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Abstract

Model-based reinforcement learning (RL) is more sample ef-
ficient than model-free RL by using imaginary trajectories
generated by the learned dynamics model. When the model
is inaccurate or biased, imaginary trajectories may be dele-
terious for training the action-value and policy functions.
To alleviate such problem, this paper proposes to adaptively
reweight the imaginary transitions, so as to reduce the neg-
ative effects of poorly generated trajectories. More specifi-
cally, we evaluate the effect of an imaginary transition by cal-
culating the change of the loss computed on the real sam-
ples when we use the transition to train the action-value
and policy functions. Based on this evaluation criterion, we
construct the idea of reweighting each imaginary transition
by a well-designed meta-gradient algorithm. Extensive ex-
perimental results demonstrate that our method outperforms
state-of-the-art model-based and model-free RL algorithms
on multiple tasks. Visualization of our changing weights fur-
ther validates the necessity of utilizing reweight scheme.

Introduction
Reinforcement learning (RL) algorithms are typically di-
vided into two categories, i.e., model-free RL and model-
based RL. The former directly learns the policy from the
interactions with the environment, and has achieved im-
pressive results in many areas, such as games (Mnih et al.
2015; Silver et al. 2016). But these model-free algorithms
are data-expensive to train, which limits their applications to
simulated domains. Different from model-free approaches,
model-based reinforcement learning algorithms learn an in-
ternal model of the real environment to generate imaginary
data, perform online planning or do policy search, which
holds promise to provide significantly lower sample com-
plexity (Luo et al. 2018).

Previously, model-based RL with linear or Bayesian mod-
els has obtained excellent performance on the simple low
dimensional control problems (Abbeel, Quigley, and Ng
2006; Deisenroth and Rasmussen 2011; Levine and Koltun
2013; Levine and Abbeel 2014; Levine et al. 2016). But
these methods are hard to be applied to high-dimensional
domains. Since neural network models can represent more
complex transition functions, model-based RL with them
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can solve higher dimensional control problems (Gal, McAl-
lister, and Rasmussen 2016; Depeweg et al. 2017; Naga-
bandi et al. 2018). However, learned high-capacity dynam-
ics models ineluctably face predicting error, which results
in the suboptimal performance and even catastrophic fail-
ures (Deisenroth and Rasmussen 2011).

Plenty of approaches have been proposed to alleviate the
above problem. For example, (Chua et al. 2018) learns an
ensemble of probabilistic models to mitigate the model er-
ror. (Clavera et al. 2018) also learns the ensemble of models,
and meta-trains a policy to adapt all the models so that the
policy can be robust against model-bias. Among this line
of research, a type of solution tries to tune model usage
to reduce adverse effects of the imaginary data generated
by inaccurate models, and promising results have been ob-
tained. (Kalweit and Boedecker 2017) only uses imaginary
trajectories in the case of high uncertainties of Q-function.
(Heess et al. 2015) only uses imaginary data to compute pol-
icy gradients. (Janner et al. 2019) replaces model-generated
rollouts begin from the initial state distribution with short
model-generated rollouts branched from the real data.

Above simple tuning schemes would result in that the
generated data is always ignored in some training processes
even it is completely accurate. Since samples with large pre-
diction errors in the imaginary experience will lead to the
value or policy function trained on it being inaccurate, adap-
tively filtering the samples with large prediction errors can
reduce the performance degradation caused by the model
bias. This makes a basic motivation of our study. However,
the prediction error of an imaginary transition is difficult to
obtain, because it is hard to decide a threshold of prediction
error to determine whether the sample should be abandoned
or not. For instance, when the value or policy function is
very imprecise, even the samples with relatively large pre-
diction errors can be used to optimize the function.

To handle above predication errors problem, we attempt to
adaptively tune model usage through reweighting the imag-
inary samples according to their potential effect on train-
ing, which is totally different from previous model usage ap-
proaches. More specifically, we measure the effect through
comparing the values of the optimization object (e.g, TD er-
ror) computed on the real samples before and after updat-
ing the functions using the imaginary transition. In this way,
the filtering process can be taken as selecting an appropriate

