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Abstract

The purpose of few-shot recognition is to recognize novel cat-
egories with a limited number of labeled examples in each
class. To encourage learning from a supplementary view, re-
cent approaches have introduced auxiliary semantic modal-
ities into effective metric-learning frameworks that aim to
learn a feature similarity between training samples (support
set) and test samples (query set). However, these approaches
only augment the representations of samples with available
semantics while ignoring the query set, which loses the po-
tential for the improvement and may lead to a shift between
the modalities combination and the pure-visual representa-
tion. In this paper, we devise an attributes-guided attention
module (AGAM) to utilize human-annotated attributes and
learn more discriminative features. This plug-and-play mod-
ule enables visual contents and corresponding attributes to
collectively focus on important channels and regions for the
support set. And the feature selection is also achieved for
query set with only visual information while the attributes
are not available. Therefore, representations from both sets
are improved in a fine-grained manner. Moreover, an atten-
tion alignment mechanism is proposed to distill knowledge
from the guidance of attributes to the pure-visual branch for
samples without attributes. Extensive experiments and analy-
sis show that our proposed module can significantly improve
simple metric-based approaches to achieve state-of-the-art
performance on different datasets and settings.

Introduction
The recent success of visual recognition tasks commonly
relies on supervised learning from a large number of la-
beled samples. However, in many practical applications, it
is expensive and time-consuming to collect sufficient la-
beled samples for each category. Inspired by the fact that
humans are good at learning to identify objects with very lit-
tle direct supervision, few-shot learning (FSL) has attracted
considerable attention. Trained on sufficient labeled samples
from known categories (seen classes) and given very few la-
beled samples (support set) of a set of new categories (un-
seen classes), few-shot recognition methods aim at classify-
ing unlabeled samples (query set) into these new categories.
To imitate the process of learning new concepts, seen and
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Figure 1: An illustration of the effect of our proposed at-
tention alignment mechanism. The network learns to focus
more on discriminative features of support samples with the
guidance of auxiliary attributes. And the attention alignment
mechanism helps the self-guided branch to learn to select
important features without attributes.

unseen classes do not overlap, which makes classical deep
learning methods to have generalization issues. Meanwhile,
only very few labeled samples are available for the test un-
seen classes, which may cause severe overfitting when trying
common fine-tuning strategies.

An effective approach to the few-shot recognition prob-
lem is to train a neural network to embed support and query
samples into a smaller embedding space, where categories
can distinguish with each other based on a distance met-
ric (Vinyals et al. 2016; Sung et al. 2018). Existing works
have achieved promising results by improving the informa-
tiveness and discriminability of the learned representations.
Ulteriorly, inspired by the hypothesis that language helps in-
fants to learn to recognize new visual objects (Jackendoff
1987), some recent approaches introduce auxiliary semantic
modalities such as label embeddings (Xing et al. 2019) and
attribute annotations (Tokmakov, Wang, and Hebert 2019)
to compensate for the lack of supervision. These approaches
assume that auxiliary semantic information is only avail-
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able for support set, but not for query set that is regarded
as the prediction object. However, while following this re-
alistic setting, these approaches only focus on the learning
of support representations via information mixture or con-
straint with the help of semantics. The necessity of explicitly
designing special mechanisms for query samples has been
ignored, resulting in a potential loss of performance. More-
over, as visual and semantic feature spaces naturally have
heterogeneous structures, query representations directly ob-
tained from visual contents may shift from same-labeled
support representations mixed of both visual and semantic
modalities. This is shown as the failure of increasing the
intra-class similarity and reducing the inter-class similarity,
which damages the accuracy of recognition.

