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Abstract

While frame-independent predictions with deep neural net-
works have become the prominent solutions to many computer
vision tasks, the potential benefits of utilizing correlations
between frames have received less attention. Even though
probabilistic machine learning provides the ability to encode
correlation as prior knowledge for inference, there is a tangible
gap between the theory and practice of applying probabilistic
methods to modern vision problems. For this, we derive a
principled framework to combine information coupling be-
tween camera poses (translation and orientation) with deep
models. We proposed a novel view kernel that generalizes the
standard periodic kernel in SO(3). We show how this soft-
prior knowledge can aid several pose-related vision tasks like
novel view synthesis and predict arbitrary points in the latent
space of generative models, pointing towards a range of new
applications for inter-frame reasoning.

Introduction
Gaussian processes (GPs, Rasmussen and Williams 2006)
provide a flexible probabilistic framework for combining
a priori knowledge with forecasting, noise removal, and ex-
plaining data. Their strengths are in many ways complemen-
tary to those of deep neural networks which perform best
in applications where large training data sets are available
and the test points reside close to the training samples. The
tremendous success of deep neural networks in solving many
fundamental computer vision tasks has largely dictated the
research in the past years, but recent interest in prediction
under incomplete inputs has motivated combining the ex-
treme flexibility and expressive power of current computer
vision models with structured constraints encoded by GP pri-
ors. Application areas include uncertainty quantification (see
discussion in Blundell et al. 2015; Kendall and Gal 2017),
auxiliary data fusion, and prediction under scarce data. These
are instrumental for delivering practical methods and robusti-
fying inference.

In this paper, we aim to fill a tangible gap between the
theory and practice of applying probabilistic methods to cer-
tain computer vision tasks. We propose a tailored Gaussian
process prior for encoding knowledge of camera poses into
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Figure 1: We propose a GP prior for encoding known six
degrees-of-freedom camera poses into probabilistic models.
In region A, the phone starts from standstill with minor ro-
tation (high overall covariance in (a)). Between A and B, it
moves to the right while rotating (low overall covariance in
(a) and (b)). In B, the phone firstly stands still (high over-
all covariance), then rotates from portrait to landscape (low
covariance in (b), higher in (a)), and is finally still again.

probabilistic models. In GPs, prior assumptions are encoded
by a covariance function. As illustrated in Fig. 1, we aim to
encode the notion of similarity of camera views given the
known camera movement.

In practice, the camera movement estimation is typically
fused with motion information from inertial sensors. New
consumer hardware in smartphones and cars typically have
these capabilities built-in—Apple iPhones/iPads run ARKit
and Android devices Google ARCore, both exposing real-
time six degrees-of-freedom camera pose data. This readily
available motion information could be utilized as priors for
improving standard visual regression and classification tasks.
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However, typical computer vision methods operating on a
stream of images consider the frames independently and
merely post-process the outputs by, e.g., linear interpolation
or temporal low-pass filtering.

This paper is bridging: We emphasize the principled link
between computer vision and non-parametric inference for
encoding probabilistic information between camera poses,
advocating for the use of more principled strategies for inter-
frame reasoning in computer vision. Our contributions in this
paper are: (i) We propose a novel view covariance function
for encoding 3D camera orientation which extends the theory
of GP models towards vision applications. (ii) We push the
boundaries of GP applications in computer vision. For the
first time, we use a GP model on an autoencoder to predict
learnt shapes in arbitrary angles. (iii) We also introduce an
approach to non-linear latent space interpolation in generative
image models, using our view kernel.

Background
Gaussian processes (GPs) provide a probabilistic plug-and-
play framework for specifying prior knowledge inside models.
As a general-purpose machine learning paradigm they are in-
strumental in applications for discovering structure in signals
(Duvenaud 2014), regression tasks (Bui et al. 2016), data-
efficient reinforcement learning (Deisenroth and Rasmussen
2011), and probabilistic numerics (Hennig, Osborne, and
Girolami 2015). In theory, their applicability is only limited
by the availability of prior knowlege that can be encoded.

We focus on GP models that admit the form of a Gaus-
sian process prior f(x) ∼ GP(µ(x), κ(x,x′)) and like-
lihood y | f ∼

∏n
i=1 p(yi | f(xi)), where the data D =

{(xi, yi)}ni=1 are input–output pairs, µ(x) the mean, and
κ(x,x′) the covariance function of the GP prior. This family
covers many standard modelling problems, including regres-
sion and classification tasks.