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7848



… …

ො𝒔𝑡+ℎ 𝒂𝑡+ℎ

ො𝒔𝑡+ℎ+1
𝑀,𝐵

Ƹ𝑟𝑡+ℎ+1
𝑀,𝐵

ො𝒔𝑡+ℎ+1
1,1

Ƹ𝑟𝑡+ℎ+1
1,1

ෞ𝒕𝒓𝑡+ℎ

standard
deviation

feature vector  𝐱 ෝ𝒕𝒓𝑡+ℎ

Linear
GRU

weight 𝑤(𝐱 ෝ𝒕𝒓𝑡+ℎ
; 𝜃𝑤)

𝑤(∙ ; 𝜃𝑤)

ෞ𝒕𝒓
𝒕𝒓

imaginary 
transitions

weight function

𝜃

𝜃′

(𝑠, 𝑎, 𝑠′, 𝑟)

𝐽(𝑡𝑟; 𝜃)

𝐽(𝑡𝑟; 𝜃′)

real 
transitions

update

𝜕𝜃′

𝜕𝜃𝑤

𝜕𝐽 𝑡𝑟; 𝜃′ − 𝐽(𝑡𝑟; 𝜃)

𝜕𝜃′ difference

Figure 1: Training architecture (left) and Network architecture (right) for the weight function. We measure the negative effect
of reweighted imaginary transitions through computing the difference of the losses computed on the real transitions before and
after training with them, and minimize the difference to optimize the weight function by the chain rule.

weight from 0, 1 for each imaginary sample based on its ef-
fect. To achieve this, we train a weight function to minimize
adverse effects of the samples after they being reweighted
using the function. The weight function outputs a weight in
the range between 0 and 1 for each transition based on its
features, like the uncertainty of the predicted next state in
the transition. The effect of a reweighted sample can also be
measured by the evaluation criterion mentioned previously.

A main issue of using weight function lies in its optimiza-
tion. Given a generated transition, a weight is predicted by
the weight function and a weighted loss is accordingly cal-
culated for updating parameters. Its effect is evaluated by
the difference between the losses computed on the real tran-
sitions using the parameters before and after updating. As
the loss is parameterized by the updated parameters and the
update of parameters is parameterized by the output of the
weight function, the function can be optimized through min-
imizing the difference using the chain rule. Our method can
be considered as an instance of meta-gradient (Xu, van Has-
selt, and Silver 2018; Zheng, Oh, and Singh 2018; Veeriah
et al. 2019), a form of meta-learning (Thrun and Pratt 1998;
Finn, Abbeel, and Levine 2017; Hospedales et al. 2020),
where the meta-learner is trained via gradients through the
effect of the meta-parameters on a learner also trained via
gradients (Xu, van Hasselt, and Silver 2018).

To this end, we implement the algorithm by employing
an ensemble of bootstrapped probabilistic neural networks
and using Soft Actor-Critic (Haarnoja et al. 2018a,b) to up-
date the policy and action-value function. We name this im-
plementation as Reweighted Probabilistic-Ensemble Soft-
Actor-Critic (ReW-PE-SAC). Experimental results demon-
strate that ReW-PE-SAC outperforms the state-of-the-art
model-based and model-free deep RL algorithms on mul-
tiple benchmarking tasks. We also analyze the predicted
weights on the samples generated with different schemes in
different stages of the training process, which shows that the

learned weight function can provide reasonable weights for
different generated samples in different stages of the train-
ing process. In addition, the critic loss updated with the
weighted samples is obviously smaller than the one updated
with the unweighted samples. This means that the learned
weight function can filter out the samples with adverse ef-
fects by decreasing their weights.

The main contributions of this work are:

• We propose an effective tuning scheme of model usage
through adaptively reweighting the imaginary transitions.
Different from the simple tuning schemes proposed by
previous works, this theme can adaptively filter generated
samples with a certain degree of prediction error based on
the precision of action-value and policy functions while
maximizing the use of remaining generated samples.

• We use neural networks to predict the weight of each
transition in the generated trajectories based on the well-
designed features of the transitions and utilize meta-
gradient method to optimize the weight network accord-
ing to the above scheme. Thus, the learned weight net-
work can be applied to new generated samples.

• Experimental results demonstrate that our method outper-
forms state-of-the-art model-based and model-free RL al-
gorithms on multiple tasks.

