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Abstract

In the fight against the COVID-19 pandemic, many social ac-
tivities have moved online; society’s overwhelming reliance
on the complex cyberspace makes its security more important
than ever. In this paper, we propose and develop an intelligent
system named Dr.HIN to protect users against the evolving
Android malware attacks in the COVID-19 era and beyond. In
Dr.HIN, besides app content, we propose to consider higher-
level semantics and social relations among apps, developers
and mobile devices to comprehensively depict Android apps;
and then we introduce a structured heterogeneous informa-
tion network (HIN) to model the complex relations and ex-
ploit meta-path guided strategy to learn node (i.e., app) repre-
sentations from HIN. As the representations of malware could
be highly entangled with benign apps in the complex ecosys-
tem of development, it poses a new challenge of learning the
latent explanatory factors hidden in the HIN embeddings to
detect the evolving malware. To address this challenge, we
propose to integrate domain priors generated from different
views (i.e., app content, app authorship, app installation) to
devise an adversarial disentangler to separate the distinct, in-
formative factors of variations hidden in the HIN embeddings
for large-scale Android malware detection. This is the first
attempt of disentangled representation learning in HIN data.
Promising experimental results based on real sample collec-
tions from security industry demonstrate the performance of
Dr.HIN in evolving Android malware detection, by compari-
son with baselines and popular mobile security products.

Introduction
The deadly outbreak of coronavirus disease (COVID-19) has
posed grand challenges to human society. In the fight against
the global pandemic, many social activities have moved on-
line. As mobile devices connected to the Internet have be-
come increasingly ubiquitous, society’s overwhelming re-
liance on the complex yet increasingly connected devices
makes their security more important than ever. Android, as
an open source and customizable operating system (OS) for
mobile devices, is currently dominating the market. How-
ever, due to its large market share and open source ecosys-
tem of development, Android attracts not only developers
for producing legitimate Android applications (apps), but

*Corresponding Author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

also attackers to disseminate malware (malicious software)
that deliberately fulfills the harmful intent to mobile device
users (e.g., stealing user credentials, pushing unwanted apps
[Ye et al. 2017]). Driven by considerable profits, there has
been explosive growth of Android malware - e.g., it’s re-
ported that there were over 1.89 million new Android mal-
ware which infected more than 38 million smart phones in
the first half of 20191. More specifically, utilizing both fear
and financial incentives, cyber attackers are using COVID-
19 or coronavirus as a lure all over the spectrum of sophis-
tication to spread malware to gain profits from the global
health crisis (e.g., CovidLock is an Android ransomware
that portrays itself as a coronavirus tracker); according to
a recent report2, the pandemic has sparked 72% ransomware
growth. To combat the exponential growth of sophisticated
Android malware, it points to an imminent need for innova-
tive detection techniques to protect legitimate users against
the attacks in the COVID-19 era and beyond.

The most significant line to protect users against Android
malware attacks is mobile security products (e.g., Norton
and Tencent Mobile Security). However, in the never-ending
arms race, attackers always devise new tactics to evade their
detection. For example, as shown in Figure 1.(a), to by-
pass the content-based detection, a malicious banking tro-
jan (i.e., App-2) could adopt repackaging techniques mak-
ing its codes highly similar as a legitimate app that is devel-
oped to provide COVID-19 updates (i.e., App-1). To combat
with our adversaries, instead of merely using content-based
features for the detection, higher-level semantics and social
relations among apps within the ecosystem could provide
complementary knowledge: as shown in Figure 1.(b).right,
if a developer always repackages various apps to produce
customized malware, then the legitimacy of apps generated
by this developer is questionable (e.g., App-4 could possibly
be malicious); as illustrated in Figure 1.(c).right, if a mo-
bile device user is an online game user, then it may be easier
to get infected by online game trojans (i.e., app co-existence
may help determine whether a given one is malicious or not).
How to comprehensively leverage these information to build
an intelligent system that is able to understand the milieu of
given apps for the detection of malicious ones?