GPs are typically associated with two issues hindering their
wider use: (i) prohibitive cubic scaling in the number of train-
ing samples n and (ii) the need for approximative inference
when dealing with non-Gaussian likelihoods. Recent research
has delivered methods to overcome these limitations by meth-
ods such as basis function projection (Lázaro-Gredilla et al.
2010; Hensman, Durrande, and Solin 2018), matrix structure
exploiting (Wilson and Nickisch 2015; Wang et al. 2019),
stochastic inference (Hensman, Fusi, and Lawrence 2013;
Krauth et al. 2017), and temporal models (Särkkä, Solin, and
Hartikainen 2013; Solin, Hensman, and Turner 2018). The
availability of GPU-accelerated software libraries such as
GPflow (Matthews et al. 2017) and GPyTorch (Gardner et al.
2018) have recently made GP models more applicable as
building blocks for larger models. Therefore, the traditional
limitations are now less severe, allowing GPs to provide ex-
citing opportunities for computer vision applications.

In this paper, the main contributions relate to the GP prior,
where the a priori assumptions are encoded by the covari-
ance function (kernel) κ(·, ·). Without loss of generality, we
constrain our interest to models with µ(x) = 0. Some SLAM
methods exploit GP priors in SE(3) for continuous trajec-
tory estimation (Anderson and Barfoot 2015). For computer

vision and graphics applications, recent work in kernel de-
sign has focused more on encoding the ignorance rather than
the knowledge about orientation. Invariant kernels (see, e.g.,
Haasdonk and Burkhardt 2007) can robustify deep convolu-
tional models against rotation, while translation insensitive
kernels (Dutordoir et al. 2020) can account for problems with
patch similarity across images. We, however, aim to encode
explicit prior knowledge about inter-image camera poses—
view similarity—by crafting a view kernel that accounts for
camera translation and orientation. Song et al. (2009) pro-
posed an inner product kernel between rotations, which can
be regarded as a linear model in the Hilbert space, while we
span a multi-dimensional periodic model in that space. This
line of research also connects to distance measures between
rigid bodies (Mazzotti, Sancisi, and Parenti-Castelli 2016).

Perhaps due to the two limitations mentioned earlier, GPs
have not been extensively used in computer vision appli-
cations. Sufficient and necessary conditions for Gaussian
kernels on metric spaces are derived in Jayasumana et al.
(2013), with the focus on theoretical ground-work. GP priors
for rigid motions applied to object tracking is extensively
studied in Lang and Hirche (2017); Lang, Kleinsteuber, and
Hirche (2018), which we also compare against. There has
also been previous work in combining variational autoen-
coders with GP priors in vision (Eleftheriadis et al. 2016;
Casale et al. 2018) and GP based latent variable models for
multi-view and view-invariant facial expression recognition
(Eleftheriadis, Rudovic, and Pantic 2015a,b). In Casale et al.
(2018), GPs are applied to face image modelling, where the
GP accounts for the pose, and in Urtasun, Fleet, and Fua
(2006) used them for 3D people tracking.

From an application point of view, leveraging information
from consecutive views lies at the heart of many subfields in
computer vision. Video analysis, multi-view methods, optical
flow, visual tracking, and motion estimation and correction
all directly build on the object or camera movement cues
in consecutive image frames. View priors can also help in
semantic processing of video (Everingham, Sivic, and Zis-
serman 2006) or depth estimation (Hou, Kannala, and Solin
2019; Hou et al. 2021). However, in many ‘one-shot’ appli-
cations in visual regression and classification, the frames of
the image sequence are treated as independent, and typically
processed with linear interpolation or low-pass filtering.

Camera Pose Priors
In geometric computer vision (e.g., Hartley and Zisserman
2003), the standard description of a camera projection model
is characterized by extrinsic and intrinsic camera parameters.
The extrinsic parameters denote the coordinate system trans-
formations from world coordinates to camera coordinates,
while the intrinsic parameters map the camera coordinates
to image coordinates. In the standard pinhole camera model,
this corresponds to

(u v 1)
T ∝ K

(
RT −RTp

)
(x y z 1)

T
, (1)

where (u, v) are the image (pixel) coordinates, (x, y, z) ∈ R3

are the world coordinates, K is the intrinsic matrix and the
p ∈ R3 and R describe the position of the camera centre
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and the orientation in world coordinates respectively. From
Eq. (1), given a set of fixed world coordinates and a known
motion between frames the driver for changes in pixel values
(u, v) is the camera pose P = {p,R}.

