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Abstract

This paper studies learning from positive and unlabeled exam-
ples, known as PU learning. It proposes a novel PU learning
method called Predictive Adversarial Networks (PAN) based
on GAN (Generative Adversarial Networks). GAN learns a
generator to generate data (e.g., images) to fool a discriminator
which tries to determine whether the generated data belong to
a (positive) training class. PU learning can be casted as trying
to identify (not generate) likely positive instances from the
unlabeled set to fool a discriminator that determines whether
the identified likely positive instances from the unlabeled set
are indeed positive. However, directly applying GAN is prob-
lematic because GAN focuses on only the positive data. The
resulting PU learning method will have high precision but
low recall. We propose a new objective function based on KL-
divergence. Evaluation using both image and text data shows
that PAN outperforms state-of-the-art PU learning methods
and also a direct adaptation of GAN for PU learning.

1 Introduction
Positive-unlabeled learning (or PU learning) learns a binary
classifier from only Positive (P) and Unlabeled (U ) examples
with no labeled negative examples (Liu et al. 2002, 2003;
Denis, Gilleron, and Letouzey 2005). PU learning has many
applications in text analysis, bio-medicine, recommendation,
remote sensing, matrix completion, etc (Lee and Liu 2003;
Li and Liu 2003; Li, Guo, and Elkan 2010; Hsieh, Natarajan,
and Dhillon 2015). A comprehensive survey of the area can
be found in (Bekker and Davis 2020).

In this paper, we propose a novel adversarial PU learn-
ing method inspired by GAN (generative adversary net-
works) (Goodfellow et al. 2014). GAN aims to generate data
of a particular training class, which is like the positive classP
in PU learning. GAN works by generating likely positive data
using a generator G(·) to fool a discriminator D(·), which
determines whether the generated data indeed belong to the
training (positive) class. For PU learning, this is like choosing
likely positive instances from the unlabeled set U (achieved
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by a classifier) also to fool a discriminator D(·). Thus, we
can simply replace GAN’s generator with a classifier C(·) to
produce a PU learner.1 Note that the classifier is also a dis-
criminator, but we use the term classifier here to distinguish
it from the original discriminator of GAN. Note also both
C(·) and D(·) are neural networks.2

However, direct adaptation of GAN for PU learning (which
is one of our baselines, called a-GAN) is problematic. The
reason is that GAN focuses on only high positive precision
(e.g., generating high quality positive images), but PU learn-
ing needs to consider the overall (both positive and negative)
performance of C(·). We thus need a different objective func-
tion. This paper proposes such an objective function based
on Kullback-Leibler (KL) divergence, which also has a new
adversarial training method. The proposed PU learning tech-
nique is called PAN (Predictive Adversary Networks) due
to the use of the classifier to replace the generator in GAN.
KL-divergence in PAN measures whether C(·) can produce
similar predictions to those of D(·) for all examples in U . If
C(·) gives similar predictions, it means that the examples
obtaining high probabilities from C(·) also get high proba-
bilities from D(·), achieving the goal of fooling D(·), which
will give us a good final PU classifier C(·).

A major advantage of PAN is that it does not need the input
of class prior probability, which many state-of-the-art systems
need. In practice, the class prior is unknown, although there
are methods to estimate it (see Sec. 2). We will see when the
class prior probability estimate is off, the existing methods
can perform quite poorly (Sec. 5.2).

In (Hou et al. 2018) and (Chiaroni et al. 2018), the authors
employed GAN to generate positive and/or negative data
and then use a separate learner to learn the final PU classifier
using the generated data, but they are not adaptations of GAN
like PAN and their generators generate only images. PAN
can be applied to any data as it has no generator.

1PU learning is analogous to GAN because if we put all the data
(e.g., images) that can be generated by GAN’s generator in a set,
the set should be regarded as unlabeled as it contains both good
(positive) and bad (negative) images. Then what the generator does
is like selecting good images to fool the discriminator, which is
exactly what a PU classifier does with a set of given unlabeled data.

2Their exact architectures are given in the experiment section
(see Training Details in Sec. 5.1) since C(·) and D(·) have different
architectures for text and images.
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We evaluate PAN using both text and image data and show
that it outperforms start-of-the-art PU learning methods even
when we give them the perfect class prior probabilities.

2 Related Work
PU learning has been studied for the past two decades. The
term PU learning was perhaps first used in (Li and Liu 2005).
Early theoretical results were reported in (Liu et al. 2002; De-
nis, Gilleron, and Letouzey 2005). Liu et al. (2002) studied
the sample complexity of the problem, and Denis, Gilleron,
and Letouzey (2005) investigated it under the statistical query
model and the PAC learning framework. Elkan and Noto
(2008) showed that if ranking is the goal, then PU learn-
ing is equivalent to the conventional binary learning. Due
to many applications, there has been a recent surge of in-
terest in PU learning (Du Plessis, Niu, and Sugiyama 2014;
du Plessis, Niu, and Sugiyama 2015; Chang et al. 2016; Niu
et al. 2016; Sakai et al. 2017; Chiaroni et al. 2018; Sakai,
Niu, and Sugiyama 2018; Shi et al. 2018; Sansone, De Na-
tale, and Zhou 2018; Kato, Teshima, and Honda 2019; Hsieh,
Niu, and Sugiyama 2019; Sakai, Niu, and Sugiyama 2020).
See (Bekker and Davis 2020) for a comprehensive survey of
the subject.