1https://m.qq.com/security lab/news detail 517.html
2https://www.skyboxsecurity.com/trends-report/
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Figure 1: The complex and highly entangled ecosystem of
Android apps for the detection of malicious ones.

To solve the above problem, there are two major chal-
lenges that need to be addressed. The first one is how to
devise an integral model capable of comprehensively depict-
ing the complex semantics and social relations among apps
(app-content, app-authorship, app-device, etc). The second
one is how to derive disentangled representations that could
separate the distinct, informative factors of variations in the
observed environment of given apps. Although an app’s au-
thorship may facilitate the adjudication of its legitimacy, as
shown in Figure 1.(b), compared with App-4, the judgment
of App-3 may be more difficult as it’s generated by a new
developer whose information (i.e., portrait) has not yet well
known. Similarly, as illustrated in Figure 1.(c), compared
with App-6, the prediction of App-5 via app co-existence
is more challenging since many of its co-existing apps’ la-
bels are unknown. An intelligent system is expected to be
able to leverage the comprehensive social relations (e.g.,
app authorship, app installation) while separating the dis-
tinct, informative factors of variations hidden in the complex
ecosystem to facilitate the detection of evolving malware.

In this paper, to address the above challenges, we propose
and develop an intelligent system named Dr.HIN (shown in
Figure 2) for large-scale Android malware detection to pro-
tect users against the attacks in the COVID-19 era and be-
yond. In Dr.HIN, to tackle the first challenge, as illustrated in
Figure 2.(a), besides content-based features extracted from
the given apps, we propose to consider higher-level seman-
tics and social relations among apps, developers and devices
to comprehensively depict Android apps; and then we intro-
duce a structured heterogeneous information network (HIN)
to model the complex relations and exploit meta-path guided
strategy to learn node (i.e., app) representations from HIN.
For the second challenge, an adversarial disentangler is ex-
pected to learn disentangled representations that can iden-
tify and disentangle the latent explanatory factors hidden in
the observed data [Bengio, Courville, and Vincent 2013].
The disentangled representations have been demonstrated to
be more robust, interpretable and controllable [Tran, Yin,
and Liu 2017; Higgins et al. 2017; Dupont 2018], whose
learning has gained considerable attention. Recently, disen-

tangled representation learning has shown its success in the
field of computer vision [Higgins et al. 2017; Dupont 2018];
however, the works on how to learn to disentangle the latent
factors hidden in the network data have been scarce with fo-
cus on homogeneous networks without taking consideration
of external knowledge (e.g., [Ma et al. 2019a,b; Liu et al.
2019; Wang et al. 2020; Hu et al. 2020; Guo et al. 2020].
By far, there has no work on disentangled representation
learning in HIN data. To bridge this gap, in this work, we
propose to integrate domain priors generated from different
views (shown in Figure 2.(b)) to devise an adversarial dis-
entangler (Figure 2.(c)) to separate the distinct, informative
factors of variations in the HIN embeddings. Afterwards, the
learned disentangled representations will be fed to deep neu-
ral network (DNN) to train the classifier (Figure 2.(d)) for
the detection of Android malware. The major contributions
of our work in this paper can be summarized as follows:
• We comprehensively characterize Android apps from their

higher-level semantics and social environment using the
constructed HIN. The comprehensive description mod-
eled by HIN makes the evasion more difficult and costly.

• We propose a novel disentangled representation learning
framework in HIN at the first attempt. As the representa-
tions of Android apps are highly entangled in the com-
plex ecosystem of development (i.e., technical assump-
tion), we propose an adversarial disentangler by integrat-
ing domain priors generated from three different views
(i.e., app content, app authorship, app installation) to sep-
arate the distinct, informative factors of variations in the
HIN embeddings. To the best of our knowledge, this is the
first work of disentangled representation learning in HIN
data (i.e., theoretical contributions). Though it’s used for
malware detection, the proposed learning paradigm is a
general framework to identify and disentangle the latent
explanatory factors hidden in HIN data and thus can be
applied to various network mining tasks.

