar from dissimilar.

To achieve consistency, we propose a novel stepwise in-
place distillation technique. Different from general-purpose
model distillation, we do not utilize knowledge distillation
to obtain a smaller model through an already trained one.
Instead, we train narrow networks by encouraging them
to learn from wide networks during the training process,

7748

thereby improving consistency between them. Specifically,
the proposed distillation first distills the full generator to the
second widest one and then distills the second one to the
third one and so on. We employ the pixel mean square error
as the objective function in the distillation:

min
G

λ

N − 1
Ez∼PZ

N−1∑
i=1

‖Gwi
(z)− sg(Gwi+1

(z))‖22, (4)

where λ is a hyper-parameter that balances the adversarial
objectives and the distillation, and sg(·) means to stop the
transfer of gradients in the computational graph. Stop updat-
ing the wide generator in distillation prevents it from learn-
ing from the narrow one.

Arguably, the distillation can effectively improve the per-
formance of narrow networks. Furthermore, the improve-
ment of narrow networks could also lead to an enhancement
of wide networks, because wide generators contain all the
channels of narrow generators, which forms a virtuous cycle
in SlimGAN. As an alternative, leveraging the full network
to teach all narrow generators, however, may be contrary to
the assumption of width residuals (Yu and Huang 2019b). In
other words, forcing all narrow generators to learn from the
widest one would make no difference between them, which
may tend to strengthen the expression of parameters they
shared but reduce the capability of their specific.

Training Algorithm
Algorithm 1 shows the training procedure of SlimGAN in
PyTorch-style pseudo-code. The main difference from train-
ing a normal GAN is that we enumerate all the widths in the
pre-specified width list at each iteration and switch the com-
putational graph according to the configured width. In the
adversarial training part, we sample random noises as the
input of each generator. This provides the diversity of fake
samples, encouraging models to explore wider optimization
space to achieve better results. In the consistency training
part, we sample the same latent code to optimize the discrep-
ancy of the outputs between generators at different widths.

Sliceable Conditional Batch Normalization
In the case of class-conditional generation, state-of-the-art
class-conditional GANs, e.g., BigGAN (Brock, Donahue,
and Simonyan 2019), follow the way of incorporating la-
bel information proposed in cGAN-pd (Miyato and Koyama
2018), i.e., conditional batch normalization (cBN) in the
generator and projection in the discriminator. In this work,
we follow the label projection technique in the discriminator.
As for the generator, however, how to introduce the label in-
formation under the width-switchable mechanism is the key
problem faced by SlimGAN in the class-conditional gener-
ation scenario. In other words, how to unify sBN and cBN?
A naive way to achieve this goal is to expand each sBN to a
cBN:

x′wi,cj = γwi,cj

xwi,cj − µ(xwi,cj)

σ(xwi,cj)
+ βwi,cj , (5)

where cj indicates the current label. However, the disadvan-
tages of this design are obvious from two perspectives. First,

Algorithm 1 Training SlimGAN

Require: dataset D, switchable width multiplier listW
Ensure: generator G

1: for t = 1, . . . , T do
2: for k = 1, . . . ,K do
3: Get mini-batch data, x = sample(D)
4: for i = 1, . . . , N do
5: Generate samples, x̂ = Gwi

(z) with z ∼ PZ
6: Comp. D loss, loss = lossD(Dwi

(x), Dwi
(x̂))

7: Compute D gradients, loss.backward()
8: end for
9: Update D weights, optimizerD.step()

10: end for
11: Sample fixed noise z̄ ∼ PZ and initialize x̄ = []
12: for i = 1, . . . , N do
13: Generate samples, x̂ = Gwi(z) with z ∼ PZ
14: Compute G loss, loss = lossG(Dwi(x̂))
15: Compute G gradients, loss.backward()
16: Generate fixed samples x̄.append(Gwi

(z̄))
17: end for
18: Compute distillation loss, loss = lossDistill(x̄)
19: Compute distillation gradients, loss.backward()
20: Update G weights, optimizerG.step()
21: end for
22: return G

the number of parameters increased dramatically because of
N × C BN parameters (C is the number of labels), which
is contradictory to our motivation, i.e., saving parameters to
reduce model size and computation. Second, the informa-
tion of the same label is separated for generators at different
widths.