Approach
Notation
Considering the standard reinforcement learning setting, an
agent interacts with an environment in discrete time. The
environment is described by state space S , action space A,
reward function r : S × A × S → R, state transition prob-
abilities p : S × S × A → [0,∞), and a discount factor
γ ∈ (0, 1], where state transition probabilities p(st,at, st+1)
denotes the probability density of the next state st+1 ∈ S
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given the current state st ∈ S , action at ∈ A, and reward
function r(st,at, st+1) present the reward according to the
transition. At each time step t, the agent selects an action
at according to the policy π(at|st), and then receives the
next state st+1 and the reward rt+1 from the environment.
The objective of standard reinforcement learning is to learn
a policy of the agent to maximize the discount cumulative
rewards.

Overall Framework
Model-based reinforcement learning approaches attempt to
learn a dynamics model to simulate the real environment and
utilize the model to make better decisions. In most cases, the
learned model is imperfect and not all the transitions gener-
ated by it are accurate, which means the value and policy
functions would be misled by the transitions with prediction
errors. Therefore, this paper proposes to adaptively reweight
the generated transitions to minimize the negative effect of
them for the training.

We train a weight function to minimize adverse effects
of the transitions after they are reweighted. Specifically, for
a transition, the weight function outputs a weight. The ef-
fect of a reweighted transition is measured by comparing
the losses of value and policy functions computed on the
real samples before and after the functions being updated by
the reweighted transition. As the loss before being updated is
fixed, minimizing the adverse effect is equal to minimizing
the loss after being updated. This loss is parameterized by
the updated parameters and the update of the parameters is
parameterized by the weight function, thus we can optimize
the function through minimizing the loss after being updated
by the chain rule. The training process of weight function is
shown in Figure 1(left).

We employ an ensemble of bootstrapped probabilistic
neural networks as the dynamics model, which can provide
an estimated uncertainty for each generated transition. The
weight function can predict the weights for the transitions
more reasonably based on their estimated uncertainties. We
use Soft Actor-Critic (Haarnoja et al. 2018a,b) to update
the q-value and policy functions, which is an off-policy RL
algorithm so that we can use the old experience to evalu-
ate the effect of the updated parameters. We call this im-
plementation as ReWeighted Probabilistic-Ensemble Soft-
Actor-Critic (ReW-PE-SAC).

In the following, we would first present how to obtain the
ensemble of networks, then describe the network architec-
ture of the weight function, finally explain how to optimize
the weight function.

Dynamics Model
In our method, the dynamics model is not only required to
generate the transitions, but also needed to provide the other
information that is useful for evaluating the weights of these
transitions, like uncertainty.

In order to measure the uncertainties of generated transi-
tions, we train an ensemble of B-many bootstrapped proba-
bilistic models like (Chua et al. 2018). The B models have
the same architecture but different parameters θb and train-
ing datasets Rb. Each dataset Rb is generated by sampling

with replacement N times from the replay buffer R, where
N is equal to the size of R. Each probabilistic model is a
neural network that predicts the probability distribution of
the next state s′ based on the input state s and action a.
The probability distribution is described by a Gaussian dis-
tribution, N (µθb(s,a),Σθb(s,a)). The predicted next state
is obtained by sampling from the Gaussian distribution,
N (µθb(sn,an),Σθb(sn,an)). Reward function r(s, a, s′) :
S × A × S → R is assumed as given in advance, like
most works of literature related to model-based RL meth-
ods (Wang et al. 2019; Clavera et al. 2018; Chua et al. 2018).

Given a state st and an action sequence at:t+H−1 =
{at, . . . , at+H−1}, the learned dynamics models can induce
a distribution over the subsequent trajectories st+1:t+H .
Based on st and at, we use the ensemble of probabilistic
models to induce B-many Gaussian distributions of the next
state st+1, and then sample M states {ŝmbt+1}Mm=1 from each
Gaussian distributions N (µθb(st,at),Σθb(st,at)). The re-
ward function is applied to the predicted next states to
evaluate the reward of them, r̂mbt+1 = r(st,at, ŝ

mb
t+1). A

state is randomly selected from the M×B predicted states
{ŝmbt+1}

M,B
m=1,b=1 as the next input ŝt+1. Then the selected

state ŝt+1 and the action at+1 are used to generate the sub-
sequent M×B states. In this way, we can get a transition set
t̂rk = {(ŝt+k,at+k, r̂b,mt+k, ŝ

b,m
t+k+1)}M,B

m=1,b=1 for each time-
step t+ k, k = 0, ...,H − 1.

