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Abstract

The key challenge of co-saliency detection is to extract dis-
criminative features to distinguish the common salient fore-
grounds from backgrounds in a group of relevant images. In
this paper, we propose a new co-saliency detection framework
which includes two strategies to improve the discriminative a-
bility of the features. Specifically, on one hand, we segment
each image to semantic superpixel clusters as well as gen-
erate different scales/sizes of images for each input image by
the VGG-16 model. Different scales capture different pattern-
s of the images. As a result, multi-scale images can capture
various patterns among all images by many kinds of perspec-
tives. Second, we propose a new method of Graph Convolu-
tional Network (GCN) to fine-tune the multi-scale features,
aiming at capturing the common information among the fea-
tures from all scales and the private or complementary infor-
mation for the feature of each scale. Moreover, the proposed
GCN method jointly conducts multi-scale feature fine-tune,
graph learning, and feature learning in a unified framework.
We evaluated our method on three benchmark data sets, com-
pared to state-of-the-art co-saliency detection methods. Ex-
perimental results showed that our method outperformed all
comparison methods in terms of different evaluation metrics.

Introduction
Co-saliency detection focuses on simulating the human vi-
sual system to perceive the scene for searching the common
and salient prospects from a group of images (Zhang et al.
2018; Peng et al. 2020), and has been applied to improve the
understanding of the image or video content in various appli-
cations such as image retrieval (Papushoy and Bors 2015),
images co-segmentation (Tsai et al. 2018), and objects co-
localization (Jerripothula et al. 2017; Wang et al. 2017). In
the co-saliency detection task, the semantic category of the
common salient objects should be detected from the specific
content of the input image group, involving two key steps,
i.e., feature extraction extracting discriminative features to
reliably distinguish the foregrounds from the background-
s of each image, and model construction detecting the co-
saliency regions from a group of images based on the ex-
tracted features.
∗Corresponding author.
Rongyao Hu and Zhenyun Deng contribute equally to this work.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Feature extraction is focused on extracting either hand-
crafted features or deep features based on image pixel or
superpixel. The popular methods for handcrafted feature ex-
traction include color/texture feature (Fu, Cao, and Tu 2013;
Shen et al. 2018), Histogram of Oriented Gradient (HOG)
feature (Huang, Feng, and Sun 2015), GIST descriptors (Jer-
ripothula, Cai, and Yuan 2016), etc. Since handcrafted fea-
tures are usually difficult to capture the appearance changes
of both common objects and complex background informa-
tion (Wang et al. 2019), deep features have been widely de-
signed to explore the semantic connection of co-saliency ob-
jects (Tsai et al. 2018; Zhang et al. 2018). For example, (Ren
et al. 2020) proposed to extract both deep collaborative fea-
tures and deep high-to-low features to balance the individu-
al intra-image information. (Wang et al. 2019) employed the
VGG-19 framework to extract the high-level group-wise se-
mantic feature and the visual feature for co-saliency detec-
tion. Although current feature extraction methods (includ-
ing handcrafted features and deep features) achieved success
in the application of co-saliency detection, extracting single
feature is still a challenging task to detect complex variation-
s between co-salient objects and backgrounds. To this end,
multi-view feature was extracted to explore both intra-image
and inter-image information for co-saliency detection (Jiang
et al. 2019a; Zhang et al. 2020a).

Given the image features, both traditional machine learn-
ing methods and deep learning methods are designed to de-
tecting the co-saliency across a group of images. For exam-
ple, (Zhang, Meng, and Han 2016) regarded the co-saliency
detection task as multi-instance learning where each image
and each superpixel region, respectively, are regarded as a
bag and an instance, and thus the multi-instance classifier is
used to predict the locations of the co-salient objects in the
instance level. However, feature extraction and co-saliency
detection are two separated processes in many traditional
machine learning methods. As a result, the feature can not
be adjusted based on the result of co-saliency detection, and
thus leading to suboptimal performance of co-saliency de-
tection. To address this issue, deep learning integrates these
two processes in a unified framework so that each other can
be adaptively adjusted by the other, and thus easily out-
putting optimal performance of co-saliency detection. For
example, fully convolution neural networks were designed
to automatically learn high-level semantic features by mod-
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Figure 1: The architecture of the proposed framework for co-saliency detection. Specifically, it involves three key steps, (a)
Feature Extraction extracts three-scale deep features to represent each image; (b) Feature Fine-tuning fine-tunes the multi-scale
features to obtain discriminative features by considering their common and complementary information; (c) Detection conducts
a binary classification task to distinguish the common salient foregrounds from backgrounds.

eling collaborative relationships among the images (Zhang
et al. 2019).