To remedy the above issues, we propose a sliceable con-
ditional batch normalization (scBN) defined as follows:

x′wi,cj = γwi
γ:sicj

xwi,cj − µ(xwi,cj)

σ(xwi,cj)
+ βwi

+ β:si
cj , (6)

where γcj and βcj are the learnable parameters of the cBN
with label cj . To incorporate the label embedding into dif-
ferent widths, we slice cBN vectors to sub-vectors with the
first si = |γwi | elements (si is the number of channels in the
layer at current width wi). Since cBN and sBN are indepen-
dent, there areN+C BN parameters in our proposed scBN,
which not only accordingly reduces the parameters but also
explicitly shares the information of the same label.

Experiments
In this section, we first evaluate our proposed SlimGAN
across several datasets with two network backbones, com-
pared with the individually trained models. We then con-
duct class-conditional generation experiments to verify the
effectiveness of scBN. Besides, we report the qualitative
and quantitative results that indicate the consistency between
generators at different widths. We further demonstrate the
design of SlimGAN through an extensive ablation study. We
finally analyze the parameters complexities of generators.

7749

Backbone Dataset Method FID (↓) IS (↑)
0.25× 0.5× 0.75× 1.0× 0.25× 0.5× 0.75× 1.0×

DCGAN (uncond)

CIFAR-10 Individual 46.9 34.6 30.4 26.7 6.08 6.95 7.39 7.43
Slimmable 37.3 28.5 25.8 25.2 6.90 7.31 7.43 7.44

STL-10 Individual 93.1 69.1 61.8 57.4 6.51 7.82 7.96 8.38
Slimmable 68.9 60.9 56.2 55.1 7.67 8.00 8.34 8.38

CelebA Individual 24.4 13.2 10.4 9.8 - - - -
Slimmable 23.3 13.3 10.6 9.4 - - - -

ResNet (uncond)

CIFAR-10 Individual 41.8 24.1 21.6 20.3 7.36 7.68 7.93 7.91
Slimmable 29.9 21.6 19.6 20.0 7.32 8.02 8.15 8.09

STL-10 Individual 66.6 58.5 56.3 52.9 7.90 8.52 8.30 8.60
Slimmable 69.1 59.0 50.8 50.6 7.60 8.23 8.83 8.81

CelebA Individual 18.0 11.9 9.9 8.9 - - - -
Slimmable 13.9 10.6 9.8 8.5 - - - -

cGAN-pd (cond)

CIFAR-10
Individual 55.1 33.5 16.5 15.5 6.46 7.90 8.22 8.52
Slimmable (×) 21.7 17.2 16.1 16.2 7.87 8.31 8.49 8.34
Slimmable (+) 19.5 14.5 13.6 14.2 7.88 8.38 8.67 8.59

CIFAR-100
Individual 45.8 23.7 22.5 19.9 7.26 8.49 8.50 9.11
Slimmable (×) 26.8 19.9 18.9 19.0 8.13 8.90 9.14 9.22
Slimmable (+) 23.8 18.9 18.6 17.9 8.26 9.08 9.17 9.29

Table 1: FID and IS on both unconditional (uncond) and class-conditional (cond) generation. We do not calculate IS on CelebA
as it is a face dataset that lacking inter-class diversity, which IS measures. For class-conditional generation, (+) means our
proposed sliceable conditional batch normalization while (×) means the naive way that extends each sBN to cBN. Bold numbers
indicate our slimmable method outperforms the individually trained models.