Early PU learning algorithms mainly employed 2 heuristic
steps (Liu et al. 2002; Li and Liu 2003; Yu, Han, and Chang
2002). Step 1 finds some reliable negative examples (RN)
from the unlabeled set. Step 2 uses the positive set, the RN
set, and the remaining unlabeled set to build the final clas-
sifier. Liu et al. (2003) proposed a more principled method
called Biased-SVM based on constrained optimization, which
regards the unlabeled data as having noisy labels. The same
idea was also adopted in (Shi et al. 2018). Lee and Liu (2003)
and Elkan and Noto (2008) re-weighted training examples.
du Plessis, Niu, and Sugiyama (2015) and Kiryo et al. (2017)
used unbiased risk estimators. Kato, Teshima, and Honda
(2019) and Hsieh, Niu, and Sugiyama (2019) dealt with sam-
ple selection bias. However, none of these existing papers
explored adversarial learning like PAN.

Hou et al. (2018) used GAN to generate positive and neg-
ative examples to build a classifier. Chiaroni et al. (2018)
used GAN to generate only negative training examples. Both
papers are for image classification. Generating text and other
forms of data using GAN is more challenging. PAN does not
generate data and thus can be applied to any form of data. Our
formulation and objective function are also quite different.

Weighted adversarial nets (WAN) (Chen et al. 2018; Zhang
et al. 2018) is related and similar to our baseline a-GAN as
a-GAN also weights the discriminator. But PAN differs sig-
nificantly because although WAN weights the discriminator,
its adversarial training is the same as GAN, similar to our
a-GAN. DAN posted on arXiv (Liu, Chen, and Wu 2019) is
also quite similar to our baseline a-GAN as we can see from
their Eq. 5 and our Eq. 2. But PAN takes an entirely different
approach as we will see in the next two sections.

Other related works include leveraging biased negative ex-
amples (Sakai et al. 2017), studying the random assumption
of PU learning (Bekker and Davis 2020), scalable PU learn-
ing (Sansone, De Natale, and Zhou 2018), using traditional
margin-based methods (Xu et al. 2017; Gong et al. 2018), and

leveraging the reliable supervision provided by the model
itself (Chen et al. 2020). More related work can be found in
the survey (Bekker and Davis 2020).

A key weakness of many systems is that they need the
class prior probability (du Plessis, Niu, and Sugiyama 2015;
Kiryo et al. 2017; Hou et al. 2018; Xu et al. 2017; Chiaroni
et al. 2018; Kato, Teshima, and Honda 2019), which is hard
for the user to provide. There are methods that estimate the
prior (Ramaswamy, Scott, and Tewari 2016; Jain, White,
and Radivojac 2016; du Plessis, Niu, and Sugiyama 2017),
but we show if the estimate is off, the results can be quite
poor. Zhang, Hou, and Zhang (2020) proposed a PU learning
method that can estimate the class prior in an implicit way,
but we could not compare with it as its code is not available.

3 Background
GAN is an adversarial learner that learns a generator to
generate data instances (e.g., images) similar to those in the
real/training data. It has two networks, a generator G(·) and a
discriminator D(·). G(·) tries to generate new data instances
that can approximate the real data to fool the discriminator.
D(·) tries to discriminate the generated data from the real
data (Gao et al. 2019a,b; Chan et al. 2019). Through an itera-
tive and adversarial process, a good generator G(·) is learned
that can generate new data instances that D(·) has hard time
to distinguish from the real data. GAN is formulated as a
minmax game as follows:

min
G

max
D

V(D,G)

= Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]
(1)

where Pdata is the data generating distribution of the real data,
and Pz is the data generating distribution of the generator.

3.1 Direct Adaptation of GAN for PU Learning
We now propose a direct adaptation of GAN for PU learning,
called a-GAN, The real data in GAN is our labeled positive
data P . As illustrated in Figure 1, the discriminator D(·)
in a-GAN still plays the same role as that in GAN, but the
generator in a-GAN is replaced with another discriminator,
which we call the classifier C(·). The goal of C(·) is to
identify likely positives in the unlabeled set U to give to the
discriminator for it to decide whether these are real positive
data. The following equation shows this approach:

min
C

max
D

V(D,C) = Exp∼Pp(xp)[logD(xp)]

+Exs=argxu∼Pu(xu) C(xu)=1[log(1−D(xs))]
(2)

where xs is an example judged as a likely positive example
from U by C(·). P p and Pu are the data generating distri-
butions of the known positive data and the unlabeled data,
respectively. The known positive examples are randomly sam-
pled from the positive population. The hidden positives in U
is also randomly sampled from the same positive population.