Kernels in SE(3)

In the mathematical sense, the three-dimensional camera
poses belong to the special Euclidean group, SE(3), whose
elements are called rigid motions or Euclidean motions. They
comprise arbitrary combinations of translations and rotations,
but not reflections. This group contains transformations repre-
sented as a translation followed by a rotation: SO(3)×T(3),
where the former denotes the special orthogonal rotation
group and the latter the group of translations. A camera pose
P = {p,R} is an element of this group. We consider the ori-
entation and translation contributions entering the prior sepa-
rately: κpose(P, P ′) = κtrans.(p,p

′)κview(R,R′), since in
the general case separability imposes a less informative prior.
As the translation vectors reside in R3, we may directly write
the translation kernel as any suitable covariance function (see,
e.g., Rasmussen and Williams 2006; Duvenaud 2014). An ap-
parent first choice is the so-called squared exponential (RBF,
exponentiated quadratic) covariance function:

κ(p,p′) = σ2 exp

(
−‖p− p′‖2

2`2

)
, (2)

where σ2 denotes a magnitude and ` > 0 is a characteristic
lengthscale hyperparameter. This particular choice of covari-
ance function encodes continuity, smoothness, and translation
invariance in p. An example realization of the translation co-
variance matrix is visualized in Fig. 1a.

View Orientation Kernels
Since translations can be considered directly, our main inter-
est is formulating a proper orientation covariance function
in SO(3). Here, the first choice could be to leverage the
standard periodic kernel, which can be derived following
MacKay (1998): Given a valid covariance function κ(u,u′),
we can introduce a non-linear mapping x 7→ u(x), through
which to define a new covariance function κ′(x,x′) ,
κ(u(x),u(x′)). The standard periodic kernel (cf., Rasmussen
and Williams 2006) is usually derived by the mapping θ 7→ u
that warps θ to the unit circle: u(θ) = (cos(θ), sin(θ)). Com-
bining this with the covariance function in Eq. (2) gives

κ(θ, θ′) = exp

(
−2 sin2((θ − θ′)/2)

`2

)
, (3)

which can be used for imposing a periodic prior over inputs
θ ∈ R. We aim to extend this 1D standard periodic kernel to
3D rotations (see also Hamsici and Martinez 2008).

Euler angle formalism Assuming Euler angles θ =
(θ1, θ2, θ3) to be fully separable, we can extend Eq. (3) to 3D
rotations directly. This would correspond to a separable view
kernel (see Fig. 2d for the corresponding distance function):

κ(θ,θ′) =
∏

j={1,2,3}
exp

(
−

2 sin2((θj − θ′j)/2)

`2j

)
. (4)

This, however, can suffer from issues related to Euler angles
like possibly singular representations and gimbal lock (loss
of one degree of freedom, see, e.g., (Diebel 2006; Feath-
erstone 2014)), and should thus be avoided as an internal
representation of orientation.

Quaternion formalism Instead of Euler angles, common
representations for orientation are given in terms of rota-
tion matrices or quaternions. The set of unit quaternions,
q = (qw, qx, qy, qz), s.t. ‖q‖ ≡ 1, forms the 3D rotation
group SO(3) covering the S3 sphere. In order to seek a simi-
lar, but higher-dimensional, form of Eq. (3), the quaternion
representation can directly be used as a mapping. This would
make sense, as the derivation of the standard periodic covari-
ance function can be viewed as a mapping onto the complex
plane and quaternions represent a 4D extension of complex
numbers. So we may define the distance between quaternions
q1 and q2 as the norm of their difference:

dquat(q1,q2) = 2‖q1 − q2‖. (5)
The quaternion model has previously been discussed by
Lang and Hirche (2017) and Lang, Kleinsteuber, and Hirche
(2018). However, the resulting covariance function is not
well-behaved in all orientations—due to non-uniqueness of
quaternions—as can be seen from Fig. 2b, where full-turn
(2π) correlations are close to zero.