• We develop an intelligent system that is deployed in anti-
malware industry. Comprehensive experimental studies
and promising results based on the large-scale and real
sample collections from industry demonstrate the perfor-
mance of Dr.HIN, which has already been incorporated
into the scanning tools of commercial mobile security
products that protect millions of users worldwide.

Proposed Method
In this section, we introduce our proposed method of
disentangled representation learning in HIN (i.e., Dr.HIN)
for large-scale Android malware detection in detail.

Feature Extraction
To comprehensively describe Android apps for malware de-
tection, besides app contents, we also consider higher-level
semantics and social relations within the ecosystem.
Content-based Feature Extraction. Android app is com-
piled and packaged in a single archive file (with an .apk suf-
fix) that includes the source code in the dex file, resources,
assets, and manifest file. As Application Programming Inter-
faces (APIs) can be used by Android apps to access Android
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Figure 2: System architecture of Dr.HIN. In Dr.HIN, (a) we first construct a HIN to model different types of entities and
relations and exploit meta-path guided strategy to learning node (i.e., app) representations in HIN (i.e., x); and then (b) we
propose to integrate domain priors (i.e., c) generated from three views (i.e., app content, app authorship, app installation) to (c)
devise an adversarial disentangler to separate the distinct, informative factors of variations in the HIN embeddings; afterwards,
(d) the learned disentangled representations (i.e., Ge(x)) will be fed to DNN classifier for the detection of Android malware.

OS functionality and system resources, we extract the API
calls from the dex file to describe a given Android app. For
example, the set of APIs of {“startActivity”, “checkCon-
nect”, “sendSMS”, “finishActivity”} extracted from a mali-
cious “TigerEyeing” trojan denote its intention of sending
SMS messages without user’s concern. Meanwhile, since
the manifest file of an app describes essential informa-
tion about the app to Android OS, we retrieve the activ-
ities, broadcast receivers, content providers, services, per-
missions and meta-data from the manifest file of each given
app. For example, as activities provide Graphical User Inter-
face (GUI) functionality to enable user interactivity, the ex-
tracted activities of “com.assistant.home.LocationActivity”
and “com.paypal.android.sdk.payments.LoginActivity” re-
flect that a malicious banking trojan named “LocationAs-
sistant” claims providing location-based COVID-19 updates
but actually steals user’s payment credential.

Relation-based Feature Extraction. To describe the rela-
tions between an app and its extracted content features, we
use (1) R1: app-invoke-API to denote if an app invokes an
API, and (2) R2: app-include-manifest to indicate if an app
includes a specific activity, receiver, provider, service, per-
mission or meta-data in the manifest file. We also extract (3)
R3: app-certify-signature to denote an app and its authorship
(i.e., each app running on the Android must be signed by the
developer, which relates to the app’s signature), and (4) R4:
app-associate-affiliation to describe an app and its owner-
ship: companies conventionally use their reversed domain
names (e.g., “tencent.com”) to begin apps’ package names
(e.g., “com.tencent.mobileqq”) which are unique names to
identify the apps (e.g., “mobileqq”). To detect the increas-
ingly sophisticated Android malware, we further consider

following social relations within the ecosystem: (5) R5: app-
install-device depicts if an app is installed in a mobile device
which can be denoted by its unique International Mobile
Equipment Identity (IMEI) number; (6) R6: device-have-
signature denotes the relation between a device and an app
developer; (7) R7: device-possess-affiliation depicts the re-
lation between a device and an app owner whose app is in-
stalled in this device; (8) R8: signature-link-affiliation de-
notes the relation between a developer and an app owner
(e.g., a developer repackages an app that is originally pro-
duced by an official public health department).

HIN Construction
Given the rich semantics and complex social relations ex-
tracted above, it is important to model them in a proper way
so that different relations can be better and easier handled.
We introduce HIN, which is able to be composed of multi-
typed entities and relations, to solve this problem.