Due to the discreteness of the last term in the equation,
we use the Policy Gradient method (Sutton and Barto 2018)
from reinforcement learning to train it, where the last term is
regarded as the reward for optimizing C(·).
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Positive Set: Unlabeled Set:

+++ ...

Sample and try to get
highest reward from D

From P ? (score for input is positive)

Yes No

+++ +++ + ...- ---
Positive Set: Unlabeled Set:

+++ ...

Give a consistent
score with D

Give a different score
from C to recognize
"fake instances"

a-GAN PAN

Term in Eq. (3)

+++ + + ...- --

Distance Metric (term and in Eq. (3))

Figure 1: An illustration of the objective functions of a-GAN (left) and PAN (right) as a comparison of the two models.

a-GAN does reasonably well (see Sec. 5.2). However, since
it focuses on the positive data only like GAN, its learning is
unbalanced, which causes some confusion with the separation
of positive and negative data. Next, we present the proposed
method PAN, which balances positive and negative and is
able to produce a better separation for them.

4 Proposed PAN
PAN adopts the same adversarial learning idea to build a PU
classifier C(·). However, as the right part of Figure 1 shows,
instead of using D(·) to directly discriminate the known pos-
itive data and the selected positive data by C(·), we propose
to use the adversarial learning idea on the probability dis-
tributions of D(·) and C(·) on each example (or instance).
Specifically, in the part surrounded by the red dash-lined box
in Figure 1, D(·) and C(·) produce a score for each input
example xui from the unlabeled set U with different optimiza-
tion objectives. D(·) tries to give xui the opposite prediction
score to that of C(·) in order to identify it as a “fake” exam-
ple;C(·) tries to give xui a similar score to that ofD(·) to fool
D(·). The adversarial learning is performed through a dis-
tance metric. D(·) tries to enlarge the distance with D(·) but
C(·) tries to shrink the distance, which is applied to each ex-
ample in U (no sampling is used). We choose KL-divergence
as the metric, which minimizes the information loss between
two probability distributions as it has been shown to be able
to learn and suit complex distributions (Goodfellow et al.
2014). The green links in Figure 1 show the procedure of
optimizing the known positive data. Note that the unlabeled
data are regarded as the negative data in PAN to endow D(·)
the ability to recognize negative examples to some extent.

4.1 Predictive Adversary Networks (PAN)
Unlike GAN, which only generates positive examples that
are hard to distinguish by the discriminator D(·), we also
want the remaining unlabeled examples to be easily distin-
guishable as possible negatives by the discriminator. To this
end, C(·) tries to separate positive and negative examples
in U with a large margin. That is, C(·) not only gives high
probabilities to examples that D(·) has difficulty to distin-
guish (meaning D(·) also gives high probabilities to those
examples) but also low probabilities to examples that are easy
to distinguish by D(·) (meaning D(·) also gives low prob-
abilities to those examples because of the easy separation).
Note, when we say C(·) or D(·) gives high/low probabil-
ity, we mean the probability of being positive. We propose

to achieve our goal by controlling the distance (similarity)
between the predictions of C(·) and D(·) on U . We use the
sum of KL-divergences on the predictions of all examples
(or instances) in U as the distance. In detail, PAN assumes
the output of D(·) (respectively, C(·)) on ith instance as a
discrete distribution over binary outcomes (or classes) of
positive and negative. For example, if D(·) (likewise, C(·))
gives an instance the probability of 0.3. It means that for the
positive outcome or class, the probability is 0.3, and for the
negative outcome, the probability is 0.7. We useDi and Ci to
denote the two distributions and KL-divergence is employed
to measure their distance. Superscripts pu and u denote the
corresponding datasets. PAN’s objective is defined as follows:

min
C

max
D

V(D,C) = −
n∑
i=1

KL(P
pu
i ||D

pu
i )

︸ ︷︷ ︸
I

+λ (

nu∑
i=1

KL(D
u
i ||C

u
i )︸ ︷︷ ︸

II

−
nu∑
i=1

KL(D
u
i ||C̃

u
i ))︸ ︷︷ ︸

III

(3)

where P pui is the probability distribution of positive and un-
labeled of the ith instance (we treat unlabeled as negative,
which is an issue to be addressed shortly) in the given PU data
Xpu (including both positive Xp and unlabeled Xu data),
and n and nu are the total numbers of training examples in
Xpu and Xu respectively. C̃ui denotes the opposite distribu-
tion of Cui , i.e., 1−Cui (with a slight abuse of notation). λ is
a hyper-parameter for balancing the distances.