Rotation matrix formalism The peculiarities with the pre-
vious formulations, as visualized in Fig. 2, acted as a motiva-
tion to seek a more principled generalization of the periodic
covariance function with rotation matrices. Since there is no
direct way to use a rotation matrix as a mapping to extend
Eq. (3), we consider the geodesic (arc) distance. Considering
the eigendecomposition of R that define the rotation axis
and angle (see supplement), we have the geodesic distance
defined by rotation matrices R:

dg(R,R′) = arccos

(
1

2
(tr(RTR′)− 1)

)
. (6)

To derive the 3D counterpart of the standard periodic ker-
nel, a Taylor expansion (see supplement) for the geodesic
distance around the origin gives a mapping dg(R,R′) ≈√

tr(I−RTR′) (visualized in Fig. 2e) that we use for the
non-separable covariance function:

κview(R,R′) = exp

(
− tr(I−RTR′)

2`2

)
. (7)

This proposed 3D kernel Eq. (7) gives the standard pe-
riodic kernel as a special case where there is only rota-
tion around one of the axes (see Fig. 2f). Moreover, the
proposed Eq. (7) may be generalized to κview(R,R′) =
exp(− 1

2 tr(Λ−RTΛR′)), where Λ = diag(`−2x , `−2y , `−2z ),
which can account for different characteristic scaling per axis
flexibly. (NB: The `s are coupled and its interpretation is not
as straightforward as scaling for the respective axes)

To summarize, we propose the non-separable orientation
covariance function κview(·, ·) that preserves a symmetric
correlation structure around origin (like the geodesic model),
does not suffer from the degeneracy of Euler angles, and gen-
eralizes the gold-standard (one-dimensional) periodic kernel
to high-dimensional rotations.
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Figure 2: Characterization of differences between different orientation distance measures. Left: Distance matrices between two
degrees-of-freedom rotations. (a) shows the geodesic distance (see Eq. (6)), (b) the quaternion norm distance (see Eq. (5)), (d) the
separable periodic distance (Eq. (4)), and (e) the non-separable orientation distance (Eq. (7)). Right: Distance evaluations along
the diagonal and when θ2 ≡ 0, showing that in 1D (d) and (e) coincide, while (e) is symmetric in 2D/3D.

Application Experiments
In the experiments, we show examples of real-world applica-
tions of the view kernel in probabilistic view synthesis. In the
first experiment, we extend the GP variational autoencoder
model with our view kernel for a view synthesis task. The sec-
ond experiment is concerned with latent space interpolation
for human face modelling, showcasing the general applica-
bility of the kernel. Further examples and comparisons are
included in the supplement.

View Synthesis with a GP Prior VAE
We consider the task of using a variational autoencoder (VAE)
to predict how objects look in orientations that are not in the
training set. We first describe how the problem was previously
addressed by Casale et al. (2018) with the Gaussian Process
Prior Variational Autoencoder (GPPVAE), explain a major
limitation in this approach, and then overcome this limitation
with our kernel. GPPVAE is a fully probabilistic model that
captures correlations in both object identities and views by
leveraging covariance structure in latent space. The kernel
defines a prior for latent code z. Given an object ID and view
angle, the encoder and GP posterior predict the posterior z.
Intuitively, the prediction is based on the relation between
training samples.

Given training images Y , training object feature vectors X ,
and training views P , the predictive posterior for an image
y? for an object with features x? seen from a view P? is

given (see detailed presentation in Casale et al. 2018) by

p(y? |x?,Y,X ,P)≈∫
p(y? | z?)︸ ︷︷ ︸

decode prediction

p(z? |x?, P?,Z,X ,P)︸ ︷︷ ︸
GP predictive posterior

q(Z |Y)︸ ︷︷ ︸
encode training data

dz? dZ,(8)

where z? are the predicted latent representations and Z are
latent representations of training images. Given fixed views
and objects, the task of GPPVAE is to predict images y? for
an object in the view P? that remained unobserved.

However, though Casale et al. (2018) present the task as
‘out-of-sample’ prediction, their approach of brute learning
the covariance does not support arbitrary 3D angles. Rather,
it is defined based on the assumption that all query views
in the test set have already been observed for at least one
object in the training set. When that assumption does not
hold, only a fixed number of 3D rotations are available. In
GPPVAE, all experiments only consider rotations in one
dimension, modelled with the 1D standard periodic kernel
or the fully-learned kernel. The 1D standard periodic kernel
cannot handle 3D rotations and the fully-learned kernel can
only capture the correlations within fixed training views. In
contrast, our proposed kernel that extends the 1D standard
periodic kernel to SO(3) can work with arbitrary 3D angles.