Recently, Graph Convolutional Network (GCN) was de-
signed to utilize both the feature information and the rela-
tionship among the images (i.e., the graph) to improve the
performance of co-saliency detection (Jiang et al. 2019a;
Xu et al. 2020). However, previous deep learning method-
s suffer from some drawbacks to severely limit the detec-
tion effectiveness. For example, deep learning methods fo-
cus on extracting the self-learnt features from the images
without considering the semantic meaning and lacking the
interpretability. The convolutional layers and pooling oper-
ations in some deep learning methods decrease the size of
feature maps to easily result in the loss of boundary details
(Zhang et al. 2019).

In this paper, we propose a novel GCN method to fuse
multi-scale features based on the superpixel regions/clusters
for co-saliency detection. To do this, our proposed method
involves three steps, i.e., feature extraction, feature fusion
by the proposed GCN method, and co-saliency detection,
shown in Figure 1. In the step of feature extraction, we first
employ the Simple Linear Iterative Clustering (SLIC) algo-
rithm (Achanta et al. 2012) to obtain superpixel based re-
gions/clusters including sub-blocks of the background and
saliency regions for each image. The motivation is that the
superpixel representation may adhere to image boundaries
better, compared to pixel representation (Zhang et al. 2018).
We also employ VGG-16 to generate multi-scale features
for each image. Furthermore, we convert multi-scale fea-
tures to represent the image with a vector based on the su-
perpixel clusters. In the step of feature fine-tuning, we de-
sign a new graph fusion method to fine-tune the features
of each scale by the help of the information of the features
from other scales. The goal is to comprehensively explore
the intra-image correlation within one image and the inter-
region relationship across the images. Finally, the outputted
features are concatenated together first and then passes a
fully-connected layer to conduct the binary classification,
i.e., regarding the co-saliency detection task as a classifica-
tion task.

Compared to previous methods, we list the contributions
of our method as follows.

• This paper first extracts multi-scale features and then de-
signs a new graph fusion method to fine-tune these fea-
tures. The multi-scale features can detect different sizes
of patterns of the images and the fusion method fine-tunes
the multi-scale features to extract the complementary in-
formation and the common information among the fea-
tures. It is noteworthy that previous methods (Zhang et al.
2016; Han et al. 2017) extract handcrafted features to d-
ifficult explore the comprehensive information among the
images. Other methods extract the multi-view feature to
touch the issue of the handcrafted feature, but leaving the
correlation among multiple features alone (Liu et al. 2019;
Jiang et al. 2019a; Zhang et al. 2020a). Hence, our method
is more flexible compared to these methods.

• This paper proposes a new dynamic GCN method jointly
conducting multi-graph fusion, graph learning, and fea-
ture learning in a unified work. In the literature, (Jiang
et al. 2019a) and (Zhang et al. 2020a) focused on conduct-
ing multi-graph learning on multi-view data by consider-
ing the consistency among the graph (i.e., the common
information) and ignoring the complementary or private
information across multi-scale features.

Methodology
Overview
Denoting P = {Pn}Nn=1 as a set of N related images,
co-saliency detection is designed to output the map matrix
M = {Mn}Nn=1, which is used for distinguishing the com-
mon salient foregrounds from backgrounds. To this end, our
proposed method includes three steps visualized in Figure 1.

