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Abstract

Multi-task learning has increased in importance due to its su-
perior performance by learning multiple different tasks simul-
taneously and its ability to perform several different tasks us-
ing a single model. In medical phenotyping, task labels are
costly to acquire and might contain a certain degree of la-
bel noise. This decreases the efficiency of using additional
human labels as auxiliary tasks when applying multi-task
learning to medical phenotyping. In this work, we proposed
an effective multi-task learning framework, CO-TASK, to
boost multi-task learning performance by generating auxil-
iary tasks through COmbination of TASK Labels. The pro-
posed CO-TASK framework generates auxiliary tasks with-
out additional labeling effort, is robust to a certain degree of
label noise, and can be applied in parallel with various multi-
task learning techniques.
We evaluated our performance using the CIFAR-MTL dataset
and demonstrated its effectiveness in medical phenotyping
using two large-scale ECG phenotyping datasets, an 18 dis-
eases multi-label ECG-P18 dataset and an echocardiogram
diagnostic from electrocardiogram dataset ECG-EchoLVH.
On the CIFAR-MTL dataset, we doubled the average per-
task performance gain of the multi-task learning model from
4.38% to 9.78%. With the proposed task-aware imbalance
data sampler, the CO-TASK framework can effectively deal
with the different imbalance ratios for the different tasks
in electrocardiogram phenotyping datasets. The proposed
framework combined with noisy annotations as minor tasks
increased the sensitivity by 7.1% compared to the single-task
model while maintaining the same specificity as the doctor
annotations on the ECG-EchoLVH dataset.

Introduction
In the rise of deep learning and large-scale datasets, pre-
training models and transferring their knowledge to down-
stream tasks have become the go-to method to utilize knowl-
edge learned from those large-scale datasets for improved
results in downstream tasks. With the great success of trans-
fer learning methods, multi-task learning tries to take a step
further and learn multiple different tasks simultaneously in-
stead of the traditional setting of learning one task at a time.
Multi-task learning methods aim to improve individual tasks
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by learning all the tasks together, enabling the tasks to trans-
fer knowledge between each other concurrently and help
regularize the model to prevent overfitting on a single task,
which leads to more generalized and robust models.

Multi-task learning methods has shown benefits in a va-
riety of different domains, including computer vision (Xu
et al. 2018; Liang et al. 2019), natural language processing
(Liu et al. 2019), time series analysis (Cirstea et al. 2018),
recommendation systems (Zhao et al. 2019) and medical
data analysis (Harutyunyan et al. 2019). Multi-task learn-
ing in the deep learning era appeals to a variety of different
application domains for three main reasons. First, in many
application scenarios, we are not only interested in a sin-
gle task, but we are also interested in a set of related tasks.
Second, multi-task learning can improve the performance
of individual tasks by sharing the knowledge learned be-
tween different tasks. This knowledge-sharing process helps
harder tasks or tasks with fewer training data to learn faster
and achieve better results. Learning multiple tasks together
also regularizes the model to prevent overfitting on indi-
vidual tasks. Third, by sharing part of the network to form
shared representations, the multi-task model results in re-
duced memory footprint and faster inference speed, essential
to edge-devices and large-scale deployment of the models.

Unlike research that focuses on achieving better results
under a predefined set of tasks, various studies have shown
that adding auxiliary tasks to train in parallel can help im-
prove the performance of targeted tasks (Liebel and Körner
2018; Standley et al. 2020). These tasks act as hints to what
shall be learned and regularize the model to prevent it from
learning incorrect relationships between the input and out-
put. Most research still requires labeled data to generate aux-
iliary tasks, which limits the usefulness of this method in
practical scenarios. Automatic methods to generate useful
auxiliary tasks for a targeted task (Liu, Davison, and Johns
2019) has become a challenging new direction.

In recent years, there is an increased interest in apply-
ing multi-task learning methods in the medical domain. A
patient can be diagnosed with multiple diseases, so pheno-
typing can be treated as a multi-task learning problem, with
each disease label being a unique task (Razavian, Marcus,
and Sontag 2016). Combining multiple phenotyping tasks
from different datasets (Tellez et al. 2020) and learning phe-
notyping tasks with auxiliary tasks (Ding et al. 2019) using
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multi-task learning has shown performance gains.
Multi-task learning in the medical domain has its own set

of challenges. First, the cost is much higher to obtain clean,
supervised labels. Although cheaper labels can be generated
from existing electronic health records (EHR) using natural
language processing, they usually contain a higher degree
of label noise. Second, most datasets in the medical domain
are imbalanced, most patients are healthy, and each disease
has different prevalence rates. These problems make it trick-
ier to enhance the model’s performance with auxiliary tasks
through multi-task learning.