We marked three terms in Eq. 3. The adversarial learning
of Eq. 3 works as follows: The first term marked by I is
for minimizing the sum of the divergences between Dpu

i
and P pui (notice the minus sign in front). It aims to achieve
the goal of helping D(·) recognize positive instances (it is
necessary especially at the beginning of training). When
optimizing C(·), the term marked by II minimizes the sum
of the KL-divergences from Cui to Du

i , indicating that C(·)
tries to give the same probability to the input xui as D(·). In
this case, the instances/examples getting high probabilities
(chosen by C(·) as positive) can also get high probabilities
from D(·). This achieves the goal of fooling D(·) by C(·).
When optimizing D(·), the term marked II maximizes the
sum of the KL-divergences between Du

i and Cui , meaning
that D(·) tries to give low probabilities to the instances that
get high probabilities from C(·) in order to detect ‘fake’
positive examples, and vice versa.

Using the first two terms can already perform the function
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of PAN. An advantage of PAN is that it can optimize both
positive and negative examples in the unlabeled set. However,
we show that the term marked by II produces asymmetric
gradients for positive and negative examples for both D(·)
andC(·) in Sec. 4.2. That means the term marked II can cause
unbalanced training between positive and negative examples
and lead to high precision and low recall. To this end, we
propose the term marked III which can eliminate the concern
(see Sec. 4.2). Ablation study also shows the effectiveness
of term III in Sec. 5.3. With all three terms, we build an
adversarial learning approach for PU learning through the
minimizing and maximizing operations discussed above, i.e.,
a minmax game between D(·) and C(·).

4.2 Asymmetry of KL(Di||Ci) for Positive and
Negative Data

In this section, we use the gradient asymmetry for positive
and negative of KL-divergence to show the need for the term
marked III in Eq. 3. The term marked II in Eq. 3 will produce
asymmetric gradients for positive and negative examples for
both D(·) and C(·) due to asymmetry of KL(Di||Ci) for
positive and negative data (explained below). If we don’t
have term III, the gradient of D(·) is:

∇DV (D,C) = ∇D [−
n∑
i=1

KL(P
pu
i ||D

pu
i ) + λ(

nu∑
i=1

KL(D
u
i ||C

u
i )]

=

np∑
i=1

1

D(xpi )
−
nu∑
i=1

1

1−D(xui )︸ ︷︷ ︸
(a)

+

nu∑
i=1

log
D(xui )(1− C(xui ))

(1−D(xui ))C(xui )︸ ︷︷ ︸
(b)

(4)

where np and nu are the sizes of positive and unlabeled set
respectively. Term (a) is symmetric for positive and unlabeled
data as they can obtain gradients with the same scale for the
corresponding position, e.g., D(xpi ) +D(xuj ) = 1. But it is
asymmetric for positive and negative data as positive data
exist in the unlabeled set. That causes the positive being over
optimized toward negative. Unfortunately, term (b) is also
asymmetric for positive and negative data. We can see that
the zero point of gradient for term (b) is:

log
D(xui )(1− C(xui ))

(1−D(xui ))C(xui )
= 0⇒ D(xui ) = C(xui ) (5)

which means that the zero point moves according to C(xui ).
In the worst case, ifC(·) overfits to give a small probability to
instances in the unlabeled set,D(·) is not easy to escape from
overfitting. That will cause high precision and low recall.

The asymmetric phenomenon also occurs in Eq. 3 without
term III as the gradient for C(·) is:

∇CV (D,C) = ∇C [−
n∑
i=1

KL(P
pu
i ||D

pu
i ) + λ(

nu∑
i=1

KL(D
u
i ||C

u
i )]

=

nu∑
i=1

log
C(xui )−D(xui )

(1− C(xui ))C(xui )︸ ︷︷ ︸
(c)

(6)

Clearly, it is asymmetric for positive and negative data, as
positives have a different gradient scale compared to nega-
tives. And that can cause the unbalanced training problem. In
this case, we propose to use the flipped distribution of Cui , de-
noted by C̃ui , to address the problem (please refer to term III

in Eq. 3). After adding the term marked III, the asymmetric
gradient problem caused by the term marked II is eliminated.
The gradient for D(·) now is

∑nu
i=1 log

(1−C(xui ))
C(xui )

which can
be regarded as a constant when optimizing D(·). And the
gradient for C(·) now is

∑nu
i=1 log

2D(xui )−1
(1−C(xui ))C(xui )

which is
symmetric between positive and negative.