Definition 1 A heterogeneous information network (HIN)
[Sun et al. 2011] is defined as a graph G = (V, E) with an
entity type mapping φ: V → A and a relation type mapping
ψ: E → R, where V denotes the entity set and E is the rela-
tion set, A denotes the entity type set and R is the relation
type set, and the number of entity types |A| > 1 or the num-
ber of relation types |R| > 1. The network schema for the
G, denoted as TG = (A,R), is a graph with nodes as entity
types from A and edges as relation types fromR.

Based on the definitions above, the network schema in
our application is shown in Figure 3.(a), where the apps are
represented in a comprehensive way that utilizes both their
semantic and structured information.
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Figure 3: Network schema and designed meta-paths.

To formulate the relatedness among entities in HIN, we
design three sets of meta-path schemes [Sun et al. 2011]: S
= {Si}Ki=1 (K=3), where S1 = {PIDj}6j=1, S2 = {PIDj}9j=7,
S3 = {PIDj}12j=10, to characterize the relatedness over apps
from three different views (i.e., app content, app authorship,
app installation). For example, PID1 depicts that two apps
are related if they both invoke the same API, such as two
malicious mobile video players both invoke the API of “re-
questAudioFocus”; PID9 is able to describe that two apps
(e.g., two banking trojans) produced by different developers
both repackage same original app (e.g., a benign app that
provides COVID-19 updates); and PID10 denotes that two
apps are associated if they co-exist in the same device.

To this end, the problem of Android malware detection
can be considered as node (i.e., app) classification in HIN.
To solve this problem, we first present the concept of HIN
representation learning [Fu, Lee, and Lei 2017]: given a
HIN G = (V, E), the representation learning task is to learn
a function g : V → Rd that maps each node v ∈ V to a
vector in a d-dimensional space Rd, d� |V| that are able to
preserve the structured and semantic relations among them.
To learn node representations in HIN, various embedding
methods [Fu, Lee, and Lei 2017; Dong, Chawla, and Swami
2017; Fan et al. 2018] have been proposed. In this work,
for each designed meta-path in Si ∈ S, we exploit meta-
path guided strategy [Ye et al. 2019] to learn node (i.e., app)
representations in HIN, denoted as X = {Xk}Kk=1 (K=3).

Domain Prior Generation
Instead of using content-based features only, the constructed
HIN provides a comprehensive way to depict the higher-
level semantics and complex social relations among apps.
However, detecting malware from the large-scale Android
apps is a challenging task, as they are developed with com-
plex interactions of many latent factors in the ecosystem
(e.g., it’s complicated that how apps are written, how de-
velopers reuse other apps to generate customized apps, how
a set of apps are installed in user devices). For example, as
discussed in Section 1, the distributions of apps in different
devices (shown in Figure 1.(c)) may contribute differently
to the determination of given apps’ legitimacy. As external
knowledge could make the learned disentangled representa-
tions more reliable [Locatello et al. 2019], how to generate
and incorporate domain priors to derive the distinct, infor-
mative factors hidden in the HIN embeddings X?

To solve this problem, we propose to generate the do-
main priors from three views (i.e., app content, app au-
thorship, and app installation) to guide the learner to dis-
entangle the latent explanatory factors hidden in the HIN
embeddings. We here use app installation to illustrate how
we generate the related domain priors. Suppose that there
are N apps installed in T devices and each app is with label
y ∈ {0, 0.5, 1} (i.e., 0: benign, 1: malicious, 0.5: unknown),
then the devices can be represented as M = [mij ] ∈ RT×N ,
mij ∈ {1, 0} (i.e., 1: if app j is installed in device i, 0: oth-
erwise). For device i, we calculate its residual information:

Iresmi
=

∑N
j=1(mij = 1 ∧ yj = 0.5)∑N

j=1mij

. (1)

To this end, the prior of app j (denoted as cj) can be ob-
tained by average pooling of the residual information of all
the devices where it installs:

cj =

∑T
i=1(Iresmi

×mij)∑T
i=1mij

. (2)

The generated prior cj would guide the learner to disentan-
gle the distinct factors for determining app j’s legitimacy.
Similarly, we can gain the domain priors from the perspec-
tives of app content and app authorship. Then, for the HIN
embeddings X, we will have the corresponding domain pri-
ors, denoted as C = {Ck}Kk=1 (K=3).