Weight Prediction Network
Estimating the weight on a single generated transition
(s,a, r̂, ŝ′) is difficult, because we cannot obtain any infor-
mation about the prediction accuracy of r̂ and ŝ′ from the
single transition. Thus, we estimate the weight on the transi-
tion set t̂rk = {(ŝ,a, r̂b,m, ŝ′

b,m
)}M,B
m=1,b=1 generated by the

ensemble of probabilistic models for the input (s,a) instead
of the single transition.

The weight function w(xtr; θw) : RD → (0, 1) is ap-
proximated by a neural network with parameters θw, where
xtr represents the feature vector of a generated transition
set tr = {(s,a, r̂b,m, ŝ′

b,m
)}M,B
m=1,b=1. The feature vector

xtr is composed of the states s, the actions a, the uncer-
tainty on the predicted reward r̂ and the uncertainties on
each dimension of the predicted next state ŝ′. The uncertain-
ties are approximated by computing the standard deviation
of rewards and the next states {(r̂b,m, ŝ′

b,m
)}M,B
m=1,b=1. The

uncertainties imply the credibility of the generated transi-
tion t̂r, while the inputted state and action uniquely identify
the transitions. In practice, we find the latter one enables the
weight function to make a better prediction. To avoid the
large disparities of different features, the feature vectors are
normalized for each dimension before they are fed to the
weight network.

It is obvious that the credibility of t̂rk is related to the
ones of its predecessors {t̂rj}j<k, due to that modeling er-
rors in dynamics are accumulated with time-steps. Thus we
select Gated Recurrent Units (GRU) (Cho et al. 2014) to in-
tegrate the features of the predecessors. The network archi-
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tecture of weight function is shown in Figure 1(right).

Algorithm 1 Reweighted Probabilistic-Ensemble Soft-
Actor-Critic (ReW-PE-SAC)
Input: the learning rate µ of θq , θπ , α and the learning rate
µw of θw
Init: initialize parameters θq , θπ , α, θw and replay buffer
R← ∅
for t = 1, 2, . . . , N do

Interact with the real environment based on the current
policy, and add the transitions to replay buffer R

Train the dynamics models using replay buffer R

// Training the weight function
Generate imaginary transitions {t̂rih}

Ne,H
i=1,h=1

Sample real transitions tr from replay buffer R
Update θq, θπ to θ′q, θ

′
π by Equation 1 using {t̂rih}

Ne,H
i=1,h=1

Compute the meta objective Jmeta by Equation 4 on tr
Approximate the gradient of∇θwJmeta by Equation 5
Update θ′w ← θw − µw∇θwJmeta

// Update value and policy network
Generate imaginary dataset {t̂rih}

Nt,H
i=1,h=1

for k = 1, 2, . . . ,K do
Update θq , θπ by Equation 6 on the reweighted imagi-

nary samples
end for
Sample real transitions tr to update θq , θπ

end for

Training the Weight Function
This section will show how to train the weight function so
that it can predict appropriate weights for imaginary transi-
tions to minimize their adverse effect.

The training of weight function can be split into two steps,
evaluating the potential effects of the reweighted transitions
and optimizing the weight function through minimizing the
negative effects by the chain rule. We focus on the effects of
the action-value and policy functions, and update the weight
function through minimizing the effects of a mini-batch of
imaginary transitions in each iteration.

For the first step, we sample Ne real states {siti}
Ne
i=1 and

the corresponding real action sequences {aiti:ti+H−1}
Ne
i=1

from the replay buffer D to generate the imaginary tran-
sitions {t̂rih}

Ne,H
i=1,h=1, where H is the planning horizon.

Then we compute the weights of imaginary transitions
w(x

t̂r
i
h
; θw) and update the parameters of Q-network and

policy network, θq and θπ , with the reweighted losses of
these imaginary samples:

θ′q = θq − µ
∂
∑
i,h w(x

t̂r
i
h
; θw)JQ(t̂r

i

h; θq)

∂θq
,

θ′π = θπ − µ
∂
∑
i,h w(x

t̂r
i
h
; θw)Jπ(t̂r

i

h; θπ)

∂θπ
,

(1)

where µ is the learning rate of θq and θπ . JQ and Jπ are the
soft Bellman residual and the KL-divergence between the
policy and the exponential of the soft Q-function (Haarnoja
et al. 2018a,b), respectively. For a transition set tr, JQ and
Jπ are computed by

JQ(tr; θq) =
∑

(s,a,r,s′)∈tr

1

2

{
Q(s,a; θq)−

[r + γ(Q(s′,a′; θ̄q)− αlogπ(a′|s′))]
}2
, (2)

Jπ(tr; θπ) =
∑

(s,a,r,s′)∈tr

αlog(π(â|st; θπ))−Q(st, â; θq),

(3)
where θ̄q is the parameters of target Q-network, and α is the
temperature parameter.

