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Abstract

Learning-based classifiers are susceptible to adversarial ex-
amples. Existing defence methods are mostly devised on in-
dividual classifiers. Recent studies showed that it is viable to
increase adversarial robustness by promoting diversity over
an ensemble of models. In this paper, we propose adver-
sarial defence by encouraging ensemble diversity on learn-
ing high-level feature representations and gradient disper-
sion in simultaneous training of deep ensemble networks. We
perform extensive evaluations under white-box and black-
box attacks including transferred examples and adaptive at-
tacks. Our approach achieves a significant gain of up to
52% in adversarial robustness, compared with the baseline
and the state-of-the-art method on image benchmarks with
complex data scenes. The proposed approach complements
the defence paradigm of adversarial training, and can fur-
ther boost the performance. The source code is available at
https://github.com/ALIS-Lab/AAAI2021-PDD.

Introduction
In many security applications, learning-based classifiers are
posed in an adversarial environment and susceptible to in-
telligent attackers (Biggio et al. 2013; Dalvi et al. 2004; Ku-
rakin et al. 2018). In particular, adversarial examples can be
generated by adversarial learning of image perturbations that
are imperceptible to human eyes (Carlini and Wagner 2017b;
Goodfellow, Shlens, and Szegedy 2015; Kurakin, Goodfel-
low, and Bengio 2017; Kurakin et al. 2018). Such adversar-
ial examples can induce wrong decisions by systems and of-
ten not easily detected (Carlini and Wagner 2017a) nor pre-
vented (Athalye, Carlini, and Wagner 2018).

Depending on adversarial knowledge, the attack scenarios
can be roughly classified into two categories of white-box
and black-box accesses. In the white-box setting, an attacker
can access target model details, typically the loss function,
to build adversarial examples via gradient descent (Carlini
and Wagner 2017b; Goodfellow, Shlens, and Szegedy 2015).
In the black-box setting, an attacker cannot directly access
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the target information but attempting attacks by either trans-
ferrable examples built on a surrogate (Demontis et al. 2019)
(a.k.a. transfer-based attacks) or probing decision bound-
aries via numeral classification queries (Brendel, Rauber,
and Bethge 2018). Thus, a main paradigm of defence is to
prevent the gathering of useful information (e.g., the loss
gradients) from generating adversarial examples (Athalye,
Carlini, and Wagner 2018; Kurakin, Goodfellow, and Ben-
gio 2017).

Existing defence methods mainly focus on improving the
performance of individual models where there is often an
inherent trade-off between classification accuracy and ad-
versarial robustness (Su et al. 2018). Defences deployed on
a single model are often circumvented by adaptive attacks
in the white-box setting. In such circumstances, the defence
mechanism itself can be exploited to launch more intelli-
gent attacks under only restrictions of the threat model. For
instance, (Athalye, Carlini, and Wagner 2018) proposed to
overcome the defence of randomization by introducing Ex-
pectation Over Transformation (EOT) and that of gradient
shattering by Backward Pass Differentiable Approximation.

By contrast, it is intuitively more difficult to compromise
an ensemble of models rather than a single one. Ensemble
models are widely used to improve model generalizability
over the prediction accuracy. In many cases, DNNs are no
longer weak classifiers and thus the conventional ensemble
methods are no longer effective. Recently, deep ensembles
are studied for predictive uncertainties (Lakshminarayanan,
Pritzel, and Blundell 2017) and against network deceptions
(Liu et al. 2019; Pang et al. 2019; Zhang, Cheng, and Hsieh
2019). In particular, (Pang et al. 2019) proposed a so-called
ADP training to improve adversarial robustness of deep en-
sembles by facilitating the output diversity on non-maximal
predictive scores of the base models over those less-likely
class labels. The gain of adversarial robustness, however, di-
minishes quickly when the dataset has increased class labels
or more complex data scenes. The other limitation of this
approach is that the resulting ensemble model is still fairly
vulnerable to strong attacks 1.

In this paper, we promote ensemble diversity on high-
level feature representation learning. It was shown that fea-

1c.f., Tables 2 and 3
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ture maps with similar activation patterns have close seman-
tic implications (Ke et al. 2020; Kim et al. 2017). We are
motivated to encourage base models to learn different fea-
ture representations at the fully-connected (FC) layer. This is
enabled by designing a diversified dropout strategy coupled
with a gradient regularization term in simultaneous training
of ensemble networks. Our method complements exiting de-
fence paradigms acting on individual models such as adver-
sarial training (Goodfellow, Shlens, and Szegedy 2015) and
other data augmentation schemes (Zhang et al. 2019).