Given the input image set P , we first employ the SLIC al-
gorithm to conduct superpixel segmentation to obtain super-
pixel regions or clusters. Meanwhile, we employ the VGG-
16 model (Simonyan and Zisserman 2014) to convert each
input image to multi-scale images by removing the fully-
connected layers and the softmax layer of the VGG-16 mod-
el. Specifically, we store the images outputted at the third
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pooling layer, the fourth pooling layer, and the fifth pool-
ing layer. After this, we combine the superpixel regions and
the images of each scale to obtain three hierarchical features
X = {Xv}3v=1 as the multi-scale features of P , and thus
converting the co-saliency detection task to the classification
task based on superpixel clusters.

Feature Extraction

Perceptual and semantic visual features are essential for co-
saliency detection (Zha et al. 2020; Zhang et al. 2018). A
superpixel is usually defined as a set of pixels with common
characteristics such as pixel intensity, so superpixel based
handcrafted features were shown to carry more semantic
information and contain perceptual meaning, compared to
either pixel based handcrafted features (Gao et al. 2020).
However, handcrafted features are not robust to complex vi-
sual scenes (Zhang et al. 2020b; Ren et al. 2020). On the
contrary, deep features can capture the changes within one
image or across images to produce robust co-saliency detec-
tion models, but lacking semantic meaning. In this paper, we
propose to integrate superpixel segmentation with deep fea-
tures to generate multi-scale deep features for each image,
aiming at producing semantic and discriminative features as
well as converting the co-saliency detection task to a classi-
fication problem based on the superpixel cluster/region.

Given a set of N related images P = {Pi}Ni=1 (Pi ∈
R224×224×3, we employ the SLIC algorithm (Achanta et al.
2012) to generate superpixel regions for each image Pi by
clustering pixels based on their color similarity and proxim-
ity in the image plane. As a result, we obtain ni superpixels
for each image. For simplicity, we set all nis (i = 1, ..., N )
as the same value for a group of images, i.e., n and de-
note N = N × n. Meanwhile, we input each image Pi

to the pre-trained VGG-16 model to generate three images
with different scales, i.e., Pi → {P̃1

i , P̃
2
i , P̃

3
i } where P̃1

i ∈
R56×56×256, P̃2

i ∈ R28×28×512, and P̃3
i ∈ R14×14×512, re-

spectively, denotes the images obtained from the third pool-
ing layer, the fourth pooling layer, and the fifth pooling lay-
er of the VGG-16 model. We then upsampling these im-
ages to be the equivalent size, i.e., X̃1

i ∈ R224×224×256,
X̃2
i ∈ R224×224×512, and X̃3

i ∈ R224×224×512 where 256
and 512 indicate the filter number, aiming to avoid the loss
of boundary details due to the decrease of the feature map
size in {P̃1

i , P̃
2
i , P̃

3
i } (Gao et al. 2020).

For each image X̃j
i (i = 1, ..., N and j = 1, 2, 3), we

use the result of the superpixel segmentation to partition it
into n regions. The representation of each superpixel re-
gion is a scalar, which is the average values of the activa-
tion maps of all pixels within the same superpixel. Hence,
each image is represented by three matrices with different
scales of the image size, e.g., X1

i ∈ Rn×256, X2
i ∈ Rn×512,

and X3
i ∈ Rn×512, i = 1, ..., N . Furthermore, we use

X = {X1,X2,X3} to represent the feature matrices of
relevant images, where X1 ∈ RN×256, X2 ∈ RN×512,
and X3 ∈ RN×512. Finally, the initial graph matrix Av

(v = 1, 2, 3) for Xv is constructed by the formulation:
Av = XvXvT ∈ RN×N (Jiang et al. 2019a).

Feature Fine-tuning
In this section, we first review the classical GCN model and
then propose our proposed graph fusion method in details.