To showcase our kernel with 3D rotations, we car-
ried out an experiment with ShapeNet (Chang et al.
2015) 3D chair models at 128×128 resolution. We use
1660 different chairs in total. For each object, we ren-
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Figure 3: ShapeNet experiments with a GPPVAE. (a) Visualization of the 60 view angles (black dots) in the training data. (b) The
cov matrix for 60 training views. (c) The cross-cov matrix for the test novel views (red dots in (a)) and training views (black dots).
(d) We experimented with both chairs and cars. Our proposed kernel allows to predict arbitrary views which are not presented in
training data. For each category, the first (elevation 30◦) and the third row (elevation 60◦) show predictions for angles found in
the training set, while the whole second row shows predictions for angles not found in the training set (tight red dots in (a)).

der images from 60 fixed views, considering both az-
imuth angles (0◦, 30◦, 60◦, . . . , 330◦) and elevation angles
(0◦, 30◦, 60◦,−30◦,−60◦). The camera view angles are
shown in Fig. 3a. We randomly selected 80% images for
training (81,312 images), 10% for validation (10,164 images)
and 10% for testing (10,164 images). Following original
GPPVAE, we compute the view covariance based only on
orientation angles (cameras at fixed radius from the object
centre; translation seen as function of orientation). For the
object covariance, we use a linear kernel between learned ob-
ject features. The resulting composite kernel κ(x,R; x′,R′)
expresses the covariance between two chair images in terms
of the relative view orientation between orientations R and
R′ and object feature vectors x and x′:

κ(x,R; x′,R′) = xTx′︸︷︷︸
object

exp
(
− 1

2
tr(Λ−RTΛR′)

)
︸ ︷︷ ︸

view

, (9)

where Λ = diag(`−2x , `−2y , `−2z ) and we learn the lengthscale
hyperparameters `x, `y, `z as part of the training. Due to
rich variability in chair shapes, we consider a higher rank
(M = 128) than the original setup for the object covariance
(see supplement for details). We first experiment on same
task as GPPVAE (in-sample evaluation). For the proposed
view kernel, the MSE is 0.025±0.012, which still has slightly
better performance than the fully-learned view-covariance
matrix as in Casale et al. (2018) (0.026±0.012). This also
shows that encoding the information through a view kernel
(with only hyperparameters to learn), rather than through
brute free-form optimization, is sensible.

Fig. 3d demonstrates the capability of our kernel for novel
view predictions conditioned on an object ID, with truly
‘out-of-sample’ views (novel viewpoints in red in Fig. 3a).

The closest views within the training set are also visualized,
which demonstrates that our model has learned to disentangle
view and content by the aid of the view prior. The qualitative
results on ShapeNet cars also show the generalizability.

We evaluate MSEs for the novel view prediction for each
kernel, using the trained lengthscale and magnitude hyperpa-
rameters from the view kernel (the parameters have the same
interpretation across kernels). The practical degeneracy of
the separable kernels (based on Euler angles) and quaternion
kernels can make training unstable. For our non-separable
view kernel we get an MSE of 0.036. Given the hyperpa-
rameters trained with the non-separable model, the separable
model performs almost equally well. The quaternion distance
kernel fails at this task (MSE 0.058).

Robust Interpolation for Face Reconstruction
As a second example of inter-frame reasoning, we consider
view-aware GP interpolation in the latent space of a Genera-
tive Adversarial Network (GAN, Goodfellow et al. 2014) for
face generation. A GAN incorporates a generator network
that acts as a feature extractor, allowing an image to be rep-
resented by a low-dimensional latent code. By utilizing the
pose information of the view-aware kernel, we can do GP
regression in the latent space. The data comprises short video
sequences of faces of four volunteers captured by an Apple
iPhone XS. We used a custom app for capturing the video
stream (1440×1920 at 60 Hz) interleaved with camera poses
from the Apple ARKit API.