Our main contributions are:
1. We propose a novel strategy of diversified learning of

high-level feature representations by ensemble networks.
2. We design two regularization schemes in simultaneous

training to facilitate the proposed diversified learning.
3. We study ensemble diversity promoted by the proposed

approach for adversarial defence from three aspects.

Related Work
Opposing adversarial examples, there are an increasing
number of defence methods proposed for hardening DNN
models (Kurakin et al. 2018). However, many of them are
later defeated by stronger iterative attacks (Carlini and Wag-
ner 2017b) or adaptive adversaries (Athalye, Carlini, and
Wagner 2018). So far, one of the most effective defence
paradigm is randomization (Carlini and Wagner 2017b), in-
cluding randomness added to the input (Xie et al. 2018) and
randomness added to the model (Dhillon et al. 2018; Fein-
man et al. 2017; Liu et al. 2018). In particular, (Dhillon et al.
2018) proposed Stochastic Activation Pruning (SAP) of a
random subset of activations in DNN’s. The scheme is simi-
lar to randomized dropout (Feinman et al. 2017) in terms of
sampling activations but differs in that SAP is applied post-
hoc to a pre-trained model rather than involved in the iter-
ative training process. (Liu et al. 2018) propose to add ran-
dom noise layers to a DNN in both the training and testing
phases and then ensemble the predictions. This is equivalent
to training the original network with an extra regularization
of Lipschitz constant. The random self-ensemble approach
demonstrates significant improvement of model robustness
over strong gradient-based attacks.

The randomization techniques are often used together
with an adversarially trained model as in (Dhillon et al.
2018; Meng et al. 2020; Xie et al. 2018). In fact, adversarial
training (Goodfellow, Shlens, and Szegedy 2015) has been
considered as a standard method for defending against ad-
versarial examples (Madry et al. 2018; Kurakin et al. 2018).
It works by mixing normal and adversarially generated ex-
amples in the training set to improve the model robustness
on small perturbations. Ensemble adversarial training was
also proposed for decoupling adversarial examples from the
parameters of a trained model to increase the diversity of
perturbations seen during training (Tramèr et al. 2018).

Another paradigm of adversarial defence is training with
regularizations (Cisse et al. 2017; Ros and Doshi-Velez
2018; Yan, Guo, and Zhang 2018). In particular, DNN
trained with input gradient regularization exhibit remarkable
robustness against transferred examples that are generated

to fool all of the other models (Demontis et al. 2019; Ros
and Doshi-Velez 2018). The gradient regularization therein
intends to optimize a DNN to have smooth input gradients
with respect to its predictions during training. It is able to
alter the shape of decision boundaries for interpretable and
qualitatively different reasons. One disadvantage of gradient
regularization is its computation cost for including input gra-
dients in parameter gradient descent requires taking second
derivatives in each mini-batch, which is generally expensive.

The above defence methods are devised on individual
models. Recent work are emerged to study the adversar-
ial robustness of ensemble classifiers (Liu et al. 2019; Pang
et al. 2019; Zhang, Cheng, and Hsieh 2019). Diversity has
been recognized as a very important characteristic in classi-
fier combination. (Liu et al. 2019) defines three types of en-
semble diversity by 1) the difference in network structures,
2) disagreements on negative examples, and 3) the posterior
distribution, and reports that the type 2 diversity performs
better under L2 attacks by promoting failure independence
of the ensemble classifiers.

(Pang et al. 2019) promotes ensemble diversity on the
model outputs by proposing an Adaptive Diversity Promot-
ing (ADP) scheme on training the ensemble networks. In the
ADP training, two regularization terms are amended to the
cross-entropy (CE) loss for simultaneous training. The first
term is a Shannon entropy measure of the ensemble predic-
tions. When it is removed, ADP degenerates to independent
training on the conventional CE loss. The second term is a
defined measure of ensemble diversity to encourage the non-
maximal predictions of base networks to become mutually
orthogonal. When it is removed, ADP training effectively
performs label smoothing with a constant smoothing factor
(Pang et al. 2019).

On the other hand, (Ilyas et al. 2019) showed that there are
robust and non-robust features that have different vulnerabil-
ities with respect to adversarial perturbations. Therefore, it
is intuitive to diversify the risk of attack over ensemble mod-
els at the feature representation level. Therefore, we are in-
spired to encourage diversified learning on the feature level
for improving adversarial defence in this paper.