In this paper, we propose a novel attributes-guided at-
tention module (AGAM) to utilize human-annotated at-
tributes as auxiliary semantics and learn more discrimina-
tive features. AGAM contains two parallel branches, i.e.,
the attributes-guided branch and the self-guided branch.
Each branch sequentially applies two attention modules, first
a channel-wise attention module to blend cross-channel in-
formation and learn which channels to focus, then a spatial-
wise attention module to learn which areas to focus. The
difference between the two branches is that corresponding
attributes of support samples can guide the feature selection
in the attributes-guided branch, leading to more represen-
tative and discriminative representations due to the promi-
nence of relevant elements and noise reduction of irrelevant
clutters. And the self-guided branch also helps to refine the
pure-visual representations of samples when attributes are
not available. Different from existing modality mixture ap-
proaches (Xing et al. 2019; Schwartz et al. 2019) that di-
rectly mix multiple modalities with an adaptive proportion,
we use the attention mechanism to enhance the informative-
ness of representations more finely, while ensuring the sup-
port representations modified with attributes live in the same
space of pure-visual query representations.

Although query representations output by the self-guided
branch go through a similar process to support ones, the lack
of semantic information may lead to an inaccurate focus on
important channels or regions, which increases the distance
between same-labeled support and query samples. To handle
the issue, we propose an attention alignment mechanism
for AGAM, which aligns the attention weights from both
branches with a specially-designed attention alignment loss
during the learning of support representations. As the fea-
tures to be emphasized or suppressed by the two branches
tend to be similar, the alignment can be regarded as a special
case of knowledge distillation (Hinton, Vinyals, and Dean
2015), which means the branch with less information can
learn from the branch with more information. Therefore, as
shown in Figure 1, the self-guided branch can better locate
informative features without the guidance of attributes. Note
that our AGAM can be viewed as a plug-and-play module,
making existing metric-learning approaches more effective.
To summarize, our main contributions are in several folds:

1. We utilize powerful channel-wise and spatial-wise at-
tention to learn what information to emphasize or suppress.
While considerably improving the representativeness and

discriminability of representations in a fine-grained manner,
features extracted by both visual contents and corresponding
attributes share the same space with pure-visual features.

2. We propose an attention alignment mechanism between
the attributes-guided and self-guided branches. The mech-
anism contributes to learning the query representations by
matching the focus of two branches, so that the supervision
signal from the attributes-guided branch promotes the self-
guided branch to concentrate on more important features
even without attributes.

3. We conduct extensive experiments to demonstrate that
the performance of various metric-based methods is greatly
improved by plugging our light-weight module.

Related Work
Few-Shot Recognition
Few-shot recognition aims to learn to classify unseen data
examples into a set of new categories given only a few
labeled samples. Having made significant progress, most
meta-learning approaches can be roughly divided into two
categories. The first is optimization-based methods, which
learn a meta-learner to adjust the optimization algorithm so
that the model can be good at learning with a few examples,
usually by providing the search steps (Ravi and Larochelle
2017) or a good initialization to begin the search (Finn,
Abbeel, and Levine 2017; Nichol, Achiam, and Schulman
2018). The second is metric-based methods (Vinyals et al.
2016; Snell, Swersky, and Zemel 2017; Sung et al. 2018;
Oreshkin, López, and Lacoste 2018), which learn a gener-
alizable embedding model to transform all instances into a
common metric space, and in this metric space, simple clas-
sifiers can be executed directly.

Learning with Semantic Modalities
With the rapid growth of multimedia data, multimodal anal-
ysis has attracted a lot of attention in recent years. In particu-
lar, zero-shot learning methods use various semantic modal-
ities to recognize unseen classes without any available la-
beled samples (Reed et al. 2016; Xian et al. 2019). The
common practice in zero-shot learning is to train a projec-
tion between visual and semantic feature spaces with labeled
samples in seen classes, and apply the learned projection to
unseen classes when inferring. Although the setting of zero-
shot learning seems similar to that of few-shot learning, sim-
ply fine-tuning zero-shot methods with few samples in few-
shot problems may lead to overfitting.