In this work, we ask the following question: Is it possi-
ble to generate useful auxiliary tasks without the additional
cost of acquiring more labels? With the challenges in ap-
plying multi-task learning to the medical domain, extract-
ing the most knowledge from existing labels and improv-
ing regularization to prevent overfitting is crucial. Improve-
ments through multi-task learning that does not require ad-
ditional task labels or methodologies that can utilize noisy
auxiliary task labels can squeeze more performance from the
same amount of labeled data. We aim to provide a general
multi-task learning methodology that can be applied on top
of existing multi-task learning methods to improve multi-
task learning performance in various domains further.

The main contributions of this paper are summarized as
follows:

• We proposed a novel framework, CO-TASK, to boost
multi-task learning performance by generating useful
auxiliary tasks through COmbination of TASK Labels,
which improves multi-task learning performance on ma-
jor tasks without the need for additional labeling effort.

• We proposed a novel task-aware imbalance data sampler
that is effective in dealing with different data imbalance
ratios for different tasks.

• The proposed framework demonstrated significant im-
provements on the multi-task image classification bench-
mark dataset, CIFAR-MTL, and showed that it could pro-
vide additional performance gains in parallel with other
multi-task learning techniques.

• The proposed framework is applied to two real-world
electrocardiogram phenotyping datasets. The experimen-
tal results demonstrated that the proposed framework
could improve the performance of current state-of-the-art
models for electrocardiogram phenotyping.

Related Work
Multi-task Learning
Most applications that utilize multi-task learning in deep
neural networks implement a variant of the basic shared-
bottom model, a hard-parameter sharing model that shares
all network layers before the final fully-connected networks.
The full model’s overall loss is the weighted summation of
the loss for each task, with individual task weights searched
through grid search and fixed during training.

Vandenhende et al. (2020) divided existing methods us-
ing multi-task learning in deep neural networks into deep
multi-task architectures and optimization strategy methods.

Deep multi-task architectures focus on better architectures
for multi-task learning models, while a majority of optimiza-
tion strategy methods focus on better methodologies to ob-
tain individual task weights that could dynamically change
through the training process.

Model architecture innovations in multi-task learning aim
to find better ways to share layers or sub-spaces in the
neural network. There are currently four main categories
in multi-task learning models. Column-based models such
as cross-stitch networks (Misra et al. 2016) or sluice net-
works (Ruder et al. 2019). Models focused on the attention
of sub-module outputs, such as MMoE (Ma et al. 2018),
SNR (Ma et al. 2019), and TRL (Strezoski, Noord, and
Worring 2019). Models focused on dynamic linking or rout-
ing of sub-modules, such as soft layer ordering (Meyerson
and Miikkulainen 2018) and routing networks (Rosenbaum,
Klinger, and Riemer 2018). Models originated from PAD-
NET (Xu et al. 2018) that utilized auxiliary multi-modal
model output as multiple tasks during training.

Dynamic task weighting techniques can be categorized
by the three different reference metrics it uses to adjust the
task weighting: individual task loss, parameter gradients,
and evaluation metrics. Kendall, Gal, and Cipolla (2018)
proposed to train separate noise parameters for each task
to tackle different homoscedastic uncertainty between tasks.
Chen et al. (2018) proposed GradNorm and sets the common
scale for all gradients to be the average l2 norm of individ-
ual task gradient. Liu, Johns, and Davison (2019) proposed
Dynamic Weight Averaging (DWA) to balance the pace each
task is learning according to the relative speed the task’s loss
is decreasing. Guo et al. (2018) proposed Dynamic Task Pri-
oritization (DTP) that balance the tasks according to the cur-
rent task difficulty by calculating the moving average of the
targeted performance metrics.

Auxiliary Tasks in Multi-task Learning
Auxiliary tasks are tasks that are added to the multi-task
learning model with the sole purpose of improving the per-
formance of original tasks. These tasks are usually related
to the major tasks which guide the multi-task model to learn
important data features and act as a regularization to pre-
vent the model from overfitting a particular task. Liebel
and Körner (2018) created a synthetic dataset, synMT, and
demonstrated that auxiliary tasks that are not directly related
could be used to regularize and improve the original targeted
tasks’ performance. Standley et al. (2020) showed that the
best separation of tasks into task groups to learn with multi-
task learning under a fixed budget is achieved when some
tasks are added as auxiliary tasks in specific tasks groups.
Liu, Davison, and Johns (2019) proposed the Meta AuXil-
iary Learning (MAXL) framework by using meta-learning
to generate beneficial auxiliary tasks to a multi-class learn-
ing problem. Lee, Hwang, and Shin (2019) generates self-
supervised learning tasks as auxiliary tasks and train super-
vised learning models to learn them jointly.