Datasets
We employ the following datasets for main experiments:
CIFAR-10/100 consists of 50k training images and 10k val-
idation images with resolution of 32 × 32. CIFAR-10 has
10 classes while CIFAR-100 has 100 classes. STL-10 is re-
sized into the size of 48×48 as done in (Miyato et al. 2018).
There are 100k and 8k unlabeled images in the training set
and validation set, respectively. CelebA is a face dataset
with 202,599 celebrity images with resolution of 178× 218
originally. We follow the practice in (Hou, Shen, and Cheng
2020) to center crop them to 178×178 and then resize them
to 64 × 64. We divide the last 19,962 images into the vali-
dation set and the remaining 182,637 images as the training
set. We use the training set for training the models and the
validation set for evaluation when calculating the statistics
of the real data.

Evaluation Metrics
For evaluating the performance of all models on genera-
tion, we adopt two widely used evaluation metrics: Incep-
tion Score (IS) (Salimans et al. 2016) and Fréchet Inception
Distance (FID) (Heusel et al. 2017). IS computes the KL
divergence between the conditional class distribution and
marginal class distribution. FID is the Fréchet distance (the
Wasserstein-2 distance between two Gaussian distributions)
between two sets of features obtained through the Inception
v3 network trained on ImageNet. We randomly generate 50k

images to calculate IS on all datasets, and 10k images to
compute FID except STL-10, which we sample 8k images.

To measure the consistency between generators at differ-
ent widths of SlimGAN, we present a metric, called Incep-
tion Consistency (IC), which measure the expected feature
difference between two generators, Gwi

and Gwj
at width

wi and wj , respectively:

IC(Gwi
, Gwj

) = Ez∼PZ
[‖Φ(Gwi

(z))− Φ(Gwj
(z))‖22],

where Φ(·) outputs the feature of the last hidden layer of
Inception v3 network trained on ImageNet.

Given the width multiplier listW , we average IC between
all generator pairs as mean IC (mIC):

mIC(G,W) =
1

N · (N − 1)

N∑
i=1

N∑
j=1,i 6=j

IC(Gwi
, Gwj

).

We randomly sample 10k images to estimate the mIC score.

Experimental Settings
We implement all models based on Mimicry (Lee and
Town 2020) using PyTorch framework. The optimizer is
Adam with betas (β1, β2) = (0.5, 0.999) for DCGAN and
(β1, β2) = (0.0, 0.9) for ResNet based SNGAN. The learn-
ing rate is α = 2 × 10−4, except CelebA on DCGAN,
which is α = 10−4. The iterations of updating the genera-
tor are T = 100k for all methods. The discriminator update
steps per generator update step are K = 5 for ResNet and

7750

(a) Slimmable GAN without the stepwise inplace distillation, showing clear inconsistency.

(b) Slimmable GAN with the stepwise inplace distillation, showing improved consistency.

Figure 2: Qualitative consistency on CelebA.

K = 1 for DCGAN. As for the detailed network architec-
ture, we exactly follow that in SNGAN (Miyato et al. 2018)
and cGAN-pd (Miyato and Koyama 2018). The width mul-
tiplier list is set toW = [0.25, 0.5, 0.75, 1.0]×.

Experimental Results
Unconditional generation For unconditional generation,
we experiment with three datasets, CIFAR-10, STL-10,
and CelebA, on two backbones, DCGAN and ResNet. The
hyper-parameter is set as λ = 20 for both backbones on
CIFAR-10 and CelebA datasets, λ = 10 and λ = 30
for DCGAN and ResNet, respectively, on STL-10. We re-
port the FID and IS results in Table 1. Individual repre-
sents individually trained GANs of each width. Our pro-
posed SlimGAN surpasses in most cases or competes with
the individually trained GANs in terms of both FID and IS
scores, consistently demonstrating the effectiveness of Slim-
GAN across various datasets and network backbones. Sur-
prisingly, SlimGAN outperforms the individual model at the
widest width. We argue that the reasons are twofold. First,
training narrow networks could provide extra informative
signals for shared parameters with wide networks. Second,
the parameter-shared discriminators have a certain regular-
ization, which may improve the generalization of each dis-
criminator. We believe this is a promising advanced training
technique for GANs, and leave it for future work. Addition-
ally, some generators at width 0.75× reach or surpass the
widest generators, which are trained with only adversarial
objectives, reflecting the benefit of the combination of dis-
tillation and adversarial training.