Recently, building upon existing metric-based meta-
learning methods, some few-shot learning works propose
to utilize auxiliary semantic modalities in a quite differ-
ent manner from zero-shot learning. (Chen et al. 2019b)
maps samples into a concept space and synthesizes instance
features by interpolating among the concepts. (Tokmakov,
Wang, and Hebert 2019) proposes a simple attribute-based
regularization approach to learn compositional image repre-
sentations. (Xing et al. 2019) models the representation as
a convex combination of the two modalities. And (Schwartz
et al. 2019) proposes a benchmark for few-shot learning with
multiple semantics. In our work, with the help of attributes
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Figure 2: The overall framework of AGAM. Based on whether attributes to the image are available, one of the attributes-guided
branch and the self-guided branch is selected. The input features sequentially pass a channel-wise attention module (a) and a
spatial-wise attention module (b) to obtain the final-refined features.

as the only semantic modality, we utilize channel-wise and
spatial-wise attention to learn a better metric space in a fine-
grained manner. Furthermore, we design an attention align-
ment mechanism to align the focus of the attributes-guided
and self-guided branches, helping to reduce mismatches of
same-labeled query and support samples.

Methodology
Preliminaries
As only a few labeled samples are available in each unseen
class, all approaches in our experiments follow the episodic
training paradigm, which has been demonstrated as an ef-
fective approach for few-shot recognition (Snell, Swersky,
and Zemel 2017; Sung et al. 2018). In general, models are
trained on K-shot N -way episodes, and each episode can
be seen as an independent task. An episode is created by
first randomly sampling N categories from seen classes and
then randomly sampling support and query samples from
these categories. Our method hypothesizes that both visual
contents and attributes as semantic information can be use-
ful for few-shot learning. Therefore, the support set S =

{(si, ai, yi)}N×Ki=1 contains K labeled examples for each of
the N categories. Here, si is the i-th image, ai denotes the
attributes vector to the image, and yi ∈ {1, . . . , N} denotes
the class label to the image. However, the attributes for query
samples are considered to be unavailable, and the query set
Q = {(qi, yi)}Qi=1. Here, qi is the i-th image, and Q denotes
the number of query samples. The training phase aims to
minimize the loss of the prediction in the query set for each
episode, and the performance of the method is measured by

the prediction accuracy of new episodes sampling from un-
seen classes. Note that attributes are not used in some of the
experimental comparison approaches.

Algorithm Overview
In this work, we resort to metric-based methods to obtain
proper feature representations for support and query sam-
ples, and propose an attributes-guided attention module
(AGAM) to modify the features by taking into account the
attribute annotations to the images. Figure 2 presents an
overview of our proposed AGAM. Inspired by (Woo et al.
2018), we utilize channel-wise attention and spatial-wise at-
tention modules to obtain the final refined features. How-
ever, different from the previous work, we design two paral-
lel branches, i.e., attributes-guided branch (denoted by ag)
and self-guided branch (denoted by sg). For samples with
attributes annotations, the attributes-guided branch learns
the attention weights by incorporating both attributes and vi-
sual contents. And the self-guided branch is designed for the
inference of samples without the guidance of attributes. Fur-
thermore, we propose an attention alignment mechanism
in AGAM, which aims to pull the focus of the two branches
closer, so that the self-guided branch can capture more infor-
mative features for query samples without the guidance of
attributes. Note that AGAM is a flexible module and can be
easily added into any part of convolutional neural networks.

Channel-Wise Attention Module
Firstly, as each channel of a feature map can be considered
as a feature detector (Zeiler and Fergus 2014), we produce a
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1D channel-wise attention map to focus on “what” is mean-
ingful in the given image, as shown in Figure 2(a). Given an
intermediate feature map F ∈ RC×H×W output by an estab-
lished convolutional backbone network, based on whether
the attributes vector a ∈ RD corresponding to the original
image is available, the input of the channel-wise attention
module can be different. As the attributes vector is not avail-
able in the self-guided branch, the input Fsg

c inp is the same
as F, where c inp denotes the input of the channel attention
module. And for samples with attributes, we firstly broad-
cast a along height and width dimension of F to obtain a
tensor A ∈ RD×H×W , then concatenate F and A on the
channel dimension to get the input of the attributes-guided
branch Fag

c inp = [F;A] ∈ RC
′
×H×W , where C

′
= C +D

and [; ] denotes the concatenation.
To compute the channel-wise attention efficiently,