Graph convolutional network The GCN method aim-
s to learn a latent representation Ov = f(Xv,Gv; Θv) of
the original feature matrix Xv (v = 1, 2, 3) while preserv-
ing the graph structure of all data points (Kipf and Welling
2016). Generally, GCN includes one input layer, two hid-
den layers, and one perceptron layer. Given the input matrix
Xv ∈ RN×dv which has N superpixel regions (or samples)
and dv features for each sample, Av denotes the pair-wise
correlation between any two samples. Hence, the layer-wise
propagation in the k-th hidden layer of GCN is

Fvk+1 = σ(D̃v−
1
2 ÃvD̃v−

1
2 FvkΘ

v
k) (1)

where k = (0, 1, ...,K − 1) and K is the number of lay-
ers. Fv0 = Xv is the initial feature matrix, Fvk is the output
feature map of the k-th layer, Ãv = Av + In is the adja-
cency matrix of the undirected graph, and In is the identity
matrix. D̃v = diag(d̃v1, ..., d̃

v
n) is a diagonal matrix with

d̃vi =
∑n
j Ãv and σ(.) is an activation function such as Re-

LU. The last perception layer is defined as:

Ov = softmax(D̃v−
1
2 ÃvD̃v−

1
2 FvKΘv

K) (2)
Ov is the prediction matrix, Θv = (Θv

0, ...,ΘK
v) which

are trainable parameters and can be learned by minimizing
the cross-entropy loss function over the labeled samples.

LGCN : −
∑
i∈L

c∑
j

yij lno
v
ij (3)

where L denotes the set of labelled samples, c is the number
of classes, yij is the ground truth, and ovij is the correspond-
ing predictions.

Different from Convolutional Neural Network (CNN)
(Krizhevsky, Sutskever, and Hinton 2012) regrading the fea-
ture matrix as the input, GCN regards both the feature matrix
and the graph as the inputs to generate deep features by pre-
serving the local structure in the graph. As a result, GCN has
been demonstrated to outperform CNN in many real appli-
cations (Kipf and Welling 2016). Moreover, previous studies
(e.g., (Chen, Wu, and Zaki 2019; Jiang et al. 2019b)) showed
that the quality of the graph is the key issue for the effective-
ness of the GCN method. In the literature, many methods can
be used for constructing the graph, i.e., k Nearest Neighbor
(kNN) graph, ε-neighborhood graph, fully connected graph,
etc. The graph construction by many previous GCN methods
is independent of the feature learning process, so that easi-
ly resulting in the sub-optimal feature learning. To address
this issue, dynamic GCN methods focus on jointly conduct-
ing graph learning and feature learning, where the graph can
be updated by the optimal features and the features are also
adjusted by the update graph. As a result, the quality of the
graph can be improved by a data-driven way, and thus the
outputted feature is discriminative. To this end, the follow-
ing objective function of the graph learning is:
LGL : min

Av

∑n
i,j=1 ‖xviQv − xvjQ

v‖22avij + ‖Av‖2F
s.t.,

∑n
j=1 a

v
ij = 1, avij > 0, i, j = 1, ..., n.

(4)
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Figure 2: The structure of the proposed graph fusion, which
conducts feature fine-tuning by exploring the common and
complementary information of multi-scale features.

where Qv ∈ Rdv×r (r ≤ dv) and avij denote the similar-
ity between xvi and xvj . Finally, the dynamic GCN method
adds the constraint of the graph learning (i.e., Eq. (4)) as the
regularization of the GCN model to have:

L = LGCN + γLGL (5)

where γ is a tuning parameter.
Similar to the literature (Li et al. 2018; Jiang et al. 2019a)

that approximately optimizes a new variable with less tuning
parameters rather than directly optimizing the variable Qv

in Eq. (4) with expensive time cost, this paper designs to
optimize Qv by the following objective function:

Av = σ(XvQv(XvQ)T ) (6)

where σ(.) is the sigmoid activation function and Qv is
learnable projection matrix.

Proposed graph fusion In this work, we design a new dy-
namic GCN in Eq. (5) and Eq. (6) to fine-tune the features
of each scale, which was obtained from VGG and superpix-
el segmentation. Thus we obtain a dynamic GCN model for
the features from each scale. However, each GCN model is
independently trained from other two. Hence, we propose a
fusion method to combine three dynamic GCN models to
explore the common information among three models and
the complementary information in each model. We list the
proposed fusion structure in Figure 2.