For the second step, we sample Nv real transitions from
the replay buffer D, combined them into a set tr, and com-
pute the losses of q-value and policy functions on them with
the updated parameters θ′q and θ′π ,

JQ(tr; θ′q) + Jπ(tr; θ′π). (4)

The gradient of the parameters of weight function θw is com-
puted through the chain rule,

∂JQ(tr; θ′q) + Jπ(tr; θ′π)

∂θw

=
∂JQ(tr; θ′q)

∂θ′q

∂θ′q
∂θw

+
Jπ(tr; θ′π)

∂θ′π

∂θ′π
∂θw

=− µ
∑
h,i

[
(
∂JQ(t̂r

i

h; θq)

∂θq
)T
∂JQ(tr; θ′q)

∂θ′q

+ (
∂Jπ(t̂r

i

h; θπ)

∂θπ
)T
∂Jπ(tr; θ′π)

∂θ′π

]∂w(x
t̂r

i
h
; θw)

∂θw
(5)

Once the gradient is obtained, the parameters θw can be up-
dated by any optimization algorithm.

We alternately optimize the q-value, policy functions, and
the weight function, so that the latter one can adaptively
adjust the weights of imaginary transitions along with the
change of the precision of the former ones. We sample Nt
real states and the corresponding action sequences with an
explore policy πe which is obtained by changing the tem-
perature parameter of current policy from α to λeα (λe is
set to 10 in this paper). A larger temperature parameter is
conducive to generating diverse transitions. Based on the
sampled state and action sequences, we utilize the dynamics
model to generate imaginary transitions {t̂rih}

Nt,H
i=1,h=1 and

use the weight function to reweight them. The gradients of
q-value and policy functions are computed by

∇θq =
∂
∑
i,h w(x

t̂r
i
h
; θw)JQ(t̂r

i

h; θq)

∂θq
,

∇θπ =
∂
∑
i,h w(x

t̂r
i
h
; θw)Jπ(t̂r

i

h; θπ)

∂θπ
.

(6)
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Ant HalfCheetah Hopper Slimhumanoid Swimmer Walker2d

ME-TRPO 282.2±18.0 2283.7±900.4 1272.5±500.9 -154.9±534.3 30.1±9.7 -1609.3±657.5
MB-MPO 705.8 ± 147.2 3639.0±1185.8 333.2±1189.7 674.4±982.2 85.0±98.9 -1545.9±216.5
PETS 1165.5±226.9 2795.3±879.9 1125.0±679.6 1472.4±738.3 22.1±25.2 260.2±536.9
POPLIN 2330.1±320.9 4235.0±1133.0 2055.2±613.8 -245.7±141.9 37.1±4.6 597.0±478.8
MBPO 4332.5±1277.6 10758.9±1413.7 3279.8±455.0 2950.4±819.1 26.3±13.3 4154.7±846.1

TD3 956.1±66.9 3614.3±82.1 2245.3±232.4 1319.1±1246.1 40.4±8.3 -73.8±769.0
SAC-200k 922.0±283.0 6129.3±775.7 2365.1±193.4 1891.6±379.2 49.7±5.8 1642.7±606.9

w.o reweighting 4033.5±1480.5 11854.3±102.8 2202.6±363.5 1436.8±490.8 26.6±25.4 2673.8±2264.8
Our Method 4614.4±931.1 9779.8±546.6 2824.0±159.9 11755.9±11152.2 82.2±33.4 4961.9±457.8

SAC-1000k 4994.9±719.5 10283.8±648.4 2990.3±214.3 29122.5±11129.0 86.8±6.4 5094.0±1371.3

Table 1: Final performance on the six environments. All the algorithms are run for 200k time-steps (except SAC-1000k). The
results are shown with the mean and standard deviation averaged and a window size of 5000 times-steps.

We use Adam to update the parameters θq and θπ . The tem-
perature parameter α is optimized based on the generated
transition sets without being reweighted.