4.3 Simplification of Equation 3
To facilitate the optimization of the objective function Eq. 3,
we use D to denote D(xpu) and C to denote C(xpu) and
simplify Eq. 3 to (see Appendix A.1 for derivations):
min
C

max
D

V(D,C)

= Exp∼Pp(xp)[logD(x
p
)] + Exu∼Pu(xu)[log(1−D(x

u
))]︸ ︷︷ ︸

IV:−H(PL,D(xpu))

+ λ · Exu∼Pu(xu)[(log(1− C(x
u
))− log(C(x

u
)))︸ ︷︷ ︸

V

(2D(x
u
)− 1)]

︸ ︷︷ ︸
VI

(7)

where P p denotes the distribution of the positive data. As we
marked in Eq. 7, term IV is the cross entropy loss between
D(xpu) and the ground-truth label distribution P pu of the PU
data, denoted by H(P pu, D(xpu)). About the term marked
VI, we elaborate with the following two points:

(1). Term VI can be viewed approximately as a policy gra-
dient reinforcement learning algorithm for training C(·) but
with no sampling operation, if we regard D(xu) as the re-
ward and term V as the policy. IfD(·) outputs a high ‘reward’
that exceeds 0.5, meaning that D(·) judges the current input
as a positive instance with high probability, Eq. 7 will maxi-
mize the probability of C(·) over the current input to fit the
distribution of D(·). However, if D(·) outputs a low ‘reward’
below 0.5, minimizing Eq. 7 is equivalent to minimizing the
probability of C(·) over the current input. As a consequence,
the distribution of C(·) is made closer to D(·).

(2). The term marked V in Eq. 7 is a comparison game
between the likelihood log(C(xu)) of choosing an example
or the likelihood log(1−C(xu)) of not choosing an example
xu. If the choosing probability is greater than the not choos-
ing probability, the value of term V is less than 0. Then to
optimize D(·), maximizing Eq. 7 is equivalent to minimiz-
ing the probability of D(xu). On the contrary, maximizing
Eq. 7 is equivalent to maximizing the probability of D(xu).
Clearly, this is an adversarial learning method: for the case
that term V is less than 0, D(·) tries to distinguish examples
selected by C(·) (to give low probabilities to these examples).
For the case that term VII is greater than 0, D(·) tries to give
high probabilities to examples not selected by C(·), which
helps the system move away from local training optimal.

Analysis of the Learned Classifier (C(·)): Although the
proposed PAN is quite different from the original GAN, its
running follows a similar adversarial procedure. The behav-
iors of optimal C(·) and D(·) are that C(·) gives the same
prediction as D(·) while D(·) cannot move away from C(·),
which means D(·) also give positive (or negative) scores to
examples that get positive (or negative) scores from C(·).3

3Positive (or negative) score means the score is > (or <) 0.5.
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Algorithm 1 PAN training by the minibatch stochastic gradi-
ent descent method.

Input: given positive training data Xp and unlabeled training
data Xu;
Initialization: Randomly initialize D(·) and C(·);
for number of training steps do

// Training D(·) k steps, we set k = 1.
5: for k steps do

• Sample a mini-batch of m positive examples
{xp

1, . . . ,x
p
m} from Xp;

• Sample a mini-batch of m unlabeled examples
{xu

1 , . . . ,x
u
m} from Xu;

• Update D(·) by ascending its stochastic gradient:

∇θd
m∑
i=1

[logD(x
p
i ) + log(1−D(x

u
i ))

+λ(log(1− C(x
u
i ))− logC(x

u
i ))(2D(x

u
i )− 1)]

end for
10: • Sample a mini-batch of m unlabeled examples

{xu
1 , . . . ,x

u
m} from Xu;

• Update C(·) by descending its stochastic gradient:

∇θc
m∑
i=1

[λ(log(1− C(x
u
i ))− logC(x

u
i ))(2D(x

u
i )− 1)]

end for

The reason thatD(·) cannot move away from C(·) is because
that will incur errors for D(·) on the known positive data.

4.4 Training Algorithm of PAN
Algorithm 1 gives the training algorithm of PAN using
stochastic gradient descent (SGD) for conciseness, but our
method is not limited to using SGD. In this work, we use
Adam for optimization. The algorithm alternately trains the
discriminator D(·) and the classifier C(·). In each step or
iteration, the lines between 5 to 10 (not including 10) are for
training D(·) and the lines after 10 are for training C(·). The
details of the algorithm are self-explanatory.

5 Experiments
We now evaluate the proposed technique PAN and compare
it with state-of-the-art baselines. Three text and two image
classification datasets are used in our experiments.
(1). YELP: a collection of online reviews from Yelp. Each
review is labeled with a star rating ranging from 1 to 5. The
dataset is extracted from the Yelp Dataset Challenge 2015.
(2). RT: a collection of online reviews from rotten tomatoes
with sentiment labels good and bad.
(3). IMDB: another collection of online review for binary
sentiment classification.
(4). 20News: a collection of about 20,000 newsgroup posts,
partitioned evenly across 20 different news topics.
(5). MNIST: a collection of 70,000 images of handwritten
digits from 0 to 9.
(6). CIFAR10: a collection of 60000 32x32 colour images of
10 classes, with 6000 images per class. See 4 for all datasets.