max-pooling and average-pooling are first used in par-
allel to squeeze the spatial dimension of the input
feature. As shown in the later ablation study, us-
ing both pooling strategies simultaneously can bring
complementary and distinctive features. Here we have
MaxPool(Fsg

c inp),AvgPool(Fsg
c inp) ∈ RC×1×1, and

MaxPool(Fag
c inp),AvgPool(Fag

c inp) ∈ RC
′
×1×1. For each

branch, features pooled by each pooling layer are then for-
warded to an attention generating network, which consists
of two convolutions with kernel size 1 and can also be seen
as two linear transformations with a ReLU activation in be-
tween (Lin, Chen, and Yan 2014). The purpose of this at-
tention generating network is to generate channel-wise at-
tention after exploiting the inter-channel relationship of fea-
tures, and note that parameters of this network are not shared
between two branches. The element-wise summation is used
to merge the results of the same branch. In short, we have

Mag
c =σ(Wag

1 (Wag
0 (MaxPool(Fag

c inp)))

+Wag
1 (Wag

0 (AvgPool(Fag
c inp)))), (1)

Msg
c =σ(Wsg

1 (Wsg
0 (MaxPool(Fsg

c inp)))

+Wsg
1 (Wsg

0 (AvgPool(Fsg
c inp)))), (2)

where σ denotes the sigmoid activation function, Wag
0 ∈

R(C
′
/r)×C

′

, Wag
1 ∈ RC×(C

′
/r), Wsg

0 ∈ R(C/r)×C ,
Wsg

1 ∈ RC×(C/r) are parameters of convolutions, and r is a
reduction ratio to reduce parameter overhead. Note that the
ReLU activation followed by W0 is omitted for clearer ex-
pression. To obtain the channel-refined features, we multiply
Mag

c ,M
sg
c ∈ RC×1×1 with the feature map F, expressed as

Fag
c out = Mag

c ⊗ F, Fsg
c out = Msg

c ⊗ F, (3)

where Fc out ∈ RC×H×W represents the output of the
channel-wise attention module in the corresponding branch,
and ⊗ denotes element-wise multiplication. During multi-
plication, the channel-wise attention values are broadcasted
along the spatial dimension.

Spatial-Wise Attention Module
As illustrated in Figure 2(b), we also generate a 2D spatial-
wise attention map to focus “where” is an informative re-
gion. The input of the module is Fsg

s inp = Fsg
c out ∈

RC×H×W for the self-guided branch, and Fag
s inp =

[Fag
c out;A] ∈ RC

′
×H×W for the attributes-guided branch.

For both two branches, we first apply max-pooling and
average-pooling operations along the channel dimension and
concatenate the pooled features. Then for each branch, a
convolution layer is used to generate the spatial-wise atten-
tion map. In short, the attention map is computed as

Mag
s = σ(fag(

[
AvgPool(Fag

s inp);MaxPool(Fag
s inp)

]
)),

(4)

Msg
s = σ(fsg(

[
AvgPool(Fsg

s inp);MaxPool(Fsg
s inp)

]
)),

(5)

where σ denotes the sigmoid activation function. f repre-
sents a convolution operation with the filter size of 7×7 and
the number of zero-paddings on both sides of 3, whose pa-
rameters are also not shared between the two branches. To
obtain the final refined features, we multiply Mag

s ,M
sg
s ∈

R1×H×W with the channel-refined features in the corre-
sponding branch, which can be expressed briefly as

Fag
s out = Mag

s ⊗ Fag
c out, Fsg

s out = Msg
s ⊗ Fsg

c out, (6)

where Fs out ∈ RC×H×W represents the output of the cor-
responding branch. During multiplication, we broadcast the
spatial-wise attention values along the channel dimension.

Attention Alignment Mechanism
As AGAM works with other metric-learning approaches,
these improved feature embeddings are finally fed into a
metric-based learner. For a K-shot N -way episode contain-
ingQ query samples, the metric-based classification loss can
be defined as the negative log-probability according to the
true class label yn ∈ {1, 2, . . . , N}:

Lmbc = −
Q∑

b=1

log p(y = yn|vqb ), (7)

where vqb denotes the feature embedding of the b-th query
sample. Note that p(y = yn|vqb ) is the probability of pre-
dicting vqb as the n-th class and can be different in various
metric-learning approaches, hence, the specific representa-
tion of probability depends on the chosen approach.