Proposed Method
We first introduce necessary notations for describing simul-
taneous training of deep ensembles. Suppose that the ensem-
ble model F is composed of K base networks denoted by
F (x; θk) for k = 1, 2, ...,K . A common strategy for mod-
elling F is the simple average over all individual predictors,
i.e., ŷF = 1

K

∑K
k=1 F (x; θk).

In simultaneous training, all the classifiers are trained on
the same mini-batch of data in each training iteration. Con-
ventionally, the objective function is simply the ensemble
cross-entropy (ECE) loss summed over individual CE losses
(Zhou 2012):

LECE =
K∑
k=1

LCE(ŷk,y) , (1)

where ŷk = F (x; θk) contains predictive scores by the k-
th network and y is one-hot encoding of the truth label for
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x. Hereafter, we refer (1) as the baseline approach by train-
ing each classifier independently without any interaction. In
(Pang et al. 2019), the ADP regularizer was defined on the
predictive scores {ŷk} for all k to encourage non-maximal
predictions of each network to be mutually orthogonal.

In this paper, we propose a diversified learning directly
on the feature level for simultaneous training. This is en-
abled by two novel regularization schemes: 1) Priority Di-
versified Dropouts (PDD), and 2) Dispersed Ensemble Gra-
dients (DEG). The dropout regularization aims to encourage
each member to learn diversified feature representations of
the input, while the gradient regularization is amended to the
ECE loss as a penalty term for gradient descents of classi-
fiers in similar directions of the learning space. The two parts
work to enhance each other: Members in the ensemble are
able to have more dispersed gradients when learning more
diversified features, and vice versa.

Priority Diversified Dropouts (PDD)
Dropout is a stochastic regularization technique commonly
used for neural nets. Conventional dropout and variants are
applied to training individual networks by setting a random
subset of activations to zero, i.e., “dropping” FC units, with a
certain probability (1−p) where p is the keep rate. The pro-
cess is known to have the effect of helping model generaliza-
tion, making node activations more robust to the input noise
(Wang, Zhou, and Bilmes 2019). Recent studies have shown
that feature nodes act interactively in a way that is related to
latent semantic features (Du et al. 2018; Kim et al. 2017). In
particular, the ReLU activation strength was found to play
an important part in the analysis of dropout features and has
been exploited to improve the prediction performance (Ke
et al. 2020; Keshari, Singh, and Vatsa 2019; Wang, Zhou,
and Bilmes 2019).

Therefore, we are inspired to design an adaptive dropout
in simultaneous training to enforce diversified learning of
deep feature representations amongst the ensemble net-
works. This can be viewed as a feature selection by each
base network. Because the dropout induces sparsity in fea-
ture representation by disregarding some high-level features,
resulting in different activation patterns between networks.
The ensemble models as a whole span the latent semantic
feature space.

Algorithm 1 outlines the main procedures. Specifically,
we divide the ensemble range of activation strength into
M > K intervals and count the number of neurons of K
base networks that fall in the intervals G1, G2, ..., GM , re-
spectively. We leave discussion about the influence of M
later to Ensemble Diversity Analysis for PDD. The inter-
vals with the largest counts are considered having priority
for activating the neurons therein with higher probability.
The top-K such intervals each is assigned to one of the K
base networks for diversified learning with different priority
of activation strength.

Without loss of generality, let the k-th network have N (k)
m

neurons in the m-th interval Gm for m = 1, 2, ...,M .
The total number of neurons in the k-th network is Ck =∑M
m=1N

(k)
m . Let the k-th network have activation priority

Algorithm 1 Priority Diversified Dropouts (PDD)
Require: The ensemble Ck units in the last FC layer of the

k-th network F (θk) for k ∈ [K] in a training period.
1: Find the spanning range of activation strength [u, v] for∑

Ck activation units ensembled from all K networks;
2: Divide [u, v] into M intervals and count the ensemble

FC units in each interval G1, G2, ..., GM ;
3: Sort G1, G2, ..., GM in descending order by the count;
4: Find Gt1 , Gt2 , ..., GtK with the largest counts;
5: for k=1 to K do
6: Assign Gtk as activation priority to F (θk)
7: for m=1 to M do
8: Compute the keep rate p(k)m as in (2);
9: Keep the F (θk) units in Gm with probability p(k)m ;

10: end for
11: end for
12: return The last FC layer of F (θk) for k ∈ [K].

within the interval Gtk for t1 6= t2 6= ... 6= tK . Then, the
keep rate for FC units of the k-th network with activation
length in the interval Gm is

p(k)m =

{
α , m = tk
β · (1−N (k)

m /Ck), m 6= tk
(2)

where α and β are coefficient parameters between [0, 1]. We
choose a large α to activate priority neurons with high prob-
ability and a small β for capping the total number of neuron
activations in all other intervals. For the latter, the keep rate
is negatively proportional to neuron density in the m-th in-
terval for the k-th network.