4YELP: http://www.yelp.com/dataset challenge; RT:

5.1 Experiment Settings
Data Preparation: Since the five datasets are for traditional
supervised learning with class labels, we need to prepare
positive P and unlabeled U data for PU learning. We use two
steps, after which we obtain the training and testing data for
each dataset (on the left of the dataset name in Table 1).

Step 1 - Constructing positive and negative data. As not
all datasets have 2 classes, we need to make each of them a
two-class (positive and negative) dataset. RT and IMDB are
already two-class datasets. For YELP, which has 5 classes,
we remove the reviews with the class label of 3-stars, and split
the remaining classes into two: one as the positive data (4 or
5 stars) and the other as the negative data (1 or 2 stars) (this
is commonly done for sentiment classification (Liu 2012)).
Following the baseline (Kiryo et al. 2017), for 20News, top-
ics ‘alt.’, ‘comp.’, ‘misc.’, and ‘rec.’ form the positive data,
and topics ‘sci.’, ‘soc.’ and ‘talk.’ form the negative data. For
MNIST, all images labeled with even numbers form the posi-
tive data and all images labeled with odd numbers form the
negative data. For CIFAR10, classes airplane, automobile,
ship and truck are used as the positive data and the rest as the
negative data.

Step 2 - Creating PU learning datasets. After step 1, we
get positive and negative training data for each dataset. We
then build the PU learning training dataset, which includes
positive and unlabeled data as follows. For each dataset (ex-
cept CIFAR10), we randomly select 10% (5% for CIFAR10
for diversity) of the positive data as the known positive data
P . We will show more results by varying the ratio in Sec. 5.3.
The unlabeled data U consists of the negative data and the
remaining positive data in the dataset.5

Baselines: We use our a-GAN and five state-of-the art repre-
sentative approaches as the baselines.

a-GAN is the direct adaptation of GAN given in Sec. 3.
UPU (du Plessis, Niu, and Sugiyama 2015) is proposed as

a general unbiased estimator for PU leaning that is convex
for loss functions meeting certain linear-odd conditions.

NNPU (Kiryo et al. 2017) is a non-negative risk estimator
for PU learning. It is more robust against overfitting, and is
able to use flexible models even given limited P data. Note
that NNPU has two versions, the linear and the MLP versions.
We give the results of the MLP version as it does better.

GenPU (Hou et al. 2018) uses the GAN framework and
an array of generators and discriminators to generate both
positive and negative data for PU learning.

PMPU (Gong et al. 2018) is a traditional SVM based PU
learning method.

NNPUSB (Kato, Teshima, and Honda 2019) is a recent
algorithm that extends NNPU with an additional mechanism
for handling sample selection bias.

http://www.cs.cornell.edu/ people/pabo/movie-review-data/; IMDB:
https://www.imdb.com/interfaces/; 20NEWS: http://qwone.com/
∼jason/20Newsgroups/; MNIST: http://yann.lecun.com/
exdb/mnist/; CIFAR10: http://www.cs.toronto.edu/˜kriz/cifar-
10-python.tar.gz .

5PU learning has two data sampling settings. We use the one-
pass (Niu et al. 2016) or single-training-set (Elkan and Noto 2008)
setting, not case-controlled or two-pass (Ward et al. 2009) setting.
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Training Testing
Dataset

a-GAN UPU NNPU NNPUSB PAN
P-Label Unlabel

Pos Pos Neg Pos Neg F Acc F Acc F Acc F Acc F Acc
26,000 234,000 260,000 20,000 20,000 YELP 83.7 83.3 79.7 79.3 80.7 81.1 81.9 81.8 83.5 83.6

426 3,839 4,264 1086 1047 RT 66.1 58.0 50.2 56.5 62.4 58.6 66.6 59.6 66.6 64.1
1,250 11,250 12,500 12,500 12,500 IMDB 73.0 70.6 70.4 69.9 76.2 74.6 74.2 71.9 77.1 78.8
800 7,144 6,056 1,800 1,800 20News 63.5 68.7 59.1 53.1 78.5 78.1 75.9 75.6 81.1 81.0

3,000 29,492 30,508 4,926 5,074 MNIST 94.7 95.0 94.2 94.3 95.4 95.4 95.6 95.6 96.5 96.4
1,000 20,000 30,000 4,000 6,000 CIFAR10 76.6 83.0 86.2 89.0 86.1 88.8 86.6 88.6 87.2 89.7

- - - - - Average 76.3 76.4 73.3 73.7 79.9 79.4 80.1 78.9 82.0 82.3

Table 1: Dataset details and experiment results: On the left of Dataset - training and testing data for each dataset. On the right -
F-score (F) and accuracy (Acc) of PAN and baselines for the dataset