Furthermore, as the lack of attributes annotations may
lead the self-guided branch to concentrate on suboptimal
features, the metric-based learner is likely to make wrong
predictions for query images as the located channels and
regions are shifted from those of the same-labeled support
samples. Therefore, to encourage the self-guided branch to
learn to emphasize or suppress the same features as if at-
tributes have participated in learning, we design an atten-
tion alignment mechanism between the two branches. This
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Method
CUB SUN

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet (Vinyals et al. 2016), paper 61.16 ± 0.89 72.86 ± 0.70 - -
MatchingNet (Vinyals et al. 2016), our implementation 62.82 ± 0.36 73.22 ± 0.23 55.72 ± 0.40 76.59 ± 0.21
MatchingNet (Vinyals et al. 2016) with AGAM 71.58 ± 0.30 75.46 ± 0.28 64.95 ± 0.35 79.06 ± 0.19

+8.76 +2.24 +9.23 +2.47

ProtoNet (Snell, Swersky, and Zemel 2017), paper 51.31 ± 0.91 70.77 ± 0.69 - -
ProtoNet (Snell, Swersky, and Zemel 2017), our implementation 53.01 ± 0.34 71.91 ± 0.22 57.76 ± 0.29 79.27 ± 0.19
ProtoNet (Snell, Swersky, and Zemel 2017) with AGAM 75.87 ± 0.29 81.66 ± 0.25 65.15 ± 0.31 80.08 ± 0.21

+22.86 +9.75 +7.39 +0.81

RelationNet (Sung et al. 2018), paper 62.45 ± 0.98 76.11 ± 0.69 - -
RelationNet (Sung et al. 2018), our implementation 58.62 ± 0.37 78.98 ± 0.24 49.58 ± 0.35 76.21 ± 0.19
RelationNet (Sung et al. 2018) with AGAM 66.98 ± 0.31 80.33 ± 0.40 59.05 ± 0.32 77.52 ± 0.18

+8.36 +1.35 +9.47 +1.31

Table 1: Average accuracy (%) comparison with 95% confidence intervals before and after incorporating AGAM into existing
methods using a Conv-4 backbone. Best results are displayed in boldface, and improvements are displayed in italics.

is achieved by applying an attention alignment loss to the
same type of attention maps obtained from the same sup-
port sample but different branches. Among various types of
losses that can be used to measure the similarity of attention
maps, we choose a soft margin loss according to the exper-
imental results. Specifically, the attention alignment loss of
the i-th sample can be expressed as

lcasi =
∑
j

log(1 + exp(−M̃ag
c (j)⊗ M̃sg

c (j))), (8)

lsasi =
∑
j

log(1 + exp(−M̃ag
s (j)⊗ M̃sg

s (j))), (9)

where M̃ indicates that the attention map is normalized, and
(j) denotes the j-th element of the attention map. For each
episode, all support samples are taken into account:

Lcas =
N∗K∑

i

lcasi , Lsas =
N∗K∑

i

lsasi . (10)

It is noted that our attention alignment mechanism can be
regarded as a special case of knowledge distillation (Hinton,
Vinyals, and Dean 2015), where attention maps (referred to
the “knowledge”) of the attributes-guided branch (viewed as
a teacher model) become the distillation targets for the self-
guided branch (viewed as a student model). By mimicking
the focusing behaviors of the attributes-guided branch, the
self-guided branch with only unimodal input is expected to
concentrate on more informative features.

Accordingly, the overall loss of each episode is defined
as L = Lmbc + αLcas + βLsas, where α, β are the trade-
off hyperparameters to balance the effects of different losses.
The time complexity of AGAM isO(C

′
HW ), and the space

complexity is O(C
′2
). As the complexities vary with the

size of the input features, we note that in our experiments,
AGAM is inserted after the last convolutional layer of the
backbone network to avoid excessive cost.