Multi-task Learning in Medical Domain
Multi-task learning has been again and again proven to pro-
vide performance gains in the medical domain. Various stud-
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ies demonstrated that using multi-task learning with auxil-
iary tasks can increase performance on targeted tasks. Ding
et al. (2019) employs a shared-bottom multi-task neural net-
work for the task of phenotyping and uses groups of ICD-
9 codes as auxiliary tasks. Guendel et al. (2019) combines
segmentation, spatial classification, and multiple abnormal-
ity classification tasks for each disease in a multi-task learn-
ing setting to increase the performance for Chest X-ray ab-
normality classification. Harutyunyan et al. (2019) and Song
et al. (2018) extracted four tasks: in-hospital mortality, de-
compensation, length of stay, and phenotyping from the
MIMIC-III dataset (Johnson et al. 2016) and demonstrated
performance improvements for the four extracted tasks.

Electrocardiogram Phenotyping
Electrocardiogram (ECG) is a recording of electrical sig-
nals from the heart containing 12 separate leads. These sig-
nal relates to the cardiology system and is useful to diag-
nose common heart diseases. Deep learning methods have
been shown to be effective in electrocardiogram phenotyp-
ing tasks. Hannun et al. (2019) developed a ResNet based
deep neural network that can diagnose ten different arrhyth-
mias from single-lead ECGs with diagnostic performance
similar to those from experienced cardiologists.

The electrocardiogram is also considered a cheap and
non-invasive method compared to other methods such as
echocardiograms that are used to generate detailed diagnos-
tics of a person’s cardiology system. Since an electrocar-
diogram can also detect some indication of heart problems
similar to an echocardiogram, several studies try to obtain
echocardiogram diagnostic from an electrocardiogram. At-
tia et al. (2019) proposed a convolution neural network to
identify patients with asymptomatic left ventricular dysfunc-
tion (ALVD). Patients identify with some risk by the model
but not diagnosed with ALVD by the echocardiogram turns
out to have a much higher probability of being diagnosed
with ALVD by echocardiogram in the future. Kwon et al.
(2020) proposed a convolution neural network to detect left
ventricular hypertrophy (LVH) from electrocardiogram that
outperforms cardiologists and conventional methods.

Methodology
In this section, we will first provide the intuition of the
proposed COmbination of TASK labels (CO-TASK) multi-
task learning framework. Subsequently, we will describe the
three main components of the proposed CO-TASK frame-
work, auxiliary task generation component, multi-task learn-
ing (MTL) model training component, and task-aware im-
balance data sampler in detail. An overview of the CO-
TASK framework is shown in Figure 1.

Intuition for CO-TASK Framework
Auxiliary tasks are known to improve the performance
of existing tasks through knowledge transfer and regular-
ization. The auxiliary tasks are usually alternative labels
from the original labeled dataset to prevent negative trans-
fer from auxiliary tasks. Existing methods in unsupervised
pre-training try to generate pseudo labels by clustering data

points into clusters with cluster counts much larger than the
original class count and set those cluster labels as pseudo la-
bels (Yan et al. 2020). Under the multi-task learning setting,
we can utilize the abundant knowledge of task labels from
the data point of different tasks. Instead of forming finer la-
bels through clustering, we can generate coarse labels from
the combination of these task labels.

The intuition for using the combination of task labels is
the following, if the representations for classes α, β, and
γ are separable, a new class composed of data from class
α and β shall be separable from class γ. We can use this
characteristic and combine separate classes from different
tasks to form a new class to train as in Figure 2.

Training on the combination of task labels as auxiliary
tasks makes it easier for the model to learn the harder tasks
and regularize the dominant tasks to prevent them from over-
influencing the final model. Mapping the classes between
different tasks together could also encourage the model to
map the representation of different tasks onto a much similar
representation space, which might help prevent overfitting
and improve the representations’ generalizability. For phe-
notyping tasks, the combination of task labels can be seen
as forming more balanced sub-groups in the overall patient
population with a specific subset of disease labels.

Auxiliary Task Generation
Consider we have a task-set TS = {T1, T2, . . . , TN} with
N tasks. To create a task-set of M auxiliary tasks TSA =
{TA1, TA2, . . . , TAM}, we randomly selectM distinct com-
binations of 2 tasks TS1 = Ti and TS2 = Tj from task-set
TS. Next, we randomly map one class from each task CTi

x

and C
Tj
y into a new class in the auxiliary task CTAl

z . We
choose to combine combinations of 2 tasks to limit the com-
bination space of resulting tasks, which equals to the Bell
Number BK and grows much faster than 2K . Due to the
limitations of current multi-task learning models, we do not
generate all possible auxiliary tasks but randomly sample a
subset of class mappings as auxiliary tasks. An example of
a possible mapping result is shown in Figure 3.

In some application settings, we might have major tasks
in the task-set that are more important than the other minor
tasks. In these scenarios, since it is impracticable to train
with all possible combinations, we can increase the proba-
bility of sampling a major task. This increases the possibility
of an auxiliary task being composed of a major task, which
would make the model prioritize on those important tasks.