Dataset GenPU PMPU PAN
MNIST 70.43 95.74 96.42

CIFAR10 66.25 81.34 89.70

Table 2: Comparison of PAN, GenPU and PMPU in Accuracy

Note that both UPU and NNPU need the input of the class
prior probability, which is often not available in practice.
In our experiments, we give them the correct class priors.
Even with this favorable condition, they are still weaker than
PAN. PAN does not need the class prior probability input.
For UPU and NNPU, we use the open source code from the
authors and a third party6, respectively. For NNPUSB, we use
the original code provided by its authors. Note also we use
the same network as these baselines, including architecture,
number of parameters, and the optimization method. We also
give them exactly the same positive and unlabeled training
data and the test data. For GenPU, we again use the code
provided by the authors. For PMPU’s results, since there is
no source code available, we used the best results reported in
its paper.
Training Details: For a fair comparison, PAN uses the same
architecture for classifier C(·) as NNPU. For text, a 2-layer
convolutional network (CNN), with 5 * 100 and 3 * 100
convolutions for layers 1 and 2 respectively, and 100 filters
for each layer, is used as the classifier C(·) and discriminator
D(·). The word embeddings are also trained by the system.
For MNIST, the classifier is a 3-layer MLP (with 2 hidden
layers, more specifically, d-512-256-1) as it is fairly simple.
The classifier for the CIFAR10 dataset was an all convolu-
tional net: (32 × 32 × 3)-[C(3 × 3, 96)] - C(3 × 3, 96, 2)
- [C(1 × 1, 192)] - C(1 × 1, 10) - 1000 - 1000 - 1, where
each input is a 32 × 32 RGB image, C(3×3, 96) means 96
channels of 3×3 convolutions followed by ReLU, C(3 × 3,
96, 2) means a similar layer but with stride 2, etc. We set λ in
Eq. 3 and Eq. 7 to 0.0001, please see more details in Sec. 5.3.
We also balance the impact of positive and unlabeled data
for term I in Eq. 3 in training; otherwise the positive exam-
ples will be dominated by the unlabeled data. We use 1:1
ratio of positive data and unlabeled data in each mini-batch
in training. The network parameters are updated using the
Adam algorithm with learning rate 0.0001. For a-GAN, it
needs pre-training of D(·). We use the original positive and
unlabeled (regarded as negative) data to pre-train D(·) in

6https://github.com/GarrettLee/nnpu tf

order to give it the ability to classify positive and unlabeled
data. We pre-train D(·) 3 epochs for each dataset.

5.2 Results and Analysis
The accuracy and F-score results of a-GAN, UPU, NNPU,
NNPUSB and PAN are given in Table 1 (on the right side
of dataset names) and the results for GenPU and PMPU are
given Table 2. Since different epochs give different results,
for a fair comparison, we give the average of both the best
F-score (F) and best accuracy (Acc) for each system on each
dataset over 200 epochs (all systems converged before 200
epochs) over 5 runs. Note that we also obtained the test
accuracy, precision and recall of each epoch of each method
and plotted them in Figures 2-7. However, due to the space
limit, we have to put the figures in Appendix A.3.

The F-score for each dataset in Table 1 is measured on
the positive data/class as in PU learning the user is normally
interested in identifying only the positive data. The last row
in the table gives the average result for each column. From
the results on the right side of dataset names in Table 1,
we can observe that PAN outperforms all baselines on all
datasets (the last row gives the average of each algorithm for
all datasets). Among the baselines, NNPU and NNPUSB are
the strongest and their results are very similar. PAN outper-
forms them markedly. Given that PAN does not need class
prior probability input, this is even more significant. The di-
rect adaptation of GAN a-GAN is weaker than both NNPU
and PAN, but is better than UPU. Although NNPUSB extends
NNPU, it did not do better than NNPU. The reason could
be that our data do not have sample selection bias, which
NNPUSB tries to address.

Table 2 shows the results of GenPU and PMPU. Since
GenPU’s data generator cannot generate text, there is no
result for the text datasets. GenPU’s results are dramatically
worse. Hou et al. (2018) noted that GenPU does well with few
classes as the positive and negative, e.g., 1 class as positive
and 1 class as negative. However, in our case, both positive
and negative consist of many classes, which make GenPU
suffer. PMPU is markedly poorer than PAN too.

Varying positive data ratio to test NNPU’s sensitivity
to class prior probability: We use MNIST and CIFAR10
as representatives to study this issue. For each dataset, we
randomly select 1 or 2 classes in the original data to form the
positive set, and the rest to form the negative set to generate 2
PU learning datasets as discussed above. Since both MNIST
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Dataset
1 class as positive (1:9) - results given as F / Acc 2 classes as positive (2:8) - results given as F / Acc

PAN NNPU PAN NNPU
1:9 (correct) 3:7 (wrong) 4:6 (wrong) 2:8 (correct) 4:6 (wrong) 5:5 (wrong)

MNIST 97.88 / 99.19 97.82 / 99.16 91.16 / 96.29 82.13 / 91.10 95.59 / 98.42 95.55 / 98.32 77.50 / 88.90 66.94 / 81.41
CIFAR10 51.94 / 84.73 51.46 / 84.65 48.55 / 82.79 41.99 / 76.64 59.42 / 78.35 56.45 / 78.27 57.67 / 77.61 54.62 / 73.29

Table 3: Varying the positive data and the class prior probability for NNPU.