Dispersed Ensemble Gradients (DEG)
Gradient regularization can significantly change model de-
cision boundaries by incorporating some interpretation of
explanation (Ros and Doshi-Velez 2018). In this work, we
incorporate a gradient regularization term in the ensemble
loss to encourage more dispersed gradient descents between
individual base models. The goal is to make adversarial ex-
amples generated on one member network less transferable
to another, and thus improve the global adversarial robust-
ness of deep ensembles.

Algorithm 2 outlines the main procedure of our gradient
regularization. In each training iteration, we first calculate
the conventional CE losses of LCE(ŷk,y) as usual as well as
the corresponding CE loss gradients gk = ∂LCE(ŷk,y)/∂x
for k = 1, 2, ...,K . Then, the penalty term for dispersed
gradients can be computed as

Lg =
∑

1≤i<j≤K

〈gi, gj〉
‖gi‖ · ‖gj‖

, (3)

where ‖·‖ is the gradient magnitude. It can be seen that Lg is
effectively the sum of cosine values between pairwise input
gradients. In this way, we encourage gradient dispersion by
amending the regularization term (3) to the CE loss in (1):

Lours = LECE + λ · Lg , (4)
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Algorithm 2 Simultaneous Training with DEG
Require: The training dataset D := {(x,y)i}i∈[N ]; the en-

semble of K base networks F := {F (θk)}k∈[K].
1: for k=1 to K do
2: Compute the CE loss LCE(ŷk,y);
3: Compute gk = ∂LCE(ŷk,y)/∂x;
4: end for
5: Compute the regularization term Lg as in (3);
6: Compute the overall loss Lours as in (4);
7: Update {θk}k∈[K] with ∇θkLours until convergence.
8: return The optimal {θ∗k}k∈[K] s.t. Lours is minimized.

Ensemble Methods CIFAR-100 Tiny-ImageNet
K = 3 K = 5 K = 3 K = 5

Baseline 0.1905 0.1874 0.2553 0.2624
ADP 0.2155 0.2240 0.3082 0.3046
PDD 0.2429 0.2372 0.3903 0.3439

PDD+DEG 0.2277 0.2462 0.4117 0.4126

Table 1: The entropy measure E computed by (5) on the
ensemble learning methods.

where λ controls the penalty strength. The objective is thus
to find an optimal set of {θk} so that (4) is minimized.

Ensemble Diversity Analysis
In this section, we study ensemble diversity of the proposed
method in terms of three perspectives, namely the ambigu-
ity of member outputs, the discrimination of feature selec-
tion, and the dispersion of ensemble gradients. Specifically,
we exploit entropy to summarize the ambiguity level of the
member outputs as in (Kuncheva and Whitaker 2003)

E =
1

N

N∑
i=1

1

K − dK/2e
min {l(xi),K − l(xi)} , (5)

where N denotes the size of test dataset, l(xi) denotes the
number of member classifiers that correctly recognize an in-
put xi. The highest diversity among allK members in an en-
semble is manifested by bK/2c votes with the same value (0
or 1), while the lowest diversity is when there is no disagree-
ment with all 0’s or 1’s. Table 1 shows the entropy measures
on CIFAR-100 and Tiny-ImageNet, where the maximal dis-
agreement is always achieved by PDD or PDD+DEG. The
output ambiguity becomes larger for PDD+DEG when the
number of ensemble size K increases.

At training time, the PDD regularization induces sparsity
in the FC activation patterns of each base network by setting
a subset of relevant weights to zero according to the activa-
tion strength. In this way, the PDD learning can be viewed
as a stochastic feature selection by a base network in the en-
semble. The PDD method facilitates ensemble diversity on
high-level feature representation by learning different net-
work activation patterns. Together, the ensemble networks
span the latent semantic feature space.

(a)

(b)

Input

(c)

Network 1 Network 2 Network 3

Figure 1: Grad-CAM visualization of the last FC layer by
each base network in the deep ensemble: (a) Baseline, (b)
ADP, and (c) PDD. The input image is labelled with class
meatloaf from the testing dataset of Tiny ImageNet.