It is common for medical phenotyping datasets to be
highly imbalanced as most patients are healthy. There are
also much fewer patients having more than one disease. To
prevent the class mapping from mapping all patients to a sin-
gle class, we remove the class mapping of patients with both
disease labels as a class and the other patients as another
class from the four possible class mappings.

To reduce the training data for the joined auxiliary task,
we randomly down-sample the combined training data with
a ratio of 1/n when we combine n tasks into a single aux-
iliary task. This process has two benefits. First, this helps
remove the imbalance issue between different data count of
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Figure 1: CO-TASK Framework Overview.

Figure 2: Data representation through the training process.

Figure 3: Example of possible mappings for auxiliary tasks.

the original tasks and the auxiliary tasks. Second, this pro-
cess is similar to bagging as we let the auxiliary task look at
only a subset of all the data.

Multi-task Learning Model Training
After the generation of auxiliary tasks through the combi-
nation of task labels, we follow the standard procedure for
multi-task learning model training. For each batch in an
epoch, we first pick a task we want to train randomly or
weighted toward major tasks. We then generate a batch of
training samples from the selected task and calculate the loss
related to the task we pick.

The baseline models are trained on standard shared-
bottom neural networks. The shared-bottom model is cho-
sen as it does not add significant parameters compared to
its original single-task backbone. Although the task-specific
branches of auxiliary tasks on the shared-bottom model will
increase the overall model size during training, we can re-
move those task-specific branches for auxiliary tasks be-
fore we deploy the model for inference. The final model for
major tasks shall have the same capacity as the multi-task
model trained without the CO-TASK Framework.

The benefit of applying standard procedure for multi-task
learning model training is that we are able to adopt most
frameworks targeted for improving multi-task learning per-
formance. Our proposed method can be applied on top of
other multi-task learning models easily and can also use dy-
namic task weighting techniques when training. Our pro-
posed framework provides an add-on benefit for a variety
of current state-of-the-art methods.

Task-Aware Imbalance Data Sampler
It is common for phenotyping tasks in medical data to have a
high imbalance ratio between the two classes due to the fact
that most patients are healthy. An important problem sel-
dom mentioned in multi-task learning with real-world im-
balanced datasets is that there will be different imbalance
ratios for different tasks. For phenotyping tasks, we will
have imbalance data ratios that are different by more than
ten times between tasks and the same data as input having
different labels for different tasks. This kind of relationship
means that sampling each data according to any specific task
label is sub-optimal.

To deal with this problem, we proposed the task-aware
imbalance data sampler. The task-aware imbalance data
sampler generates a batch of training samples for the se-
lected task according to the designated weight function. To
generate a batch of training samples for the selected tasks,
we first calculated the weight of each class for the selected
task by passing the class’s data count for the selected task
through the weight function. Then, all the data points have
a probability of being sampled according to the correspond-
ing weight. During training, the task to train for each batch
is first picked then data is sampled according to the targeted
task. This allows balanced training for task-specific classi-
fier branches while allowing imbalanceness for representa-
tion learning in the shared layers.

The weight function log(x)/x balances the small and
large classes and allows larger classes to have a slightly
higher total sample probability. This weight function is the
default for the task-aware imbalance data sampler, which
performs well in most imbalance data scenarios.

Experiments
Dataset Description
We use three datasets, an image classification benchmark
dataset CIFAR-MTL and two real-world electrocardiogram
phenotyping datasets ECG-P18 and ECG-EchoLVH.

Benchmark Dataset: CIFAR-MTL CIFAR-MTL is a
multi-task learning dataset proposed by Rosenbaum,
Klinger, and Riemer (2018) that is constructed from the well
known CIFAR-100 dataset. The 100 classes in CIFAR-100
are grouped into 20 coarse super-classes with 5 related finer
sub-classes each. CIFAR-MTL used the 20 coarse super-
classes as 20 image classification tasks.
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Imbalance Imbalance
Disease Ratio Disease Ratio

LVH 1 : 6.73 RVH 1 : 167.57
AFIB 1 : 20.68 AFL 1 : 171.24
IVCD 1 : 49.94 NIVCD 1 : 71.46
RBBB 1 : 19.34 LBBB 1 : 138.35
IRBBB 1 : 105.16 ILBBB 1 : 1843.32
1AVB 1 : 18.16 2AVB 1 : 526.66
3AVB 1 : 2321.22 EAR 1 : 123.86
VBIG 1 : 124.85 VT 1 : 1843.32
VPC 1 : 23.61 APC 1 : 39.17

Table 1: Tasks for the ECG-P18 dataset.

Disease Name Imbalance Ratio
Echocardiogram LVH 1 : 7.28

Electrocardiogram LVH 1 : 5.75
AFIB 1 : 16.07
RBBB 1 : 21.77
1AVB 1 : 18.59

Table 2: Tasks for the ECG-EchoLVH dataset.