Specifically, given the feature matrix Xv and the corre-
sponding graph Av , the layer-wise propagation in the hid-
den layer of our proposed GCN method is defined as:

Fvt = ReLU(ÂvF̂v(t−1)Θ
v
t ) (7)

where Fvt ∈ RN×dtv is the new representation of F̂v(t−1)

in the t-th layer, Âv = Dv−
1
2 (Av + IN )Dv−

1
2 is normal-

ized adjacency matrix, and Dv is the diagonal matrix of
(Av + IN ). IN is an identity matrix and ReLU(.) is an
activation function. Θv

t is a trainable projection matrix for
the v-th superpixel feature.

Since we have multi-scale features to describe the same
patterns on a group of images. The features with different
sizes/scales can capture the common foregrounds with dif-
ferent scales. Moreover, the features of each scale has the

complementary information (or private information, e.g., d-
ifferent foregrounds) different from the features from oth-
er scales, while all features should have the common infor-
mation (i.e., the common foregrounds with different scales)
as they are assumed to contain the same foregrounds. If the
common information is detected, these features will be dis-
criminative for the co-saliency detection. Meanwhile, the d-
ifference among the features can also benefit the learning of
discriminative features. To this end, we have the definition
of F̃v(t−1) as follows:

F̃v(t−1) =
V∑
v=1

αv(t−1)F
v
(t−1) (8)

where αv(t−1) indicates the contribution or the weight for

Fv(t−1) to its v-th final features F̃v(t−1) in the (t-1)-th lay-
er. Moreover, αv(t−1) = [α1

(t−1), ..., α
V
(t−1)] is a trainable

vector. Specifically, our GCN method outputs Fv(t−1), which

will be combined with all other Fv
′

(t−1) (v 6= v′) to generate

the v-th final features F̃v(t−1) in the (t-1)-th layer. As a re-
sult, the feature learning in each scale have the complemen-
tary information (i.e., Fv(t−1)) and the common information

from other scales F̃v
′

(t−1) (v 6= v′).
After the new presentation Fvt is obtained, its final output

is defined as:

Ov = softmax(ÃvF̃vtΘ
v
t ) (9)

After conducting Eq. (9), we obtain three outputs and then
concatenate them to have:

Z = FC([O1,O2,O3]) (10)

where FC denotes the fully-connected layer and Z is the
predicted label.

Co-saliency detection is designed to propagate informa-
tion from intra-superpixel correlations across the relevant
images. Hence, we only consider the prediction performance
by employing the cross-entropy loss function to obtain:

Lcos = − 1
N

N∑
i=1

n∑
j=1

ηi(zi(j)logzi(j)

− (1− ηi)(1− zi(j))log(1− yi(j)))

(11)

where yi(j) and zi(j) is the ground truth and predicted re-
sult of the j-th superpixel of the i-th image, respectively. ηi
is the ratio of salient superpixel cluster in all superpixel clus-
ters and can be calculated by applying the same superpixel
partition for ground truths in advance.

Experiments
We experimentally evaluated our method, compared to four
comparison methods, on three image data sets, i.e., iCoseg,
Cosal2015, and MSRC, in terms of four evaluation metrics.

Data Sets
The data set iCoseg (Batra et al. 2010) contains 643 images
within 38 different categories. Each image has a manually
labeled pixel-wise ground truth for evaluation.
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Methods
iCoseg Cosal2015 MSRC

AUC ↑ Fβ ↑ Sα ↑ AP ↑ AUC ↑ Fβ ↑ Sα ↑ AP ↑ AUC ↑ Fβ ↑ Sα ↑ AP ↑
CBCS 0.9315 0.7301 0.6707 0.7958 0.8077 0.5489 0.5439 0.5859 0.8083 0.6563 0.4959 0.6992
ESMG 0.9317 0.7094 0.7436 0.7728 0.7687 0.4803 0.5524 0.5111 0.7875 0.6111 0.5452 0.6112
EGNet 0.9598 0.8651 0.8365 0.8751 0.9303 0.7909 0.8206 0.8077 0.8624 0.7714 0.7183 0.7618