Figure 1 illustrates the PDD effect on a test example
taken from Tiny ImageNet2. We adopt Grad-CAM (Sel-
varaju et al. 2017) to invert the FC features learned by each
base network in an ensemble and superimposed them onto
the input image, respectively. The visualization tool local-
izes class-discriminative regions where red highlights evi-
dence. Darker color indicates a higher score for the predic-
tive class. In Figure 1, all heat maps have allocated the dark-
est red region on the object to predict meatloaf. Com-
paring the heat maps, PDD in Figure 1 (c) has learned to
look at visual and textual explanations at different parts of
the object. To quantify the discrimination of feature learning
between base networks of an ensemble method, we further
estimate the geometric center of red regions with the darkest
color (i.e., positive value of the neuron importance higher
than 0.9) for each heatmap in Figure 1, and then compute
the Euclidean distance. The proposed PDD method has the
largest Euclidean distance of 24.68, comparing with 8.8 for
the baseline and 14.34 for ADP, indicating more diversified
learning by the proposed ensemble networks.

Inspired by Fisher score (Duda, Hart, and Stork 2012), we
develop a measure to quantify the discrimination of feature
selection at test time. Suppose that an ensemble of K net-
works is pretrained with PDD as outlined in Algorithm 1.
Let the variable setAk contain activation values of activated
units in the last FC layer of the k-th network for k ∈ [K].
Denote µk and σ2

k as the mean and variance of Ak, respec-
tively. We measure the total discrimination score between
Ai and Aj of every two base networks in the ensemble as

LF =
∑

1≤i<j≤K

Sb(Ai,Aj)
Sw(Ai,Aj)

=
∑

1≤i<j≤K

(µi − µj)2

σ2
i + σ2

j

, (6)

where Sb and Sw are between- and within-network scatter
measures of Ai and Aj , respectively.

2https://tiny-imagenet.herokuapp.com/
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Figure 2: Boxplots of the average discrimination score com-
puted from (6) over 2000 test images from CIFAR-100. A
higher value indicates a larger discrimination of FC features
between base networks of an ensemble model (K = 3).
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Figure 3: Boxplots of average angles between loss gradients
of the base networks on 2000 test images from CIFAR-100.
A higher value indicates larger gradient dispersions between
base networks of an ensemble model (K = 3).

We observe that the number of intervals M has an influ-
ence on both the Sb and Sw scatter measures for the PDD
training. We choose the M value empirically with the en-
semble size K as specified in Target Model of Evaluations.

Figure 2 displays box-plots of the average discrimina-
tion score computed from (6) over 2000 test images from
CIFAR-100 that have been classified correctly by all five en-
semble methods. The proposed PDD enforces significantly
larger discrimination of FC activation patterns between base
networks of the ensemble. It is interesting to see that DEG
by itself does not improve the high-level feature selection
comparing with the baseline. However, it is able to boost the
discrimination scores further when used in conjunction with
PDD. This observation is in line with the results of ensemble
recognition accuracy shown in Figure 4.

The DEG regularization is to encourage dispersion of en-
semble gradients so as to expand and explore the learning
space of normal features. Figure 3 presents the box-plots
of average angles between the loss gradients of base net-
works in the ensembles trained on the same 2000 test images
from CIFAR-100. We see less variability and outliers of av-
erage angles by PDD+DEG as well as an increased mean by
adding the proposed gradient regularization. This indicates
that DEG can complement PDD, especially when it is un-
derperformed as shown in our later experiments.

Performance Evaluations
Datasets. We evaluate our method on three image bench-
marks with increasing complexity and cluttered scenes,

namely Fashion-MNIST, CIFAR-100, and Tiny-ImageNet.
In particular, Fashion-MNIST 3 has 10-class (L = 10) la-
bels and consists of 60k training samples and 10k testing
samples each with 28× 28 resolution; CIFAR-100 has 100-
class (L = 100) labels and contains 50k training samples
and 10k testing samples each with 32 × 32 × 3 resolution;
Tiny-ImageNet has 200 classes (L = 200), containing 100k
and 10k samples each of 64× 64× 3 resolution for training
and validation testing, respectively. In all cases, the image
intensity is normalized to 1 in our experiments.