Adversarial Disentangler in HIN
To incorporate the above generated domain priors C to de-
rive the distinct, informative factors hidden in the HIN em-
beddings X, we propose an adversarial disentangler (shown
in Figure 4) to achieve this goal. The proposed adversarial
disentangler consists of a generator G and a discriminator
D: given a node (i.e., app) representation in HIN (i.e., x),
G aims to incorporate the related domain prior c and latent
variables z (i.e., z ∼ N (0, σ)) to produce a synthetic em-
bedding x̂ via an encoder-decoder framework; D competes
with G while assuring the detection performance and retain-
ing the prior; and the disentangled representationGe(x) will
be derived via the adversarial minimax game [Goodfellow
et al. 2014]. We introduce the framework in detail below.

Multi-task Discriminator. The discriminator in the de-
signed framework is a multi-task DNN consisting of three
parts: D = [DT , DL, DC ], where DT aims to distinguish
a real input from a synthetic one, DL is to predict the class

Figure 4: The framework of adversarial disentangler.
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label of the input (i.e., malicious or benign), and DC is to
decode the related domain prior (i.e., c ∼ p(c)). Given an
embedding input (i.e., either an original HIN embedding x
or a synthetic embedding x̂ = G(x, c, z)), D aims to clas-
sify it as real or synthetic while estimating its class label and
decoding the related domain prior. The objective function of
D can be formulated as:
max
D

JD(ΘD,ΘG) =

Epdata(x)[logDT (x) + logDL(x)− logDC(x)]+

Epmodel(x)[log(1−DT (x̂)) + log(DL(x̂))− log(DC(x̂))].
(3)

The first part of Eq. (3) is to maximize the probabilities
of real input x being identified as true and correctly clas-
sified while retaining the domain prior (i.e., we use the
cross-entropy loss for DT and DL, and mean squared er-
ror for DC); the second part conducts similar computations
for class label and domain prior but attempts to maximize
the probability of synthetic x̂ being identified as false.

Disentangled Generator. Given a HIN embedding x,
through an encoder-decoder framework, the generator G
aims to generate a synthetic embedding x̂ with the incor-
poration of the related domain prior c (i.e., app content, app
authorship, and app installation). The generator is designed
in the form of G = [Ge, Gd], where the encoder Ge aims
to learn a mapping from the original HIN embedding x to
a disentangled representation Ge(x), while the decoder Gd

takes Ge(x) associated with the domain prior c and latent
variables z to produce x̂ = Gd(Ge(x), c, z) aiming to fool
D. The objective function of G can be formulated as:
max
G

JG(ΘD,ΘG) =E pdata(x)
p(c),p(z)

[log(DT (Gd(Ge(x), c, z)))

+ log(DL(Gd(Ge(x), c, z)))

− log(DC(Gd(Ge(x), c, z)))].
(4)

Algorithm 1 illustrates our adversarial disentangler.

Classifier for Malware Detection
To this end, for a node (i.e., app) with its HIN embed-
dings {xk}Kk=1 (K=3), their disentangled representations
{Ge(x

k)}Kk=1 (K=3) will be derived by the above proposed
adversarial disentangler. We then concatenate the disentan-
gled representations as an input to train a DNN framework
(as shown in Figure 2.(d)) for the classification task (i.e.,
detecting whether a given app is malicious or not). For the
complexity analysis, given N apps, the HIN representation
learning first consumesO(N logN) time to generateN×d-
dimensional embeddings as the inputs for the proposed ad-
versarial disentangler; while the time complexity of the ad-
versarial disentangler is O(Nd2K

∏
h) ≈ O(N), as K is

the number of types of domain priors and h is the number of
hidden neurons which are constant.

Experimental Results and Analysis
In this section, we conduct four sets of experiments using
large-scale and real sample collections from anti-malware
industry to fully evaluate the performance of Dr.HIN.