Model YELP 20News MNIST CIFAR10
PAN without term III 80.67 72.63 96.30 89.38

PAN full model 83.56 81.00 96.42 89.70

Table 4: Accuracy (%) on different datasets for PAN with or
without term III.

Model YELP 20News MNIST CIFAR10
PAN without term III 81.86 73.59 96.27 86.68

PAN full model 83.45 81.06 96.51 87.22

Table 5: F-score comparison on different datasets with or
without term III.

and CIFAR have 10 classes, for the 1-class positive PU data,
the class prior probability is 10% for positive and 90% for
negative (or 1:9 for short). For the 2-class positive PU data, it
is 20% for positive and 80% for negative (or 2:8). The results
of NNPU and PAN are given in Table 3. We see similar
improvements from PAN over NNPU with the exact class
prior given to NNPU (1:9 or 2:8). For the 1:9 (respectively,
2:8) case for both MNIST and CIFAR10, if we change the
class prior from the correct 1:9 (2:8) to the wrong 2:8 (3:7),
NNPU’s result drops are small (not in Table 3). So NNPU
has some robustness. However, if we change to the wrong 3:7
or 4:6 (for the correct 1:9), and 4:6 or 5:5 (for the correct 2:8),
the drops are dramatic for MNIST. For CIFAR10, they are
smaller, even a small increase in F for the wrong 4:6 (correct
2:8), likely an outlier as this data is hard, but still poorer than
PAN. We conclude although the class prior can be estimated,
if the estimate is off, the results can be quite poor.

5.3 Additional Experiment Results
Here we discuss additional results and detailed analysis of
PAN in terms of robustness, varied positive ratio and the
selection of hyper-parameter λ in Eq. 3 (also 7).

Varying Known Positive Data Ratio. We show and anal-
yse the performance of PAN with varied ratios of known
positive examples from 1% to 30%, and show the accuracy
and F-score of PAN and the baseline NNPU on MNIST and
CIFAR10 datasets. Note that NNPU is the strongest base-
line. The results are reported in Tables 7 and 8, which show
that PAN can do well with different proportions of known
positive data and even with extremely few known positive ex-
amples. Note that the margin between PAN and NNPU goes
larger with the decrease of the ratio of the known positive
examples, which indicates PAN is more effective than NNPU.
The margin is smaller as the known positive ratio increases.
That is because if we have enough positive data, the accuracy
of PU learning methods will approach the performance of

Model Varying λ - results are Acc
0.01 0.001 0.0001 0.00001

PAN 82.70 88.90 90.30 88.23

Table 6: Sensitivity of λ on MNIST.

Model MNIST - results given as F / Acc
1% 10% 20% 30%

NNPU 88.34/88.51 95.60/96.51 96.89/96.96 97.51/97.57
PAN 90.45/90.30 96.51/96.42 97.38/97.43 97.90/97.95

Table 7: Varying the ratios of known positive data on MNIST.

Model CIFAR10 - results given as F / Acc
1% 10% 20% 30%

NNPU 81.41/84.22 87.84/90.14 89.05/91.04 90.01/91.66
PAN 82.70/86.10 88.37/90.77 89.74/91.85 90.65/92.49

Table 8: Varying ratios of known positive data on CIFAR10.

supervised binary classification. In this case, the limitation
of getting good results is no longer the PU learning method,
but its underlying classification method.

Hyper-parameter Selection. λ is the hyper-parameter that
balances the KL-divergences. Here, we show that λ should
be a small value but it is not too sensitive when it is around
0.0001 (see Table 6). In our case, we set it to 0.0001.

Ablation Study for Term III in Eq. 3. Tables 4 and 5
show PAN’s ablation results in accuracy and F-score with or
without term III respectively. From the two tables, we can
see that adding term III improves the performance of PAN.

6 Conclusions
This paper proposed a new GAN style PU learning method,
called PAN. PAN is significantly different from GAN as PAN
does not use a generator but a classifier in its place. The
objective function of PAN is also entirely different. It tries
to solve the problem that GAN overly focuses on the pos-
itive class (real data). The new objective function is based
on KL-divergence, which also has a new adversarial training
method. PAN thus represents a new way of doing PU learn-
ing. Empirical evaluation using both text and image datasets
showed that PAN outperformed the state-of-the-art baselines.
Also importantly, PAN obtained the better results without
using any class prior probability information, which most
state-of-the-art baselines need. Our future work will focus on
further improving PAN’s accuracy.
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