Experiments
Experimental Setup
Datasets. We use two datasets with high-quality attribute
annotations to conduct experiments: Caltech-UCSD-Birds
200-2011 (CUB) (Wah et al. 2011) and SUN Attribute
Database (SUN) (Patterson et al. 2014).

Experimental Settings. We experiment with our ap-
proach on 5-way 1-shot and 5-way 5-shot settings, and in
each episode, 15 query samples per class are used for both
training and inference. We report the average accuracy (%)
and the corresponding 95% confidence interval over the
10,000 episodes randomly sampled from the test set.

Implementation Details. Our method is trained from
scratch and uses the Adam (Kingma and Ba 2015) optimizer
with an initial learning rate 10−3. Following the settings
of (Chen et al. 2019a), we apply standard data augmenta-
tion including random crop, left-right flip, and color jitter in
the meta-training stage. And for meta-learning methods, we
train 60,000 episodes for 1-shot and 40,000 episodes for 5-
shot settings. For AGAM, we set trade-off hyperparameters
α = 1.0 and β = 0.1 for all experiments. Code is available
at https://github.com/bighuang624/AGAM.

Adapting AGAM into Existing Frameworks
To verify the effectiveness of our proposed AGAM, we em-
bed it into three metric-based meta-learning approaches:
Matching Network (Vinyals et al. 2016), Prototypical Net-
work (Snell, Swersky, and Zemel 2017), and Relation Net-
work (Sung et al. 2018). Table 1 shows the gains obtained by
incorporating AGAM into each approach on two datasets,
and for all three approaches, incorporating AGAM leads to
a significant improvement. An observation is that AGAM
boosts the performance of Prototypical Network nearly by
23% on the 1-shot setting and 10% on the 5-shot setting of
CUB, which is especially prominent when compared with
other metric-based methods. We believe the reason is that
when identifying bird species in such a fine-grained dataset
as CUB, a very detailed comparison between the support and
the query sample is required. While Matching Network and
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Method Backbone
Test Accuracy

5-way 1-shot 5-way 5-shot

CUB
MatchingNet (Vinyals et al. 2016) Conv-4 61.16 ± 0.89 72.86 ± 0.70
ProtoNet (Snell, Swersky, and Zemel 2017) Conv-4 51.31 ± 0.91 70.77 ± 0.69
RelationNet (Sung et al. 2018) Conv-4 62.45 ± 0.98 76.11 ± 0.69
MACO (Hilliard et al. 2018) Conv-4 60.76 74.96
MAML (Finn, Abbeel, and Levine 2017) Conv-4 55.92 ± 0.95 72.09 ± 0.76
Baseline (Chen et al. 2019a) Conv-4 47.12 ± 0.74 64.16 ± 0.71
Baseline++ (Chen et al. 2019a) Conv-4 60.53 ± 0.83 79.34 ± 0.61
Comp. (Tokmakov, Wang, and Hebert 2019) ∗ ResNet-10 53.6 74.6
AM3 (Xing et al. 2019) † ∗ Conv-4 73.78 ± 0.28 81.39 ± 0.26
AGAM (OURS) ∗ Conv-4 75.87 ± 0.29 81.66 ± 0.25

MatchingNet (Vinyals et al. 2016) † ResNet-12 60.96 ± 0.35 77.31 ± 0.25
ProtoNet (Snell, Swersky, and Zemel 2017) ResNet-12 68.8 76.4
RelationNet (Sung et al. 2018) † ResNet-12 60.21 ± 0.35 80.18 ± 0.25
TADAM (Oreshkin, López, and Lacoste 2018) ResNet-12 69.2 78.6
FEAT (Ye et al. 2020) ResNet-12 68.87 ± 0.22 82.90 ± 0.15
MAML (Finn, Abbeel, and Levine 2017) ResNet-18 69.96 ± 1.01 82.70 ± 0.65
Baseline (Chen et al. 2019a) ResNet-18 65.51 ± 0.87 82.85 ± 0.55
Baseline++ (Chen et al. 2019a) ResNet-18 67.02 ± 0.90 83.58 ± 0.54
Delta-encoder (Bengio et al. 2018) ResNet-18 69.8 82.6
Dist. ensemble (Dvornik, Mairal, and Schmid 2019) ResNet-18 68.7 83.5
SimpleShot (Wang et al. 2019) ResNet-18 70.28 86.37
AM3 (Xing et al. 2019) ∗ ResNet-12 73.6 79.9
Multiple-Semantics (Schwartz et al. 2019) ∗ ◦ • DenseNet-121 76.1 82.9
Dual TriNet (Chen et al. 2019b) ∗ ◦ ResNet-18 69.61 ± 0.46 84.10 ± 0.35
AGAM (OURS) ∗ ResNet-12 79.58 ± 0.25 87.17 ± 0.23