In absence of a built-in encoder, as in case of most GANs,
we use an optimization setup to find out the best latent code
for an image j (similarly to Abdal, Qin, and Wonka 2019).
The traditional approach has been to learn these codes from
i.i.d. training data, and under the assumption that we essen-
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Figure 4: View-aware manipulations in the latent space of StyleGAN (Karras, Laine, and Aila 2019). Example of denoising of
the GAN reconstructions for consecutive frames (note the noisy independent reconstructions) in a longer video, where every
frame is treated as a noisy observation. See the supplement for video examples.

tially have only a single ‘observation’ of each entity that the
image represents. We now relax this assumption and consider
the more general case where we postulate, for each input
image frame, the existence of a hidden ‘correct’ latent code
fj ∈ Rd that encodes both the time-invariant aspect (face
identity) and the time-dependent aspect (pose of the face),
and then re-interpret each latent code produced by an encoder
or optimizer as a noisy ‘observation’ yj ∈ Rd of the correct
code. Consider the case of images that depict a face with fixed
identity. We cast this as a GP regression problem in which
each latent dimension, i = 1, 2, . . . , d is independent. The
likelihood is yj,i = fi(Pj)+εj,i, εj,i ∼ N(0, σ2

n), for frames
j = 1, 2, . . . , n. The GP prior is over the camera poses Pj :
fi(P ) ∼ GP(0, κview(P, P ′)). Solving these independent
GP regression problems only requires inverting one n×n
covariance matrix, which makes inference fast. We use two
or more images of a sequence to predict the expected latent
code, E[f(Pj) | D], for any image in the sequence, without
necessarily ever running that image through the encoder. We
can apply these predictions in several ways, here focusing
separately on noise reduction (leveraging all available image
frames) and view synthesis (leveraging as few as two frames).

We demonstrate this approach in the 18×512 latent space
of StyleGAN (Karras, Laine, and Aila 2019) based on four
image sequences, each depicting a specific face identity (see
Fig. 5 and the supplement). We find the ‘observed’ latent
codes using an optimizer, leveraging VGG16 feature projec-
tions (Simonyan and Zisserman 2015; Puzer (GitHub user)
2019). Separately for each face identity, our method infers
the ‘correct’ latent codes for each pose. The GAN generator
then decodes those back to 1024×1024 image space. The val-
ues for the three hyperparameters were chosen to σ2 = 0.1,
` = 1.098, and σ2

n = 0.0001 (pre-trained on an independent
task w.r.t. marginal likelihood). Even if the GAN encoding
produced stable results, the considerable slowness of finding
the latent codes by optimization (in range of minutes per sin-
gle image) motivates the present approach, as we now need to
encode only a small subset of frames and match the camera
movement by GP prediction.

Noise reduction Given a sequence of images of the same
object, we can use the encoder (optimizer) to find the cor-
responding latent codes. As we decode the codes back to
individual images, they are mutually inconsistent (no tempo-

Reconstruction mode Mean±std Median LPIPS-∆

1-by-1 GAN proj. (all f.) 0.33±0.10 0.36 0.154

Sep. kernel (all f.) 0.41±0.12 0.42 0.026
Quat kernel (all f.) 0.41±0.12 0.43 0.021
View kernel (all frames) 0.39±0.13 0.41 0.031

Lin. interp. (first–last) 0.45±0.07 0.46 0.020
Sep. kernel (f–l) 0.44±0.07 0.46 0.024
Quat kernel (f–l) 0.45±0.10 0.44 0.012
View kernel (f–l) 0.42±0.08 0.44 0.020

Table 1: LPIPS similarities between ground-truth and frames
generated with different methods, center-cropped, using cam-
era runs on 4 face identities (N = 1570). Smaller is better.

ral consistency). The issue may not be clear when visually
examining single frames, but it is plain when the frames are
combined into a video (see the supplement for video exam-
ples). We ‘denoise’ the sequence of latent codes with GP
regression, and decode the new sequential images as video,
making it smoother and reducing artifacts. Fig. 4 shows three
consecutive input frames from a video and their respective
independent GAN reconstructions. Partly due to the tilted
angle, the quality and preservation of identity in face recon-
structions for independent frames varies. GP regression with
our view-aware prior makes the motion smooth and preserves
the identity better throughout the video. The smoothness can
be measured using the mean difference of the learned percep-
tual image path similarity metric (LPIPS, Zhang et al. 2018)
between consequtive frames, considerably smaller for the GP
interpolation using all frames (the LPIPS-∆ in Table 1).