MGLCN 0.9671 0.8912 0.8355 0.8263 0.9534 0.8845 0.8142 0.8519 0.9415 0.8559 0.8001 0.8427
Proposed 0.9727 0.8787 0.8391 0.8742 0.9716 0.8928 0.9341 0.8817 0.9515 0.8565 0.8212 0.9158

Table 1: Results of all methods on three image data sets.

panda

iCoseg

deer

Cosal2015

GT

Proposed

CBCS

ESMG

EGNet

MGLCN

airplane

MSRC

Figure 3: Visualization comparisons of all methods on three images, each of which is from one data set.

The data set Cosal2015 (Zhang et al. 2016) consists of
2015 images of 50 categories, and each group suffers from
various challenging issues such as complex environments,
occlusion issues, target appearance variations, and back-
ground clutters.

The data set MSRC (Winn, Criminisi, and Minka 2005)
contains 233 images within 7 categories. The images in the
data set are complicated as the common objects are vary un-
predictable in color and shape appearance.

Comparison Methods
We used four state-of-the-art methods of co-saliency detec-
tion to evaluate the effectiveness of our proposed framework
in our experiments.

• Cluster-Based Co-Saliency detection (CBCS) integrates
three bottom-up saliency cues (including the spatial dis-
tribution cue, the global contrast cue, and the correspond-
ing cue) with multiplication way to conduct the final co-
saliency maps (Fu, Cao, and Tu 2013).

• Efficient Saliency-Model-Guided co-saliency detection
(ESMG) conducts a two-step saliency-guided method,

where the first step uses the manifold ranking to recover
the co-salient parts missing for each single saliency map
and the second step utilizes a ranking framework with var-
ious queries to capture the corresponding correlations to
guide co-saliency maps (Li et al. 2014).

• Edge Guidance Network (EGNet) designs a single base
network which consists of three parts, i.e., edge feature
extraction, salient object feature extraction, and one-to-
one guidance network, to improve the saliency detection
performance (Zhao et al. 2019).

• Multiple Graph Learning and Convolutional Network
(MGLCN) explores the superpixel-level similarity to re-
place pixel-level saliency detection, by embedding both
the intra-graph and the inter-graph learning in the frame-
work of graph convolution network (Jiang et al. 2019a).

The methods (e.g., CBCS and ESMG) are traditional
machine learning methods and the methods (e.g., EGNet,
MGLCN, and our method) are deep learning methods.
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Figure 4: ROC and PR curves of all methods on three image data sets.

Experiment Setting
In our experiments, we reshaped the size of all images to
224×224 and set the number of superpixel regions as 5000.
For deep learning methods (i.e., EGNet, MGLCN, and our
method), we selected the data set MSRAB in (Liu et al.
2010) to train deep models. In our method, we set the max-
imal number of epochs as 10000 using the Adam optimiz-
er (Kingma and Ba 2014), and set the initial learning rate
and the weight decay, respectively, as 1e-5 and 0.005. We
set stopping criterion as no decreasing of the objective func-
tion for 100 consecutive epochs in the training process. For
fair comparison, we obtained the source codes by online or
from the authors. The experimental settings of all compar-
ison methods were followed the corresponding literature to
make all of them output their best performance. All experi-
ments were conducted on a server with 4 NVIDIA Quadro
P4000 8G.

The evaluation metrics included Precision-Recall (PR)
curve, Receiver Operating Characteristic (ROC) curve, Area
Under the Curve (AUC) score , Fβ score, Sα score, and Av-
erage Precision (AP) (Fan et al. 2017). Specifically, Fβ score
is defined as:

Fβ = (1+β2)Precision×Recall
β2Precision+Recall

(12)

where precision and recall are obtained using a self-adaptive
threshold T = µ+ε. µ and ε are the mean and standard devi-
ation values of the saliency map, respectively. We followed
(Achanta et al. 2009) to set β2 as 0.3.
Sα score describes the structural similarity between the

ground truths and the corresponding co-saliency maps, and
we followed the literature (Fan et al. 2017) to set all hyper-
parameters as 0.5.