SUN

MatchingNet (Vinyals et al. 2016) † Conv-4 55.72 ± 0.40 76.59 ± 0.21
ProtoNet (Snell, Swersky, and Zemel 2017) † Conv-4 57.76 ± 0.29 79.27 ± 0.19
RelationNet (Sung et al. 2018) † Conv-4 49.58 ± 0.35 76.21 ± 0.19
Comp. (Tokmakov, Wang, and Hebert 2019) ∗ ResNet-10 45.9 67.1
AM3 (Xing et al. 2019) † ∗ Conv-4 62.79 ± 0.32 79.69 ± 0.23
AGAM (OURS) ∗ Conv-4 65.15 ± 0.31 80.08 ± 0.21

Table 2: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on both CUB and SUN datasets.
† denotes that it is our implementation. ∗ denotes that it uses auxiliary attributes. ◦ denotes that it uses auxiliary label embed-
dings. • denotes that it uses auxiliary descriptions of the categories. Best results are displayed in boldface.

Relation Network benefit from inputting and analyzing each
support-query pair, the original Prototypical Network sepa-
rately embeds each sample and thus perform worse. How-
ever, AGAM supplements the required fine-grained infor-
mation for Prototypical Network by concatenating on dis-
criminative features, helping to better solve those challeng-
ing recognition tasks.

Comparison with State-of-the-Arts
To prove that simple metric-based methods can surpass the
previous state-of-the-art performance after equipping our
proposed AGAM, we report the results of our method and
others on both CUB and SUN datasets. Note that we choose
to display the results of Prototypical Network with our pro-
posed AGAM as our method. For a fair comparison, we split
the results achieved by all methods into two groups accord-
ing to the backbones, and our AGAM uses the same or a
smaller backbone network in each group.

As shown in Table 2, our proposed AGAM further im-
proves over Prototypical Network and achieves the best
performance among all approaches. It is pointed out that
AGAM not only outperforms methods that only use visual
contents, but also outperforms methods of utilizing aux-
iliary semantic information. We attribute this success to
two things. The first is that AGAM uses channel-wise and
spatial-wise attention to refine the representations from both
support and query set in a fine-grained manner, making full
use of visual contents and auxiliary attributes. The second
is that the attention alignment mechanism matches the focus
of two branches, which helps to alleviate the shift between
pure-visual query representations and the same-labeled sup-
port representations learned with the guidance of attributes.

Ablation Study
To empirically show the effectiveness of our framework de-
sign, a careful ablation study is conducted. Specifically, we
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Method
Test Accuracy

5-way 1-shot 5-way 5-shot

AGAM 75.87 ± 0.29 81.66 ± 0.25
AGAM SACA 74.22 ± 0.27 79.72 ± 0.26
w/o avgpool 66.27 ± 0.29 76.58 ± 0.25
w/o maxpool 67.60 ± 0.29 77.09 ± 0.22
w/o CA 54.91 ± 0.36 80.52 ± 0.24
w/o SA 69.66 ± 0.31 76.24 ± 0.27
w/o Lcas 74.88 ± 0.26 77.78 ± 0.26
w/o Lsas 74.29 ± 0.27 77.87 ± 0.23
w/o Lcas&Lsas 75.37 ± 0.31 78.92 ± 0.27

Table 3: Ablation test results of AGAM on CUB. Average
accuracies (%) with 95% confidence intervals of each model
are reported. Best results are displayed in boldface.

do one of the following operations at a time: (1) Exchange
the order of two attention modules. (2) Remove one of the
two pooling layers in both branches. (3) Remove one of the
two attention modules in both branches. (4) Remove one or
both Lcas and Lsas. We evaluate all these models on the
CUB dataset based on Prototypical Network with a Conv-4
backbone, and the results are shown in Table 3.