Algorithm 1: Adversarial Disentangler in Dr.HIN
Input: HIN node embeddings X, domain priors C,

latent variables z, node class labels L
Output: disentangled representation Ge(x), x ∈ X

for each epoch do
for each batch do

Sample a half batch of real inputs < x, c, l >,
where x ∈ X, c ∈ C, l ∈ L;

Update ΘD by Eq. (3);
Generate related half batch of synthetic
inputs < Gd(Ge(x), c, z), c, l >;

Update ΘD by Eq. (3);
Freeze ΘD;
Generate a batch of synthetic inputs
< Gd(Ge(x), c, z), c, l >;

Update ΘG by Eq. (4);
end

end
return Ge(x)

Experimental Setup
Data Collection and Preparation. By collaboration with
anti-malware industry, we obtain 75,397 apps queried by
291,822 mobile devices during the first week of July, 2020.
In this large sample set, 25,179 apps are labeled as mali-
cious and 39,057 are benign (i.e., training set total of 64,236
apps); for the remaining apps, we ask anti-malware experts
in Tencent Security Lab to further analyze - i.e., 2,673 are
malicious and 8,488 are benign (i.e., testing set total of
11,161 apps). After feature extraction and based on the net-
work schema, the constructed HIN has 766,976 nodes and
249,610,168 edges. Table 1 shows the details of our data.
Implementation. The experiments are conducted under the
environment of Ubuntu 19.10, plus two Intel i9-9900k, 4-
way SLI GeForce RTX 2080 Ti Graphics Cards and 64 GB
of RAM, with the framework of Pytorch 1.3.1 and Python
3.7. For HIN embedding, we set the number of walks per
node to 30, the walk length to 50, the window size to 5 and
the dimension of node embedding d to 200; for disentangled
representation learning, we set the dimension of disentan-
gled embedding to 198, and perform Adam for optimization
with learning rate of 0.0002.

Malware Benign Total

APP Train 25,179 39,057 64,236
Test 2,673 8,488 11,161

HIN

Entity APP Device Entity Sign Affi

Num 75,397 291,822 Num 5,611 7,558

Entity API Manifest Nodes 766,976
Num 4,987 381,601 Edges 249,610,168

Table 1: Details of collected data and built HIN.
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ID Setting Prior ACC F1

Comparisons of different meta-paths
1 PID1 — 0.9568 0.8625
2 PID2 — 0.9720 0.9492
3 PID3 — 0.9500 0.8809
4 PID4 — 0.9434 0.8880
5 PID5 — 0.8919 0.8344
6 PID6 — 0.9586 0.9150
7 S1={PID1-6} — 0.9753 0.9496

8 PID7 — 0.9231 0.8176
9 PID8 — 0.9182 0.8051

10 PID9 — 0.9665 0.9325
11 S2={PID7-9} — 0.9707 0.9409

12 PID10 — 0.9374 0.6967
13 PID11 — 0.9518 0.8971
14 PID12 — 0.9546 0.8728
15 S3={PID10-12} — 0.9597 0.9168

HIN representations vs. traditional features
16 f1: {S1-S3} — 0.9798 0.9579
17 f2: Content — 0.9751 0.9496
18 f3: Relation — 0.9145 0.8181
19 f4: Augment — 0.9755 0.9505

Evaluation of adversarial disentangler

20 S1={PID1-6} C1 0.9846 0.9676
21 S2={PID7-9} C2 0.9731 0.9458
22 S3={PID10-12} C3 0.9639 0.9220

23 Dr.HIN 0.9896 0.9782

Table 2: Evaluation of Dr.HIN in malware detection.

Evaluation Metrics. We exploit precision, recall, accuracy
(ACC) and F1 as the metrics for performance evaluation.