View synthesis Next, we take only a subset of the frames—
the extreme case with only a single start and a single end
frame (see Fig. 5)—and interpolate the rest of the frames in
the latent space by predicting the latent codes, E[f(P?) | D],
for unseen views P?, following the correlation structure of
the original camera movement. In Fig. 5, we compare to in-
dependent frame-by-frame reconstructions. For certain input
head poses, the quality is gapped by suboptimal StyleGAN
projections (leading to some variation in face alignment). As
a baseline, we also linearly interpolate between the first and
last frame, which (for apparent reasons) fails to capture the
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Figure 5: View-aware GP interpolation between two input frames: Row #1: Frames separated by equal time intervals from a
camera run. Row #2: Independently GAN reconstructions. Row #3: Linear interpolation of intermediate frames in GAN latent
space between first–last frame (note lost azimuth angle). Row #4: Interpolation in GAN latent space between first and last frame
by our view-aware GP prior. Row #5: Per-pixel GP posterior uncertainty visualized in the form of marginal standard deviation.

varying camera motion, with mismatches in the head angle.
The GP solution with our view prior smoothly matches the
view orientation while maintaining the face features. Also,
we visualize the frame-wise marginal uncertainty (posterior
variance V[f(Pj) | D]) of the GP predictions as a standard
deviation map in image space. We create the maps by draw-
ing 100 samples from the posterior process and calculating
the standard deviation over faces. The uncertainty is small in
the beginning/end (where the inputs are) and highest towards
the part where the linear interpolation has the largest error—
showing the practical uncertainty quantification capabilities
of the model. We also measure the differences to ground-truth
images (LPIPS in Table 1). One expects the direct StyleGAN
projection that uses all frames to yield the minimum LPIPS,
but it has poor temporal consistency (LPIPS-∆). The sepa-
rable and quaternion kernels have it vice versa: Their high
consistency (low LPIPS-∆) is irrelevant as it is due to losing
the original diversity (increasing direct LPIPS, visuals in the
supplement). The start and end frames were selected for rea-
sonable symmetry to fairly compare to linear interpolation.
Still, the GP interpolation is clearly superior to the linear
case. As expected, although GP interpolation with all frames
reduces jitter (see supplementary video), it has less frame-by-
frame similarity to the originals than direct projection.

Discussion and Conclusion

We have presented a new GP covariance function to encode
a priori knowledge about camera movement into computer
vision tasks, advocating more principled approaches for inter-
frame reasoning in computer vision. We consider this view
kernel an important building block for applying Gaussian pro-
cess priors to many computer vision models. The covariance
function itself is simple, yet elegant, and circumvents possi-
ble problems related to degeneracy and gimbal lock related to
the alternative approaches. The model directly generalizes the
standard periodic covariance function to high-dimensional
rotations, filling a tangible gap in the existing GP tool set.

To underline the practical importance of our work, we
considered real-world applications for the proposed model.
Our quantitative experiments showed that the view prior can
encode authentic movement and provide a soft-prior for view
synthesis. We also showed how the model can be of direct
practical value by acting as a camera-motion-aware interpo-
lator. Combining probabilistic models with computer vision
tasks come with a promise of better data efficiency (not ev-
erything needs to be learned from data, as demonstrated in
the comparison and uncertainty quantification.

Code and material related to this paper is available at https:
//aaltoml.github.io/view-aware-inference.
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Ethical Impact
Following the breakthroughs of deep neural networks in
recent years, broader societal concerns have increasingly
shifted from maximizing the accuracy under controlled con-
ditions to aspects such as robustness and explainability. In
real-world applications, machine learning systems are ex-
pected to generalize despite limited amount of training data,
yield principled quantification of uncertainty, and allow for
human interpretation of the inference process.

Probabilistic methods provide natural solutions to these re-
quirements. Yet, current Bayesian deep learning approaches
fall short of ways to encode interpretable priors into models,
in which non-parametric priors such as Gaussian processes
can help. These tools are widely used in, for instance, finance,
navigation, and medical tasks, while computer vision appli-
cations have seen less benefit. Our work offers a principled
building block that extends the gold standard Gaussian pro-
cess tooling to allow utilization of Gaussian process priors
across a range of computer vision tasks, of which we show-
case just a few representative examples. We hope this work
inspires computer vision practitioners of a variety of different
subdomains to increasingly integrate probabilistic methods in
their work, as well as motivate the researchers in probabilistic
methods to explore models in computer vision applications.
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