Real-World Dataset: ECG-P18 and ECG-EchoLVH
An electrocardiogram phenotyping dataset, ECG-P18, and
an echocardiogram diagnostic from electrocardiogram
dataset, ECG-EchoLVH, are obtained by parsing electronic
health records (EHR) from the database of a large national
medical center in Taiwan. Each record consists of a 10 sec-
ond, 12 lead electrocardiogram recording at 500 Hz and its
diagnostic statements typed by the doctor in charge. The left
ventricular hypertrophy (LVH) disease labels for the ECG-
EchoLVH dataset are acquired from the echocardiogram
recordings within 30 days of electrocardiogram recording.

The ECG-P18 dataset consists of 312,888 valid record-
ings with 687,092 diagnostic statements between 2013 and
2017. We have chosen 18 important diseases in electrocar-
diogram phenotyping to form the multi-label dataset ECG-
P18. The average amount of labels per data instance, la-
bel cardinality, is 0.4536 for the full ECG-P18 dataset and
1.3283 if we only consider patients with diseases. Those
metrics and Table 1 showed that the ECG-P18 dataset is
highly imbalanced, with each task having a different imbal-
ance ratio. The labels are sparse, with a majority of healthy
patients having no labels at all. The ECG-EchoLVH dataset
consists of 61,422 valid electrocardiogram and echocar-
diogram pairs with the LVH disease label acquired from
echocardiogram recordings as major task and four selected
diagnostic statements shown in Table 2 as minor tasks. Both
datasets are split into the training set, validation set, and test-
ing set without patient overlap with a ratio of 7:1:2.

Evaluation Metrics
Benchmark Dataset: CIFAR-MTL For evaluating the
performance of different methods on CIFAR-MTL dataset,
we use accuracy as our major metric for each task. To aggre-
gate the metrics of each task, we use two different metrics,
average accuracy (Rosenbaum, Klinger, and Riemer 2018)
and average improvement over single-task ∆m (Maninis,

Radosavovic, and Kokkinos 2019; Vandenhende et al. 2020).

AverageAccuracy =
1

N

N∑
i=1

Accuracyi (1)

∆m =
1

N

N∑
i=1

Mm,i −Ms,i

Ms,i
(2)

where Mm,i = Multi-Task Performance
Ms,i = Single-Task Performance

Real-World Dataset: ECG-P18 For the ECG-P18
dataset, we evaluate the overall performance through four
multi-label metrics, Macro-AUROC, Multi-label recall,
Jaccard, and Exact.

We calculate the macro-average of the area under receiver
operating characteristics curve (Macro-AUROC) as an in-
dicator of each label’s overall binary classification perfor-
mance.

MacroAUROC =
1

N

N∑
i=1

AUROCi (3)

We define pi as the set of prediction and ti as the set of
truth labels. The multi-label recall is the average percentage
of labels caught for each user. The Jaccard metric is the av-
erage Jaccard similarity for each user, which indicates how
similar the real disease labels are compared to the predic-
tions. Finally, the Exact metric is the percentage of users
with labels (user with diseases) having all the labels correct.

RecallMulti =
1

n

n∑
i=1

|pi ∩ ti|
ti

(4)

Jaccard =
1

n

n∑
i=1

|pi ∩ ti|
|pi ∪ ti|

(5)

Exact =
1

n

n∑
i=1

I[pi = ti] with ti 6= ∅ (6)

Real-World Dataset: ECG-EchoLVH For the ECG-
EchoLVH dataset, we only care about the performance of
the major task, which is the ground truth disease label of
echocardiogram left ventricular hypertrophy (Echo LVH).
Since this is a binary classification task, we choose to use
the area under receiver operating characteristics curve (AU-
ROC) of the major task as the evaluation metric. We will
also compare the sensitivity of the major task with the same
specificity of current doctor annotations, so we can observe
the increase in sensitivity when used as a screening tool.

Baseline Models and Training Procedure
The baseline models for the CIFAR-MTL experiments are
shared-bottom models using ResNet-34 (He et al. 2016) as
the backbone. We generate 50 auxiliary tasks using the pro-
posed framework for the baseline performance experiment
and 40 auxiliary tasks for other experiments.
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For the ECG-P18 and ECG-EchoLVH dataset, we used a
ResNet-based model proposed by Hannun et al. (2019) with
8 residual blocks as the backbone model. We generate 30
auxiliary tasks for the ECG-P18 dataset and 8 auxiliary tasks
for the ECG-EchoLVH dataset.

Hyper-parameter search is done through Bayesian opti-
mization using a Gaussian process to model the relation be-
tween the parameters and validation metrics, then choosing
the parameters with the highest probability of improvement.
All experiments are performed on a Ubuntu 18.04.2 server
using RTX 2080ti with CUDA 10.0. We implemented all
our algorithms using Pytorch 1.4.0 (Paszke et al. 2019) and
torchvision 0.5.0 with Python 3.7. The signal processing for
electrocardiogram signals is done using BioSPPy 0.6.1 (Car-
reiras et al. 2015–). Details of the training procedure are de-
scribed in the appendix.