The complete algorithm is shown in Alg. 1. In our algo-
rithm, the real transitions are not only used to train the dy-
namics models, but also used to train the action-value and
policy networks. The real samples can avoid too large pre-
diction errors of the action-value function. When the pre-
dicted weights of generated samples are too low, the real
samples can prevent algorithm from being in stagnation be-
havior.

Experiments
In this section, we evaluate our algorithm on six complex
continuous control tasks from the model-based RL bench-
mark (Wang et al. 2019), which is modified from the OpenAI
gym benchmark suite (Brockman et al. 2016). The six tasks
are Ant, HalfCheetah, Hopper, SlimHumanoid, Swimmer-
v0, and Walker2D, whose horizon length is fixed to 1000.
The network architecture and training hyperparameters are
given in the appendix. First, we compare ReW-PE-SAC
on the benchmark against state-of-the-art model-free and
model-based approaches. Then, we show the differences of
the q-value losses with and without reweighting method.
Next, we evaluate the robustness of our algorithm to imper-
fect dynamics model. Finally, we analyze the relation be-
tween the learned weights and the factors of the training it-
erations, the planning horizon, and the explore policy.

Comparison with State of the Art
We compare ReW-PE-SAC with state-of-the-art model-free
and model-based RL methods, including SAC (Haarnoja
et al. 2018a,b)1, TD3 (Fujimoto, Hoof, and Meger 2018),
ME-TRPO (Kurutach et al. 2018), MB-MPO(Clavera et al.
2018), PETS (Chua et al. 2018), MBPO (Janner et al. 2019)

1We select the PyTorch implement of soft actor-critic in
https://github.com/pranz24/pytorch-soft-actor-critic to evaluate the
performance. This implement includes using double-Q network, ig-
noring the artificial terminal signal and other tricks, so the perfor-
mance is better than the one reported in (Wang et al. 2019).

and POPLIN (Wang and Ba 2019). We reproduce results
from (Wang et al. 2019; Janner et al. 2019) and addition-
ally run MBPO on the tasks of Slimhumanoid and Swim-
mer as the according experimental results are absent. We
run our method ReW-PE-SAC for 200, 000 time-steps with
8 random seeds. To evaluate our reweighting mechanism, we
also run PE-SAC on these six tasks which does not learn the
weight function and directly use the imaginary transitions to
train the policy and value networks. To measure the sam-
ple efficiency of ReW-PE-SAC, we additionally run SAC
1, 000, 000 time-steps on each task. The results are summa-
rized in Table 1, and the learning curves of SAC and our
methods with or without reweighting are plotted in Figure 2.

As shown in Table 1, ReW-PE-SAC achieves better per-
formance compared with all other state-of-the-art algorithms
except MBPO running with 200, 000 time-steps in all the en-
vironments. Especially in the environments of Ant, Hopper,
Swimmer and Walker2d, the performance of ReW-PE-SAC
is comparable to the one of SAC running with 1, 000, 000
time-steps, which demonstrates that ReW-PE-SAC has good
sample efficiency. Compared with MBPO, ReW-PE-SAC is
better on four environments and is slightly weaker in the
tasks of HalfCheetah and Hopper.

Comparing the results of our methods with and without
reweighting, ReW-PE-SAC and PE-SAC, the performance
with reweighting is obviously higher on the most of the en-
vironments. This demonstrates that the learned weight func-
tion can provide appropriate weights to facilitate training a
better policy. The performance gap of ReW-PE-SAC and
PE-SAC on the environment of HalfCheetah is probably
caused by that the weight function is overcautious, and the
weights provided by it are too low.

From Figure 2(a,d), we find our method has a large perfor-
mance variance in the tasks of Ant and Slimhumanoid. The
most likely reason is that our method utilizes the collected
transitions to evaluate the effect of imaginary transitions,
while the number of collected transitions is insufficient for
some tasks. This induces that the weights of some valid
imaginary transitions could be underestimated, and then the
learned policy would be relatively poor due to the lack of
these valid transitions. We will consider constructing a more
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Figure 2: Learning curves for different tasks and algorithms. All the algorithms are run for 200k time-steps with 8 random
seeds.

reasonable validation set in future work.