Class-conditional generation For class-conditional gen-
eration experiments, we adopt cGAN-pd as the backbone on
both CIFAR-10 and CIFAR-100, and report both FID and
IS in the bottom of Table 1. The hyper-parameter is set as
λ = 10 for CIFAR-10 and λ = 20 for CIFAR-100. The
symbols in the parentheses after our slimmable methods rep-
resent different implementations of BN, i.e., (×) represents
the naive BN, and (+) represents our proposed scBN. Over-
all, the slimmable generators with different BNs outperform
the baseline heavily. Particularly, our proposed scBN gains

Methods IS (↑) FID (↓)
0.5× 1.0× 0.5× 1.0×

Individual 18.8 29.9 48.1 33.9

Slimmable 32.7 36.1 32.8 30.8

Table 2: BigGANs on ImageNet after 50k iterations.

further improvement compared with the naive BN due to
sharing the label information across different widths.

BigGANs on ImageNet We train our slimmable method
with BigGAN (Brock, Donahue, and Simonyan 2019) on
ImageNet (128 × 128) for 50k iterations. The width mul-
tiplier list is set as W = [0.5, 1.0]×. The IS and FID are
reported in Table 2. In a word, our slimmable method sur-
passes the individually trained BigGANs, showing a strong
capability on large-scale dataset of high-resolution images.

SlimDCGAN CIFAR-10 STL-10 CelebA

+ w/o distillation 282.7 277.4 110.2
+ w/ distillation 231.3 243.2 96.1

SlimResGAN CIFAR-10 STL-10 CelebA

+ w/o distillation 285.7 342.4 116.9
+ w/ distillation 241.4 248.7 97.9

Table 3: mIC (↓) on CIFAR-10, STL-10, and CelebA.

Consistency We first report the quantitative consistency
(mIC) in Table 3, which verifies that distillation can improve
the consistency. We also show the qualitative consistency re-
sults on CelebA in Figure 2. For each method, the top row
represents the narrowest generator and the bottom row indi-
cates the widest generator. The same column in each method
shows the images generated through the same latent code.
Compared with the method without distillation, our distil-
lation improves the consistency. For example, the method
without distillation synthesis faces with disparate hairs.

7751

DCGAN on CIFAR-10 FID (↓) mIC (↓)
0.25× 0.5× 0.75× 1.0× AVG

Individual 46.9 34.6 30.4 27.4 34.8 -
Individual (full D) 45.6 33.2 29.4 27.4 33.9 -
Slimmable G 40.0 35.2 34.4 33.4 35.8 264.3
+ shared D 40.9 30.2 27.0 25.2 30.8 282.7
+ shared D + distillation (SlimGAN) 37.3 28.5 25.8 25.2 29.2 231.3

+ same D 180.4 136.9 141.3 158.6 154.3 376.8
+ slimmable D 43.6 35.8 31.0 33.0 35.9 269.5
+ distillation (w/o GAN loss for narrows) 87.9 56.2 37.8 28.9 52.7 204.8
+ shared D + naive distillation 36.6 29.8 26.3 25.5 29.6 232.5

Table 4: Ablation Study on CIFAR-10. AVG means the averaged FID across all widths.