Performance on CIFAR-MTL
Baseline Performance of the Proposed Method We
evaluate our proposed method on CIFAR-MTL and com-
pare the single-task and multi-task model performance on
the same CIFAR-MTL test set. The overall performance is
shown in Table 3 and the per-task results are shown in Ta-
ble 4. From Table 3, we can see that the proposed CO-TASK
framework improved the average accuracy by an additional
3.82% and doubled the average improvement over single-
task ∆m. From Table 4, we can see that the proposed CO-
TASK framework achieves the best performance on most
tasks.

Combination of Proposed Method with Other Multi-task
Learning Methods Given the flexibility of our proposed
CO-TASK framework, we can apply various multi-task
learning techniques in parallel with the CO-TASK frame-
work. These include task weight balancing methods such as
dynamic weight averaging (DWA) or dynamic task priori-
tization (DTP) and model architecture innovations such as
task routing layers (TRL). From Table 5, we can see that
the proposed CO-TASK framework can provide additional
gains to multiple different task weight balancing methods
and multi-task learning models. The DWA method and TRL
model can boost the proposed CO-TASK framework to even
higher performances. We can also observe from the table
that the performance gains from the CO-TASK framework
are much larger than those from other methods.

CIFAR-MTL with Label Noise To simulate the label
noise we might encounter in application datasets, we apply
symmetric noise to the CIFAR-MTL dataset. When we have
a noise ratio of σ, we have a probability of σ for the data in
the training dataset to corrupt into another class, with each

Average Absolute
Method Accuracy Improvement ∆m

Single-Task 0.7321 Baseline Baseline
Multi-task 0.7547 ↑ 2.26% ↑ 4.38%
CO-TASK 0.7929 ↑ 6.08% ↑ 9.78%

Table 3: Overall performance on CIFAR-MTL.

Single Multi-
Task Name Task task CO-TASK

Reptiles 0.634 0.708 0.706
Fish 0.710 0.790 0.802

Aquatic Mammal 0.592 0.576 0.716
Small Mammal 0.594 0.718 0.706

Medium Mammal 0.864 0.804 0.894
Carnivore 0.836 0.790 0.854

Omnivore/Herbivore 0.692 0.824 0.820
Insect 0.780 0.816 0.830

Non-insect 0.772 0.802 0.826
People 0.384 0.518 0.564
Tree 0.646 0.644 0.708

Flower 0.738 0.726 0.772
Fruit and Vegetable 0.790 0.758 0.762

Food Container 0.760 0.802 0.804
Electrical Device 0.772 0.832 0.840

Furniture 0.726 0.746 0.764
Building 0.832 0.814 0.874

Outdoor Scene 0.802 0.708 0.842
Vehicles Common 0.810 0.826 0.832

Vehicles Uncommon 0.908 0.892 0.942

Table 4: Per-Task performance on CIFAR-MTL.

Average Accuracy Average Accuracy
Method (Baseline) (CO-TASK)

Single-Task 0.7321
Multi-task 0.7547 0.7850 (↑ 3.03%)

DWA 0.7589 0.7943 (↑ 3.54%)
DTP 0.7373 0.7640 (↑ 2.67%)
TRL 0.7528 0.7981 (↑ 4.53%)

Table 5: Performance on CIFAR-MTL when combined with
other multi-task learning methods.

class having the same probability. The testing set is not cor-
rupted to evaluate how well our model performs when en-
countering label noise in training data. In Table 6, we can
observe that as the noise ratio increases, the performance
difference between the multi-task model and the same multi-
task model using CO-TASK framework increases.

Performance of Electrocardiogram Phenotyping
Table 7 shows the different multi-label metrics of the base-
line methods and the proposed method on the ECG-P18
dataset. We can see that multi-task learning increased the
overall performance compared to the single-task models,
and the proposed CO-TASK framework increases all other
metrics while achieving a similar RecallMulti metric. De-

Noise Single Multi- Difference
Ratio Task task CO-TASK with Multi-task

0.0 0.7321 0.7547 0.7850 3.03%
0.1 0.6831 0.6831 0.7239 4.08%
0.3 0.5701 0.5204 0.5843 6.39%
0.5 0.4523 0.3549 0.4335 7.86%
0.7 0.3518 0.2548 0.3306 7.58%

Table 6: Robustness to label noise in CIFAR-MTL.
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Metric Single-Task Multi-task CO-TASK
Macro AUROC 0.9640 0.9720 0.9750
RecallMulti 0.9268 0.9744 0.9745

Jaccard 0.4374 0.5643 0.5868
Exact 0.1925 0.2744 0.3094

Table 7: Multi-label performance on ECG-P18 dataset.