Evaluation of Dr.HIN
We first comprehensively validate our proposed methods in-
tegrated in Dr.HIN, including HIN representations and the
adversarial disentangler for Android malware detection. The
results on testing set are shown in Table 2.
A. Evaluation of HIN Representations. From Table 2, we
can see that: (1) Compared with single meta-path in each
set, the combination of related meta-paths improves the per-
formance. (2) The set of meta-paths depicting the related-
ness over apps in terms of content-based correlations (i.e.,
ID-7) performs better than authorship-based (i.e., ID-11)
and installation-based (i.e., ID-15) meta-paths. (3) Using the
same DNN classifier, we compare HIN representations (i.e.,
combination of S1-S3, denoted as f1) with three types of
features: content-based features (i.e., APIs and manifest fea-
tures, denoted as f2), relation-based features (i.e., R3-R5,
denoted as f3) and augmented features (i.e., concatenation
of f2 and f3, denoted as f4). The results show that HIN
representations (i.e., ID-16) encoding higher-level semantics
are more expressive than the others (i.e., ID-17 to ID-19).

Figure 5: Visualization of representations and analysis.

B. Evaluation of Adversarial Disentangler. In this set, we
further examine the effectiveness of our proposed adversar-
ial disentangler in HIN. The results in Table 2 demonstrate
that: (1) Applying the adversarial disentangler with integra-
tion of domain priors indeed improves the detection perfor-
mance (i.e., ID-20 vs. ID-7, ID-21 vs. ID-11, ID-22 vs. ID-
15, ID-23 vs. ID-16). (2) Our proposed Dr.HIN achieves an
impressive ACC of 0.9896 and F1 of 0.9782 in detecting
evolving Android malware.
C. Visualization and Analysis for Novel Results. For a
more intuitive comparison, we visualize the node represen-
tations before and after disentanglement via t-SNE [Maaten
and Hinton 2008]. We plot the results in Figure 5.(a), which
shows the benefits of disentangled representations in classi-
fication. To investigate the reasons behind, we use the gen-
erated HIN embeddings guided by installation-based meta-
paths (i.e., ID-15) for further analysis: as shown Figure 5.(b),
the correctly classified and misclassified apps are differently
distributed under condition of domain priors (i.e., compared
with correctly classified apps, the misclassified apps are with
higher values of priors). Such proof sketches/intuitions for
novel results indicate that the distinct factors of HIN embed-
dings for misclassified apps may be disentangled by integra-
tion of generated priors, which will thus help the detection.

Comparisons with Baseline Methods
In this section, we compare Dr.HIN with the state of the arts:
i) homogeneous network embedding models (i.e., Deep-
Walk [Perozzi, Al-Rfou, and Skiena 2014], LINE [Tang
et al. 2015]); and ii) HIN embedding methods (i.e., HIN2Vec
[Fu, Lee, and Lei 2017], metapath2Vec [Dong, Chawla, and
Swami 2017]). We also prepare two variants of Dr.HIN: one
is to remove the priors (denoted as Dr.HINw/o); the other is
with replacement of random noises (denoted as Dr.HINrnd).
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Method ACC F1 Recall Precision

DeepWalk 0.9683 0.9354 0.9596 0.9125
LINE 0.9298 0.8497 0.8290 0.8714
HIN2Vec 0.9779 0.9545 0.9670 0.9423
metapath2vec 0.9798 0.9579 0.9615 0.9543

Dr.HINw/o 0.9823 0.9623 0.9465 0.9787
Dr.HINrnd 0.9840 0.9666 0.9678 0.9653
Dr.HIN 0.9896 0.9782 0.9731 0.9834

Table 3: Comparison with baseline methods.

The comparison results are shown in Table 3, which
show: (1) HIN embedding methods (i.e., HIN2Vec, meta-
path2vec) achieve better performances than homogeneous
network embedding models (i.e., DeepWalk, LINE). (2) The
adversarial disentangler with our designed priors performs
better than random condition and w/o priors. (3) Dr.HIN
consistently outperforms all baselines for Android malware
detection. The reasons behind this are i) the proper consider-
ation and accommodation of the heterogeneity of HIN, and
ii) the advantage of adversarial disentangler integrating do-
main priors that is able to learn the distinct and informative
factors hidden in HIN data for malware detection.