Ablation Study
In this section, we conduct an extensive ablation study on
CIFAR-10 to verify the effectiveness of the design in Slim-
GAN, including network framework and objective function.
The first two rows in Table 4 are both individually trained
GANs. Individual (full D) means the widths of all discrim-
inators in these individual GANs are fixed as the widest
width, which is consistent with SlimGAN. Directly apply-
ing the slimmable operator to the generator with multiple in-
dependent discriminators (Slimmable G), unfortunately, ob-
tains degradation, especially for wide generators. Although
this issue is alleviated by sharing partial parameters of these
discriminators (shared D), it compromises consistency. For-
tunately, with stepwise inplace distillation, our final method
(SlimGAN) not only achieves further improvements for nar-
row generators on generation but also obtains remarkable
consistency. When utilizing the same discriminator (same
D) for all generators, the awful FID reveals that the one-to-
one relationship in the generator-discriminator pair should
be obeyed. As an alternative parameter-sharing way, slim-
ming the discriminator (slimmable D) does not gain satis-
factory results. This is because those narrow discriminators
would lack the capability to estimate the divergences, as they
are contained by wide discriminators. Without adversarial
training but only distillation for narrow generators, they tend
to produce blurry images and get inferior FID. Compared
with the stepwise distillation, only the narrowest network is
improved when using the naive distillation (all narrow gen-
erators learn from the widest one).

Complexity Analysis
Saving parameters is the major advantage of the slimmable
generator over the individually trained ones. We investi-
gate the number of parameters of unconditional (uncond)
and class-conditional generators in Table 5. Specifically,
cond10 and cond100 represent the class-conditional gen-
erators (cGAN-pd) that trained with 10 (CIFAR-10) and
100 (CIFAR-100) labels, respectively. Individual (I-) meth-
ods require an independent generator on each width, while
the slimmable (S-) approach only needs one. Therefore, the
slimmable generator reduces parameters greatly compared
with the sum of all individuals. As for class-conditional gen-
erative models, our proposed scBN (+) only adds negligible

CIFAR 0.25× 0.5× 0.75× 1.0× Total

I-uncond 0.35 1.15 2.39 4.08 7.97
I-cond-10 0.36 1.16 2.41 4.10 8.04
I-cond-100 0.42 1.29 2.61 4.37 8.70

S-uncond - - - - 4.08
S-cond-10 (+) - - - - 4.11
S-cond-100 (+) - - - - 4.38

S-cond-10 (×) - - - - 4.15
S-cond-100 (×) - - - - 4.81

Table 5: The number of parameters (M) in the generators.

parameters on the widest individual generators compared to
the naive BN approach. This advantage would become more
obvious with the increase of labels or switches.

Conclusions
In this paper, we introduce slimmable generative adversarial
networks (SlimGAN), which can execute at different widths
at runtime according to various energy budgets of different
devices. To this end, we utilize multiple discriminators that
share partial parameters to train the slimmable generator. In
addition to the adversarial objectives, we introduce stepwise
inplace distillation to explicitly guarantee the consistency
between generators at different widths. In the case of class-
conditional generation, we propose a sliceable conditional
batch normalization to incorporate the label information un-
der the width-switchable mechanism. Comprehensive exper-
iments demonstrate that SlimGAN reaches or surpasses the
individually trained GANs. In the future, we will explore
more practical generation tasks, e.g., text-to-image genera-
tion and image-to-image translation.

Acknowledgments
This work is funded by the National Key R&D Program of
China (2020AAA0105200) and the National Natural Sci-
ence Foundation of China under grant numbers 91746301
and U1911401. Huawei Shen is also funded by K.C. Wong
Education Foundation and Beijing Academy of Artificial In-
telligence (BAAI).