Absolute
Model Sampler AUROC Improvement

Single-Task Major-Task 0.8240 Base
Multi-task None 0.7399 ↓ 8.41%
Multi-task Major-Task 0.6585 ↓ 16.55%
Multi-task Task-Aware 0.8390 ↑ 1.50%

Multi-task+DWA Task-Aware 0.8414 ↑ 1.74%
CO-TASK Task-Aware 0.8462 ↑ 2.22%

Table 8: Performance on ECG-EchoLVH dataset.

spite the extremely different imbalance ratios for different
tasks, as shown in Table 1, the CO-TASK framework with
task-aware imbalance data sampler can still manage to per-
form multi-task learning training and achieve better perfor-
mance.

Performance of Predicting Echocardiogram
Diagnostic from Electrocardiogram
An echocardiogram is much more expensive compare to
an electrocardiogram, so it is of great interest to predict
echocardiogram diagnostic from electrocardiogram signals.
We used minor tasks from the raw doctor annotations that
could contain a certain degree of label noise and apply the
CO-TASK framework to train the multi-task learning model.

From Table 8, we can first observe the impact of the task-
aware imbalance data sampler. Re-sampling the data accord-
ing to the major task or train the model without any re-
sampling will make the multi-task learning model perform
poorly. With the proposed task-aware imbalance data sam-
pler, the multi-task model can improve significantly com-
pared to the single-task model using the same backbone. Ta-
ble 8 also shows that the proposed CO-TASK framework im-
proves the original multi-task learning model’s performance.

Figure 4 shows the performance of the doctor’s annotation
compared to the ROC curve of different models. It shows
that by using a deep learning model, we can achieve sig-
nificant improvements over the doctor diagnostic from the
electrocardiogram signal. When combined with other noisy
annotations for the electrocardiogram signal to form a multi-
task learning model, we can further improve the perfor-
mance. Looking at the sensitivity of different models while
maintaining the same specificity as the doctor annotations,
the proposed CO-TASK framework increased the sensitiv-
ity by 3.0% compared to the original multi-task model and
7.1% compared to the single-task model.

Impact of Auxiliary Task Count
To understand the impact of different amounts of auxil-
iary tasks sampled, we did experiments on the CIFAR-MTL

Figure 4: Receiver operating characteristic curve on the
ECG-EchoLVH dataset.

Figure 5: Impact of different auxiliary task count.

dataset. As seen in Figure 5, the overall performance in-
creases as the auxiliary task count increase and starts to flat-
ten out when there are more than 50 auxiliary tasks. This
might be due to the current limitations of multi-task learning
models on really large task counts. In the future, we could
look into better ways of dealing with large task counts.

Conclusions
In this work, we provide an effective multi-task learning
framework, CO-TASK, to improve performance on targeted
tasks without the need for additional labeling effort and is ro-
bust to a certain degree of label noise. The proposed frame-
work generates useful auxiliary tasks through the combina-
tion of existing task labels, which utilize the labels more
effectively. The CO-TASK framework can provide addi-
tional performance gains when applied in parallel with other
multi-task learning techniques. By incorporating the pro-
posed task-aware imbalance data sampler, we can effec-
tively deal with the different imbalance ratios for the dif-
ferent tasks in electrocardiogram phenotyping datasets. We
demonstrated the effectiveness of the CO-TASK framework
on both a benchmark multi-task image classification dataset
and two real-world electrocardiogram phenotyping datasets.

7777



Acknowledgments
This work was supported in part by the Taiwan Ministry of
Science and Technology under grant no. MOST 109-2218-
E-009-014 and MOST 109-2321-B-009-007. The authors
would also like to thank Dr. Yu-Feng Hu and Dr. Chih-Min
Liu, who provided valuable insight and expertise from the
medical perspective that assisted this research.

References
Attia, Z. I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P. M.;
Ladewig, D. J.; Satam, G.; Pellikka, P. A.; Enriquez-Sarano,
M.; Noseworthy, P. A.; Munger, T. M.; et al. 2019. Screen-
ing for cardiac contractile dysfunction using an artificial
intelligence–enabled electrocardiogram. Nature medicine
25(1): 70–74.

Carreiras, C.; Alves, A. P.; Lourenço, A.; Canento, F.; Silva,
H.; Fred, A.; et al. 2015–. BioSPPy: Biosignal Processing
in Python. URL https://github.com/PIA-Group/BioSPPy/.
[Online; Version 0.6.1; accessed Feb 1, 2020].

Chen, Z.; Badrinarayanan, V.; Lee, C.-Y.; and Rabinovich,
A. 2018. GradNorm: Gradient Normalization for Adap-
tive Loss Balancing in Deep Multitask Networks. In Pro-
ceedings of the 35th International Conference on Machine
Learning, ICML 2018, 794–803. PMLR.