Influence of the Order of Attention Modules. We
first exchange the order of channel-wise attention and
spatial-wise attention in AGAM, with spatial-wise atten-
tion in the front and channel-wise attention in the back
(AGAM SACA). This leads to about 2% performance drops
on both 1-shot and 5-shot settings. The experimental results
show that the design of the module sequence is effective.

Influence of Pooling Layers. Removing either of the
average-pooling (w/o avgpool) and the max-pooling (w/o
maxpool) leads to 8% to 9% performance drops on the 1-
shot setting and 4% to 5% performance drops on the 5-shot
setting. This demonstrates that using both pooling strategies
simultaneously captures more useful information.

Influence of Attention Modules. Removing the channel-
wise attention (w/o CA) leads to about 1% performance
drops on the 5-shot setting, and more than 20% drops on
the 1-shot setting. This fully demonstrates the importance
of channel-wise attention in our proposed AGAM when la-
beled data is particularly scarce. Removing the spatial-wise
attention (w/o SA) drops the performance by 5% to 6% on
both 1-shot and 5-shot settings, which attests that the spatial-
wise attention brings stable and significant improvement.

Influence of Attention Alignment Loss. To prove the ef-
fectiveness of our proposed attention alignment mechanism,
we also remove one or both Lcas and Lsas. An observation
from the results is that removing both Lcas and Lsas (w/o
Lcas&Lsas) obtains about 1% performance higher than re-
moving one of them alone (w/o Lcas, w/o Lsas) on both 1-
shot and 5-shot settings. We believe the reason is that when
only aligning weights from the channel-wise or spatial-wise
attention modules, the important features of query samples
can not be consistently selected using only visual informa-
tion in the other attention module, and therefore it is better to
use neither Lcas nor Lsas. However, compared to the com-
plete AGAM model, all three models still perform less than

(b) (c)(a) (d)

Figure 3: Gradient-weighted class activation mapping
(Grad-CAM) visualization of query samples. Each row is
the result of the same query sample, and each column is:
(a) Original images. (b) Results of Prototypical Network.
(c) Results of AGAM but removing the attention alignment
mechanism. (d) Results of the complete AGAM.

1% worse on the 1-shot setting and 2% to 3% worse on the
5-shot setting, demonstrating that the joint use of two atten-
tion alignment loss items can lead to improvement.

Visualization Analysis

To qualitatively evaluate whether AGAM indeed exploits the
important features with the help of the attention alignment
mechanism, Figure 3 visualizes the gradient-weighted class
activation maps (Selvaraju et al. 2017) from Prototypical
Network, with AGAM but removing the attention alignment
mechanism, and with the complete AGAM. It is observed
that incorporating AGAM helps to attend to more represen-
tative local features than the original Prototypical Network,
which contributes to better recognition performance. Also,
the masks of AGAM-integrated model cover the representa-
tive regions better for query samples when using the atten-
tion alignment mechanism, indicating that the self-guided
branch benefits from the attention alignment mechanism.

Conclusion
In this paper, we propose an attributes-guided attention mod-
ule (AGAM) to fully utilize manually-encoded attributes
in few-shot recognition. Owing to the channel-wise atten-
tion and spatial-wise attention, the enhanced representa-
tions are more unique and discriminative for both sup-
port and query samples. Furthermore, through the well-
designed attention alignment mechanism, attention align-
ment is achieved between the attributes-guided branch and
the self-guided branch, which narrows the gap between the
representations learned with and without attributes. We have
demonstrated that our proposed AGAM boosts the perfor-
mance of metric-based meta-learning approaches by a large
margin, which are superior to that of state-of-the-arts.
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