7752

References
Aguinaldo, A.; Chiang, P.-Y.; Gain, A.; Patil, A.; Pearson,
K.; and Feizi, S. 2019. Compressing GANs using Knowl-
edge Distillation. arXiv preprint arXiv:1902.00159 .
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
Generative Adversarial Networks. In Proceedings of the
34th International Conference on Machine Learning, 214–
223.
Brock, A.; Donahue, J.; and Simonyan, K. 2019. Large Scale
GAN Training for High Fidelity Natural Image Synthesis. In
International Conference on Learning Representations.
de Vries, H.; Strub, F.; Mary, J.; Larochelle, H.; Pietquin, O.;
and Courville, A. 2017. Modulating early visual processing
by language. In Advances in Neural Information Processing
Systems 30.
Fu, Y.; Chen, W.; Wang, H.; Li, H.; Lin, Y.; and Wang, Z.
2020. Autogan-distiller: Searching to compress generative
adversarial networks. arXiv preprint arXiv:2006.08198 .
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. In Advances in Neural
Information Processing Systems 27.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved Training of Wasserstein
GANs. In Advances in Neural Information Processing Sys-
tems 30.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Resid-
ual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. In Ad-
vances in Neural Information Processing Systems 30.
Hou, L.; Shen, H.; and Cheng, X. 2020. Dual Rejection
Sampling for Wasserstein Auto-Encoders. In 24th European
Conference on Artificial Intelligence.
Hu, H.; Dey, D.; Hebert, M.; and Bagnell, J. A. 2019. Learn-
ing anytime predictions in neural networks via adaptive loss
balancing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 3812–3821.
Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; and
Matas, J. 2018. DeblurGAN: Blind Motion Deblurring Us-
ing Conditional Adversarial Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Lee, K. S.; and Town, C. 2020. Mimicry: Towards the Re-
producibility of GAN Research. In CVPR Workshop on AI
for Content Creation.
Li, M.; Lin, J.; Ding, Y.; Liu, Z.; Zhu, J.-Y.; and Han, S.
2020. Gan compression: Efficient architectures for interac-
tive conditional gans. arXiv preprint arXiv:2003.08936 .
Lim, J. H.; and Ye, J. C. 2017. Geometric gan. arXiv preprint
arXiv:1705.02894 .

Liu, L.; and Deng, J. 2018. Dynamic deep neural networks:
Optimizing accuracy-efficiency trade-offs by selective exe-
cution. In Thirty-Second AAAI Conference on Artificial In-
telligence, 3675–3682.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y.
2018. Spectral Normalization for Generative Adversarial
Networks. In International Conference on Learning Rep-
resentations.
Miyato, T.; and Koyama, M. 2018. cGANs with Projec-
tion Discriminator. In International Conference on Learning
Representations.
Nowozin, S.; Cseke, B.; and Tomioka, R. 2016. f-GAN:
Training Generative Neural Samplers using Variational Di-
vergence Minimization. In Advances in Neural Information
Processing Systems 29.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434 .
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; Chen, X.; and Chen, X. 2016. Improved Tech-
niques for Training GANs. In Advances in Neural Informa-
tion Processing Systems 29.
Thanh-Tung, H.; Tran, T.; and Venkatesh, S. 2019. Improv-
ing Generalization and Stability of Generative Adversarial
Networks. In International Conference on Learning Repre-
sentations.
Tran, D.; Ranganath, R.; and Blei, D. M. 2017.
Deep and hierarchical implicit models. arXiv preprint
arXiv:1702.08896 .
Wang, H.; Gui, S.; Yang, H.; Liu, J.; and Wang, Z.
2020a. GAN Slimming: All-in-One GAN Compression
by A Unified Optimization Framework. arXiv preprint
arXiv:2008.11062 .
Wang, Y.; Sun, F.; Li, D.; and Yao, A. 2020b. Resolution
switchable networks for runtime efficient image recognition.
In European Conference on Computer Vision, 533–549.
Yu, C.; and Pool, J. 2020. Self-Supervised GAN Compres-
sion. arXiv preprint arXiv:2007.01491 .
Yu, J.; and Huang, T. 2019a. AutoSlim: Towards One-Shot
Architecture Search for Channel Numbers. arXiv preprint
arXiv:1903.11728 .
Yu, J.; and Huang, T. S. 2019b. Universally Slimmable Net-
works and Improved Training Techniques. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1803–1811.
Yu, J.; Yang, L.; Xu, N.; Yang, J.; and Huang, T. 2019.
Slimmable Neural Networks. In International Conference
on Learning Representations.
Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A.
2019. Self-Attention Generative Adversarial Networks. In
Proceedings of the 36th International Conference on Ma-
chine Learning, 7354–7363.
Zhang, M.; Zhang, Y.; Zhang, L.; Liu, C.; and Khurshid,
S. 2018. Deeproad: Gan-based metamorphic autonomous
driving system testing. arXiv preprint arXiv:1802.02295 .

7753