Cirstea, R.-G.; Micu, D.-V.; Muresan, G.-M.; Guo, C.; and
Yang, B. 2018. Correlated Time Series Forecasting us-
ing Multi-Task Deep Neural Networks. In Proceedings of
the 27th ACM International Conference on Information and
Knowledge Management, CIKM 2018, 1527–1530.

Ding, D. Y.; Simpson, C.; Pfohl, S.; Kale, D. C.; Jung, K.;
and Shah, N. H. 2019. The Effectiveness of Multitask Learn-
ing for Phenotyping with Electronic Health Records Data. In
PSB, 18–29. World Scientific.

Guendel, S.; Ghesu, F. C.; Grbic, S.; Gibson, E.; Georgescu,
B.; Maier, A.; and Comaniciu, D. 2019. Multi-task Learn-
ing for Chest X-ray Abnormality Classification on Noisy La-
bels. arXiv preprint arXiv:1905.06362 .

Guo, M.; Haque, A.; Huang, D.-A.; Yeung, S.; and Fei-Fei,
L. 2018. Dynamic Task Prioritization for Multitask Learn-
ing. In Proceedings of the European Conference on Com-
puter Vision, ECCV 2018, 270–287.

Hannun, A. Y.; Rajpurkar, P.; Haghpanahi, M.; Tison,
G. H.; Bourn, C.; Turakhia, M. P.; and Ng, A. Y. 2019.
Cardiologist-level arrhythmia detection and classification in
ambulatory electrocardiograms using a deep neural network.
Nature medicine 25(1): 65–69.

Harutyunyan, H.; Khachatrian, H.; Kale, D. C.; Ver Steeg,
G.; and Galstyan, A. 2019. Multitask learning and bench-
marking with clinical time series data. Scientific data 6(1):
1–18.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, 770–778.

Johnson, A. E.; Pollard, T. J.; Shen, L.; Li-Wei, H. L.; Feng,
M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L. A.; and
Mark, R. G. 2016. MIMIC-III, a freely accessible critical
care database. Scientific data 3(1): 1–9.
Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multi-Task
Learning Using Uncertainty to Weigh Losses for Scene Ge-
ometry and Semantics. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2018, 7482–7491.
Kwon, J.-M.; Jeon, K.-H.; Kim, H. M.; Kim, M. J.; Lim,
S. M.; Kim, K.-H.; Song, P. S.; Park, J.; Choi, R. K.; and
Oh, B.-H. 2020. Comparing the performance of artificial
intelligence and conventional diagnosis criteria for detecting
left ventricular hypertrophy using electrocardiography. EP
Europace 22(3): 412–419.
Lee, H.; Hwang, S. J.; and Shin, J. 2019. Rethinking Data
Augmentation: Self-Supervision and Self-Distillation. arXiv
preprint arXiv:1910.05872 .
Liang, M.; Yang, B.; Chen, Y.; Hu, R.; and Urtasun, R. 2019.
Multi-Task Multi-Sensor Fusion for 3D Object Detection.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, 7345–7353.
Liebel, L.; and Körner, M. 2018. Auxiliary Tasks in Multi-
task Learning. arXiv preprint arXiv:1805.06334 .
Liu, S.; Davison, A.; and Johns, E. 2019. Self-Supervised
Generalisation with Meta Auxiliary Learning. In Advances
in Neural Information Processing Systems, NeurIPS 2019,
1677–1687.
Liu, S.; Johns, E.; and Davison, A. J. 2019. End-To-End
Multi-Task Learning With Attention. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, 1871–1880.
Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Multi-Task Deep
Neural Networks for Natural Language Understanding. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, ACL 2019, 4487–4496.
Ma, J.; Zhao, Z.; Chen, J.; Li, A.; Hong, L.; and Chi, E. H.
2019. SNR: Sub-Network Routing for Flexible Parame-
ter Sharing in Multi-task Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, AAAI 2019, vol-
ume 33, 216–223.
Ma, J.; Zhao, Z.; Yi, X.; Chen, J.; Hong, L.; and Chi, E. H.
2018. Modeling Task Relationships in Multi-task Learn-
ing with Multi-gate Mixture-of-Experts. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD 2018, 1930–1939.
Maninis, K.-K.; Radosavovic, I.; and Kokkinos, I. 2019. At-
tentive Single-Tasking of Multiple Tasks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, 1851–1860.
Meyerson, E.; and Miikkulainen, R. 2018. Beyond Shared
Hierarchies: Deep Multitask Learning through Soft Layer
Ordering. In 6th International Conference on Learning
Representations, ICLR 2018. URL https://openreview.net/
forum?id=BkXmYfbAZ.

7778



Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. 2016.
Cross-Stitch Networks for Multi-task Learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016, 3994–4003.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury,
J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito,
Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner,
B.; Fang, L.; Bai, J.; and Chintala, S. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning
Library. In Wallach, H.; Larochelle, H.; Beygelzimer,
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