Target Models. On each dataset, we implement deep en-
sembles comprisingK ResNet-18 networks (He et al. 2016).
The PDD method is applied to the last FC layer of 512 neu-
rons before the softmax layer. Two cases of K = 3 and
K = 5 are tested with model parameters set as described
in the PDD section. Note that our methods do not require
any specification on L. For the PDD regularization, we set
α = 0.9 and β = 0.1 for computing the keep rate in (2) in
all our experiments. Unless otherwise specified, we choose
M = 10 for K = 3 and M = 20 for K = 5 empiri-
cally. For the DEG regularization, we set λ = 0.01 to control
the penalty strength in (3). The proposed training method is
evaluated in comparison with the baseline, i.e., independent
training each network with (1), and the ADP training with
best performing parameters set as described in (Pang et al.
2019). Following common practice, we evaluate the recog-
nition accuracy under adversarial perturbations to measure
the adversarial robustness of an ensemble model. A higher
recognition accuracy corresponds to a lower success rate by
adversarial attacks.

Threat Models. Denote the target model by F and the de-
fence measure by D. Based on the adversary’s knowledge,
we consider the following threat models:

• White-box Attack assumes a full access and knowledge of
both F and D (if deployed).

• Type I (Oblivious) Black-box Attack has no knowledge
about the model F or the defence method D if there is
any.

• Type II (Adaptive) Black-box Attack assumes knowledge
about the type of F and D in use but no implementation
details such as the model and defence parameters.

Attack Methods. Under the above threat models, we con-
duct untargeted attacks with five representative methods,
namely FGSM (Goodfellow, Shlens, and Szegedy 2015),
BIM (Kurakin, Goodfellow, and Bengio 2017), PGD (Madry
et al. 2018), JSMA (Papernot et al. 2016), and the C&W at-
tack (Carlini and Wagner 2017b). The control parameter(s)
for each attack method varies. Unless otherwise specified,
the attack parameter (Para.) in all tables is referred as the at-
tack strength ε for FGSM, BIM and PGD, γ with the control

3https://github.com/zalandoresearch/fashion-mnist/
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Attacks Fashion-MNIST CIFAR-100 Tiny-ImageNet
Para. Base. ADP PDD+DEG Para. Base. ADP PDD+DEG Para. Base. ADP PDD+DEG

No Attack - 94.37 93.91 94.39 - 80.32 80.36 79.81 - 67.36 66.94 64.68

FGSM 0.01 82.36 86.86 89.85 0.02 23.47 35.70 44.74 0.02 18.87 12.46 45.63
0.02 67.38 79.83 80.90 0.04 12.13 22.81 21.81 0.04 7.44 3.79 24.92

BIM 0.01 77.74 82.96 84.58 0.01 13.13 23.94 45.74 0.01 16.87 12.41 34.22
0.02 58.40 70.84 66.54 0.02 2.38 12.28 33.96 0.02 3.30 2.32 16.35

PGD 0.01 82.13 85.78 87.19 0.01 18.38 26.57 48.37 0.01 22.85 19.85 39.16
0.02 63.40 72.80 69.92 0.02 2.88 10.90 29.88 0.02 5.30 3.81 17.49

JSMA 0.1 62.17 80.26 77.37 0.05 32.52 52.94 65.14 0.05 43.64 47.74 65.78
0.2 29.89 50.53 46.84 0.1 13.50 26.69 45.74 0.1 26.18 28.95 52.09

C&W 0.1 34.10 34.25 89.60 0.01 0.38 1.88 53.63 0.01 3.57 1.02 27.76

Table 2: Recognition accuracy (%) under white-box attacks with control parameter (Para.) as ε inL∞ for FGSM, BIM and PGD,
L0 for JSMA, and L2 norm for C&W. The ensemble size is K = 3. Higher ensemble accuracy indicates better recognition
robustness under adversarial attacks. The best performance is marked in bold.

Attacks CIFAR-100
Para. Base. ADP PDD+DEG

FGSM 0.02 23.96 39.82 49.85
0.04 13.45 25.34 28.43

BIM 0.01 13.23 31.61 47.01
0.02 2.82 22.71 32.16

PGD 0.01 18.04 32.54 47.66
0.02 2.83 19.09 29.82

JSMA 0.05 37.16 52.42 67.51
0.1 15.71 26.67 46.33

C&W 0.01 0 6.67 53.50

Table 3: Recognition accuracy (%) under white-box attacks
with K = 5 on CIFAR-100.

of L0 perturbation intensity θ = 0.1 for JSMA. The hyper-
parameter c in the C&W objective function affects the classi-
fication error and is chosen by a modified binary search. We
use the default setting of C&W for controlling the predic-
tive confidence of L2 perturbations. Our implementation is
based on Pytorch and the Adversarial Robustness 360 Tool-
box (ART) v1.1 library 4.