Comparisons with other Detection Systems
We also evaluate Dr.HIN by comparing with some popu-
lar commercial mobile security products (i.e., Norton and
Lookout) and machine learning-based detection systems
(i.e., HinDroid [Hou et al. 2017], Scorpion [Fan et al. 2018]
and AiDroid [Ye et al. 2019]). The results shown in Table 4
demonstrate that Dr.HIN outperforms the two anti-malware
products and three HIN-based learning systems in detecting
evolving Android malware. Its success lies in the structured
HIN for app representations and the adversarial disentangler
for learning distinct, informative factors hidden in HIN.

System ACC F1 Recall Precision

Norton 0.9560 0.9047 0.8709 0.9413
Lookout 0.9533 0.8986 0.8641 0.9359
HinDroid 0.9662 0.9276 0.9046 0.9519
Scorpin 0.9761 0.9500 0.9499 0.9502
AiDroid 0.9765 0.9510 0.9514 0.9507
Dr.HIN 0.9896 0.9782 0.9731 0.9834

Table 4: Comparison with other detection systems.

Evaluation of Model Stability
In this set, we examine the model stability of Dr.HIN: Figure
6.(a) plots the training losses of generator and discrimina-
tor in Dr.HIN, which demonstrates its training stability; Fig-
ure 6.(b) shows the ROC (receiver operating characteristic)
curve of Dr.HIN, which achieves an impressive 0.9731 true
positive rate (TPR) at 0.0052 false positive rate (FPR). Note
that the computational complexity (i.e., scalability) analysis
is given in the methodology section.

Figure 6: Evaluation of model stability.

Related Work
In recent years, systems applying machine learning tech-
niques have been developed for malware detection (e.g.,
[Cai et al. 2018; Kim et al. 2018; Ye et al. 2017; Hou et al.
2016; Ye et al. 2008]). In particular, HIN-based models (i.e.,
HinDroid [Hou et al. 2017], Scorpion [Fan et al. 2018] and
AiDroid [Ye et al. 2019]) have demonstrated the success in
malware detection by tackling different challenges of HIN
representation learning. The evolving Android malware (es-
pecially the ones using COVID-19 as lure to perform various
malicious activities) have posed a new challenge of exploit-
ing HIN-based models for the detection: HIN representa-
tions could be highly entangled within the complex ecosys-
tem of app development, which calls for novel techniques
to identify and disentangle the distinct, informative factors
hidden in the HIN data for the detection of increasingly so-
phisticated malware. Although there have been many efforts
on disentangled representation learning in computer vision
[Tran, Yin, and Liu 2017; Higgins et al. 2017; Dupont 2018],
disentangled representation learning in network data is an
emerging field with main focus on homogeneous networks
(e.g., [Ma et al. 2019a,b; Liu et al. 2019; Wang et al. 2020;
Hu et al. 2020; Guo et al. 2020; Liu et al. 2020]. By far, there
has no work on disentangled representation learning in HIN
data. In this paper, we propose to integrate domain priors
to devise an adversarial disentangler to bridge this gap and
apply it for Android malware detection.

Conclusion
To combat the evolving Android malware, it calls for innova-
tive detection techniques to protect users against the attacks
in the COVID-19 era and beyond. To solve this problem,
in this paper, besides app content, we propose to consider
higher-level semantics and social relations among apps; and
then we introduce a structured HIN to model the complex re-
lations and exploit meta-path guided strategy to learn node
(i.e., app) representations from HIN. Based on the HIN em-
beddings, we propose to integrate domain priors generated
from different views to devise an adversarial disentangler at
the first attempt to separate the distinct, informative factors
of variations in HIN data for evolving Android malware de-
tection. Comprehensive experimental studies and promising
results based on the large-scale sample collections from anti-
malware industry demonstrate that the developed system
Dr.HIN incorporating our proposed method outperforms the
state-of-the-arts baselines and popular commercial mobile
security products in Android malware detection.
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