Results Analysis

We listed the results of all methods on three benchmark data
sets in Table 1, where the bold number stands for the best re-
sult in one column. We also reported the ROC and PR curves
of all methods on all data sets in Figure 4.

First, our proposed framework obtained the best perfor-
mance, followed by MGLCN, EGNet, CBCS, and ESMG.
For example, our method improved on average by 1.13%,
0.12%, 4.82%, and 5.03%, compared to the best compar-
ison method (i.e., MGLCN), and averagely improved by
13.60%, 27.57%, 25.11%, and 25.89%, compared to the
worst comparison method (i.e., ESMG), in terms of AUC,
Fβ , Sα, and AP, respectively, on three data sets. This indi-
cates the success of our two strategies for co-saliency de-
tection, i.e., generating multi-scale images for every image,
and fusing multi-scale features to produce discriminative
features. In particular, deep learning methods (i.e., EGNet,
MGLCN, and our method) outperformed traditional meth-
ods (i.e., CBCS and ESMG) as the former methods extract
more informative features to describe the salient region than
the latter ones. This indicates that deep features are suitable
for co-saliency detection.

Second, by comparing with four deep learning methods,
EGNet achieved the worst performance as the methods (such
as MGLCN, and our method) extract multiple deep features
for co-saliency detection. For example, MGLCN improved
on average by 3.65%, 6.81%, 2.48%, and 2.54%, respective-
ly, on three data sets, for the evaluation metrics such as AUC,
Fβ , Sα, and AP, compared to EGNet. This implies that graph
convolutional structure are reasonable for co-saliency detec-
tion.
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Figure 5: Results of our model without/with the process of feature fusion on three data sets.
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Figure 6: Visual comparisons between the classification task (left) and the regression task (right) using our framework on three
images for the used data sets.

Ablation Analysis
In this section, we verify the effectiveness of our model from
the following aspects: (1) the effectiveness of our fusion
method; and (2) regression performance of our method.

Graph fusion effectiveness In our framework, we fuse the
features from multiple scales to explore the complementary
information in each scale and the common information a-
mong all scales. However, we can also ignore the fusion
process, i.e., separately conducting 3 dynamic models and
then concatenate 3 outputs to conduct co-saliency detection,
Proposed-s for short. We reported the results of both Pro-
posed and Proposed-s in Figure 5.

Obviously, Proposed outperformed Proposed-s on all data
sets in terms of different evaluation metrics. For example,
Proposed improved by on average 9.4%, 11.32%, 8.93%,
and 9.29%, respectively, compared to Proposed-s, in terms
of AUC, Fβ , Sα, and AP. This indicates the importance for
feature fusion on multi-scale features.

Regression effectiveness In this paper, we regarded the
co-saliency detection task as a binary classification task, and
reported the visualization of all methods in Figure 3. Ac-
tually, we can also regard the co-saliency detection task as
a regression task, whose visualization can easier detect the
edge boundary compared to the classification task. This is
because that the regression task assigns the edge boundary
with continuous values and the classification task assigns it
with binary values. To this end, we reported the visualization
of our method on the regression task in Figure 6.

Compared the regression task to the classification task in
terms of the visualization, the edge boundary produced by

the regression task is more blur by considering the pixel
graph-scale values, compared to the one in the classifica-
tion task. Hence, the proposed framework can be designed
for both the classification task and the regression task.

Conclusion
In this paper, we proposed a new co-saliency detection
framework by designing two strategies to generate discrim-
inative features, i.e., multi-scale features to capture the pat-
terns with different sizes across the images, and feature fu-
sion to extract the common and complementary informa-
tion among the multi-scale features. Moreover, we embed-
ded these two strategies into our designed dynamic GCN
model to jointly conduct feature fusion, graph learning, and
feature learning. Experimental results on three benchmark
data sets demonstrated that our framework outperformed the
state-of-the-art methods of co-saliency detection in terms of
several evaluation metrics. Moreover, experimental result-
s also verified the effectiveness of each strategy in our co-
saliency detection framework.
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