White-Box Attacks
Table 2 and 3 display the recognition accuracy of different
ensemble methods for K = 3 and K = 5, respectively.
For fair comparisons, we follow the experimental settings in
(Pang et al. 2019) to set up the ε values for FGSM, BIM
and PGD. For example, each pixel is allowed to perturbed
up to 5/255 when ε = 0.02 of which the image artefacts are
already visible as shown in Figure 5 (b). For BIM and PGD,
the attack iterations is 10. The learning rate is set to 0.001
for C&W with 1000 iteration steps.

Table 2 shows that 20 out of 27 baseline results (i.e., with-
out defence) have a recognition accuracy less than 50%,

4https://github.com/IBM/adversarial-robustness-toolbox

Black-Box Attacks Para. Base. ADP PDD+DEG

Type I

FGSM 0.02 42.93 46.25 45.62
0.04 26.08 27.00 27.08

PGD 0.01 66.95 68.50 69.14
0.02 34.07 37.35 42.84

JSMA 0.05 38.06 55.46 65.62
0.1 12.69 29.70 43.22

Type II

FGSM 0.02 31.73 45.02 58.59
0.04 17.22 14.02 38.38

PGD 0.01 14.02 57.75 87.37
0.02 3.94 27.75 77.60

JSMA 0.05 37.76 54.85 70.66
0.1 16.92 28.18 51.97

Table 4: Recognition accuracy (%) under black-box attacks
by surrogates of the ensembles with K = 5 on CIFAR-100.

which corresponds to a high attack success rate. For ex-
ample, the CIFAR-100 baseline has a recognition accuracy
of only 2.88% and 0.38%, and the Tiny-ImageNet model
has only 5.30% and 3.57% under PGD (0.02) and C&W
(0.1), respectively, indicating these attacks are fairly strong.
In these cases, the proposed PDD+DEG is able to achieve
a more significant gain of adversarial robustness by up to
52%. Similar gain can be also observed with K = 5 in Ta-
ble 3. In general, the proposed method performs better on
CIFAR-100 and Tiny-ImageNet where the data has more la-
bel classes and complex scenes.

Black-Box Attacks
Table 4 reports under the two types of black-box attacks de-
fined in Threat Models. We simulate the black-box attacks
by building an ensemble of surrogate models with K = 5
on CIFAR-100. For Type I (oblivious) attacks, the surrogates
are trained with baseline VGG-16 that have a different archi-
tecture from the target model. For Type II (adaptive) attacks,
the surrogates are trained with the same defence method (if

7828



0 0.0050.01 0.02 0.04 0.08 0.16 0.32

L∞ perturbation (ε)

0

20

40

60

80

Baseline ADP DEG PDD PDD+DEG

0 0.1 0.2 0.4 0.8 1.6 3.2 6.4

L2 perturbation (ε)

0

20

40

60

80

Figure 4: Recognition accuracy (%) under the PGD attack
with an increasing value (in log2 scale) of the normalized
perturbation intensity ε on CIFAR-100.

(a) (b) (c)

Figure 5: (a) Original image from CIFAR-100, (b) PGD
(L∞) with ε = 0.02, (c) PGD (L2) with ε = 0.4. Artefacts
can be visible between bottles on the adversarial examples.

there is any) as the target but deployed on ResNet-34 instead
of the ResNet-18 networks.

In Table 4, adversarial examples generated on the surro-
gate baseline and ADP models in general have higher suc-
cess rates when attacking the target models (reporting lower
recognition accuracies), especially under adaptive attacks
when the defence method D is known to the adversary. On
the other hand, the proposed training of PDD+DEG is able
to restrain the transferrability of adversarial examples gener-
ated on the surrogates, making them less effective to attack
the target model. Therefore, the gain of adversarial robust-
ness by our method is significantly higher, especially under
the Type II adaptive attacks.

Increasing Attack Strength
Figure 4 evaluates the adversarial robustness of deep ensem-
bles with K = 3 by increasing the perturbation intensity of
PGD on CIFAR-100 in a white-box setting. Note that the im-
age pixels are normalized to be within 1. The plots are on a
semi-log scale with the ε value doubly increased over the x-
axis. In general, the proposed method of PDD+DEG is more
robust as the recognition accuracy of all methods declines
with an increasing intensity of ε constrained in L2 and L∞
norms. For example, it remains a recognition accuracy of
50% at ε = 0.4 (L2) while the baseline performance drops
below 20%. The robustness limit of PDD+DEG is 0.32 (i.e.,
82/255 pixels) in terms of L∞ perturbations before reaching
a zero recognition accuracy. This is about 8 times larger than

Attack Methods CIFAR-100, K = 3
PDD DEG PDD+DEG

BIM (ε = 0.02) 21.76 2.45 30.90
PGD (ε = 0.02) 22.43 2.45 29.88
JSMA (γ = 0.1) 34.73 18.41 45.74

Table 5: Ablation tests under white-box attacks with the best
performances are marked in bold.