The Critic Losses of PE-SAC and ReW-PE-SAC
In this section, we compare the critic losses in cases with and
without reweighting. We run the algorithms of PE-SAC and
ReW-PE-SAC on the tasks of Ant, HalfCheetah, SlimHu-
manoid and Swimmer, and record the average critic losses
of real samples in every episode. The minimum, maximum
and mean of the losses in the same time-step are plotted in
Figure 3.

As shown in the figure, ReW-PE-SAC can maintain lower
critic losses than PE-SAC and prevent abnormal large losses.
Combined with the learning curve for the task of Swimmer
(shown in Figure 2(e)), we find the performance of PE-SAC
is falling after about 70, 000 time-steps while the critic loss
is also increasing sharply at around this time. So maintaining
lower losses has contributed to improve the performance in
most cases. The only exception is the task of HalfCheetah,
in which the lower critic losses have not resulted in higher
performance. The most likely reason is that an imprecise Q-
value function is enough to train a good policy.

Robustness to Imperfect Dynamics Model
We construct the dynamics models with different prediction
accuracy through adjusting the number of the hidden layers
in them from 4 to 2. We run the algorithms of PE-SAC and
ReW-PE-SAC with these dynamics models on the tasks of
Ant. The learning curves of them are plotted in Figure 5.

When the number of the hidden layers is decreased, the
performances of PE-SAC drops significantly. This means
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Figure 3: Critic losses in the cases with and without
reweighting. The x-axis corresponds to time-step. The y-axis
corresponds to average critic loss over 1 episode (1000 time-
steps).
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Figure 4: Predicted weights for different generated samples in different stages of training process.
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Figure 5: Learning curves for PE-SAC and ReW-PE-SAC
with the dynamics models using different numbers of hidden
layers.

that the dynamics models with 2 hidden layers have strong
negative effect on the training process. The performances of
ReW-PE-SAC remain roughly unchanged, which means that
our method can effectively reduce the negative effect of the
generated samples with prediction errors. The above anal-
ysis gives a possible explanation for the phenomenon that
ReW-PE-SAC has higher performance improvement on the
more complex tasks, like Slimhumanoid and Walker2d.

The Trend of the Predicted Weight
In this section, we analyze the overall trend of the predicted
weights and the relation between the weights and the pre-
diction depth and the soft scale λe. We run the algorithms of
ReW-PE-SAC on the task of Swimmer with only 1 random
seed, and record the predicted weights of generated samples
at the first step of each episode. The predicted weights are
changed with the process of training, so computing the aver-
age on different seeds is meaningless. The 25 precent point,
median and 75 precent point are plotted in Figure 4(a). Then,
we split these weights according to the prediction depth, and
plot the median of the weights of different prediction depth
in Figure 4(b). Finally, we generate some extra data using
different λe ∈ {0.1, 1, 3, 10, 30, 100}, and plot the median

of predicted weights on them in Figure 4(c).

In Figure 4(a), the weights are lower in the earlier and
later stages but are higher in the middle stage (The weight
function’s initial output is about 0.95 as that the bias of last
layer is initialized to 3.0.). The trend reflects the change of
the accuracy of the dynamics model and the q-value and pol-
icy functions. In the earlier stage, the dynamics model is
imprecise, so most of the generated transitions are rejected.
Then, the weights become to increase as the improvement
in the prediction precision of the dynamics model. However,
in the later stage, the precision of q-value function also im-
proves, while the model has reached its bottleneck. This re-
sults in the decline of the weights. From Figure 4(b), we find
that the predicted weights decrease with the planning steps
which accords with the fact that the prediction errors accu-
mulates with steps. From Figure 4(c), we also found that
the weights decrease with the scale which is caused by the
difference of the distributions of the actions in the training
and predicting process of the dynamics model. These phe-
nomenons further verify that the learned weight function is
reasonable.

Conclusion

In this paper, we have proposed a novel and efficient model-
based reinforcement learning approach, which adaptively
adjusts the weights of all generated transitions through train-
ing a weight function to reduce the potential negative ef-
fect of them. We measure the effect of reweighted imag-
inary transitions through computing the difference of the
losses computed on the real transitions before and after train-
ing with them, and minimize the difference to optimize the
weight function by the chain rule.

Experimental results show that our method obtains the
state-of-the-art performance on multiple complex continu-
ous control tasks. The learned weight function can provide
reasonable weights for different generated samples in dif-
ferent stages of training process. We believe that the weight
function can be utilized to adjust some hyper-parameters,
like planning horizon, in the future.
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