Attacks CIFAR-100
FGSM PGD

L∞ perturbation (ε) 0.04 0.08 0.02 0.04
AdvTFGSM 41.06 20.8 20.15 3.62
AdvTFGSM + PDD 59.64 27.09 38.17 19.5
AdvTPGD 44.14 21.67 44.11 15.69
AdvTPGD + PDD 55.56 34.68 51.02 26.13

Table 6: Recognition accuracy (%) under white-box attacks
by incorporating adversarial training to the ensemble model
with K = 3 on CIFAR-100.

that of the baseline on CIFAR-100. Similarly, the L2 limit is
improved by about 4 times by the proposed PDD+DEG.

Figure 5 gives PGD-generated attack examples with the
original image labelled bottle taken from the test set of
CIFAR-100. Image artefacts are clearly visible between the
two bottles on adversarial examples generated with ε = 0.02
(L∞) and ε = 0.4 (L2), respectively. For such perturba-
tion intensities, the baseline performance drops quickly to
2.54% and 14.72% while the PDD+DEG performance still
has 29.88% and 46.48%. We have also conducted experi-
ments to empower white-box attacks by increasing the num-
ber of attack iterations from 10 to 30 for BIM, PGD, 1000 to
2000 for CW. The proposed method of PDD+DEG improves
the robustness of baseline by 14-50% and that of ADP by
13-48% under different attacks.

Ablation Tests
In Figure 4, we see that the DEG-only performance is close
to the baseline. Similar (sometimes better) results can be ob-
served under other attacks such as FGSM. This indicates that
promoting dispersion of ensemble gradients by itself is not
as effective. However, it is able to enhance the PDD regular-
ization to promote the diversified learning by exploring and
expanding the normal feature space. Our ablation tests ver-
ify this. In Table 5, PDD contributes more to the gain of ro-
bustness while PDD+DEG improves the recognition perfor-
mance by more than 7% under different white-box attacks.

Adversarial Training
The proposed regularization techniques are designed to pro-
mote diversified learning of simultaneous training for deep
ensembles. It can work in conjunction with other defences
acting on individual models. To show this, we combine the
PDD strategy with adversarial training (Goodfellow, Shlens,
and Szegedy 2015) that augments the training data with ad-
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versarial examples in each mini-batch. We denote the one
injected with FGSM examples by AdvTFGSM and the one
with PGD examples by AdvTPGD. Table 6 demonstrates re-
sults under white-box attacks for the ensemble methods with
K = 3 on CIFAR-100. It can be seen that our method is able
to complement adversarial training to boost the ensemble
robustness to a new level, especially under attacks of large
perturbation intensities. The improvement is also significant
for adversarial training with different attack examples, e.g.
AdvTFGSM against PGD and AdvTPGD against FGSM.

Complexity Analysis
The PDD method involves counting inO(Ck) and sorting in
O(M logM), where Ck is the number of FC units in the k-
th network and M is the number of intervals. DEG involves
gradient regularization which is a second-order method that
can increase training time per batch by a factor of two (Ros
and Doshi-Velez 2018). Given the input gradients, comput-
ing the penalty form in (3) requires O(K2) for pair-wise
operations over K networks. The cosine similarity conven-
tionally requires O(n2) where n is the gradient dimension.
We test the training time per epoch with a mini-batch size
of 64 on CIFAR-100. When K = 3, for example, it takes
54s/epoch for baseline, 64s/epoch for ADP, 93s/epoch for
PDD, and 703s/epoch for DEG on Tesla V100. We note that
PDD contributes most to the gain of robustness in ablation
tests, while DEG improves the diversified learning by ex-
ploring and expanding the normal feature space. A future
work may consider improving the efficiency of the proposed
training strategy, e.g., by avoiding the expensive second-
order methods.

Conclusion
In this paper, we have proposed to improve adversarial de-
fence by promoting ensemble diversity of high-level feature
representations between base networks. To this end, we have
devised a novel diversified dropout with gradient dispersion
to regularize the simultaneous training of deep ensembles.
The proposed approach is effective under different attacks
and reduces the transferrability of adversarial examples in
black-box settings, especially against adaptive attacks. It
also complements the defence paradigm of adversarial train-
ing, and can further boost the ensemble performance under
more intensive adversarial perturbations.
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