
Large Batch Optimization for Deep Learning Using New Complete Layer-Wise
Adaptive Rate Scaling

Zhouyuan Huo1, Bin Gu2, 3, Heng Huang3, 4*

1 Google, USA;
2 MBZUAI, United Arab Emirates

3 JD Finance America Corporation, Mountain View, CA, USA
4 Electrical and Computer Engineering, University of Pittsburgh, PA, USA

zhouyuan.huo@gmail.com, jsgubin@gmail.com, heng.huang@pitt.edu

Abstract

Training deep neural networks using a large batch size has
shown promising results and benefits many real-world appli-
cations. Warmup is one of nontrivial techniques to stabilize
the convergence of large batch training. However, warmup
is an empirical method and it is still unknown whether there
is a better algorithm with theoretical underpinnings. In this
paper, we propose a novel Complete Layer-wise Adaptive
Rate Scaling (CLARS) algorithm for large-batch training.
We prove the convergence of our algorithm by introducing
a new fine-grained analysis of gradient-based methods. Fur-
thermore, the new analysis also helps to understand two other
empirical tricks, layer-wise adaptive rate scaling and linear
learning rate scaling. We conduct extensive experiments and
demonstrate that the proposed algorithm outperforms gradual
warmup technique by a large margin and defeats the conver-
gence of the state-of-the-art large-batch optimizer in train-
ing advanced deep neural networks (ResNet, DenseNet, Mo-
bileNet) on ImageNet dataset.

Introduction
Deep learning has made significant breakthroughs in many
fields, such as computer vision (He et al. 2016, 2017;
Krizhevsky, Sutskever, and Hinton 2012; Ren et al. 2015),
nature language processing (Devlin et al. 2018; Hochreiter
and Schmidhuber 1997; Vaswani et al. 2017), and reinforce-
ment learning (Mnih et al. 2013; Silver et al. 2017). Re-
cent studies show that better performance can usually be
achieved by training a larger neural network with a bigger
dataset (Mahajan et al. 2018; Radford et al. 2019). Nonethe-
less, it is time-consuming to train deep neural networks,
which limits the efficiency of deep learning research. For ex-
ample, training ResNet50 on ImageNet with batch size 256
needs to take about 29 hours to obtain 75.3% Top-1 accu-
racy on 8 Tesla P100 GPUs (He et al. 2016). Thus, it is a
critical topic to reduce the training time for the development
of deep learning using data parallelism (Dean et al. 2012;
Krizhevsky 2014; Yadan et al. 2013) or model parallelism
(Huang et al. 2019; Huo et al. 2018). However, the large-
batch neural network training using conventional gradient-
based methods techniques usually requires heuristic tricks

*Corresponding Author
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and leads to worse generalization errors (Hoffer, Hubara,
and Soudry 2017; Keskar et al. 2016).

Many empirical training techniques have been proposed
for large-batch deep learning optimization. (Goyal et al.
2017) proposed to adjust the learning rate through linear
learning rate scaling and gradual warmup. By using these
two techniques, they successfully trained ResNet50 with a
batch size of 8192 on 256 GPUs in one hour with no loss of
accuracy. Finding that the ratios of weight’s `2-norm to gra-
dient’s `2-norm vary greatly among layers, (You, Gitman,
and Ginsburg 2017; You et al. 2019a) proposed and ana-
lyzed the state-of-the-art large-batch optimizer Layer-wise
Adaptive Rate Scaling (LARS) and scaled the batch size to
16384 for training ResNet50 on ImageNet. However, LARS
still requires warmup in early epochs of training and may
diverge if it is not tuned properly. There are many theoret-
ical analysis about linear learning rate scaling (Lian et al.
2015, 2016; Zhang et al. 2019). However, it is still unknown
whether there is a better algorithm than warmup trick for
large batch training with theoretical underpinnings.

In this paper, we target to remove the empirical warmup
trick for large-batch training and propose a better algorithm
with theoretical underpins. We summarize our main contri-
butions as follows:

1. We propose a novel Complete Layer-wise Adaptive
Rate Scaling (CLARS) algorithm for large-batch deep
neural networks optimization, which provides an supe-
rior performance than warmup trick in the beginning
of training.

2. We analyze the convergence of the proposed CLARS
algorithm by introducing a new fine-grained analy-
sis for gradient-based methods and demonstrate that
warmup and CLARS alleviate the training difficulties
caused by layer-wise gradient variance. Furthermore,
our analysis can help to understand layer-wise adap-
tive rate scaling and linear learning rate scaling.

3. Extensive experimental results demonstrate that
the proposed CLARS method outperforms gradual
warmup by a large margin and defeats the convergence
of the state-of-the-art large-batch optimizer in training
advanced deep neural networks (ResNet, DenseNet,
MobileNet) on ImageNet dataset.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7883

Preliminaries
Gradient-Based Methods: The loss function of a neural
network is minimizing the average loss over a dataset of n
samples:

min
w∈Rd

{f(w) := 1

n

n∑
i=1

fi(w)}, (1)

where d denotes the dimension of the neural network.
Momentum-based methods have been widely used in deep
learning optimization, especially computer vision, and ob-
tain state-of-the-art results (He et al. 2016; Huang et al.
2016). According to (Nesterov 1983), mini-batch Nesterov
Accelerated Gradient (mNAG) optimizes the problem (1) as
follows:

vt+1 = wt − γ
1

B

∑
i∈It

∇fi(wt),

wt+1 = vt+1 + β(vt+1 − vt), (2)

where It is the mini-batch samples with |It| = B, γ is the
learning rate, β ∈ [0, 1) is the momentum constant and v is
the momentum vector. When β = 0, Eq. (2) represents the
procedures of mini-batch Gradient Descent (mGD). Learn-
ing rate γ is scaled up linearly when batch size B is large
(Goyal et al. 2017). However, using a learning rate γ for all
layers may lead to performance degradation (You, Gitman,
and Ginsburg 2017).
Layer-Wise Learning Rate Scaling: To train neural net-
works with large batch size, (You, Gitman, and Ginsburg
2017; You et al. 2019b) proposed and analyzed Layer-Wise
Adaptive Rate Scaling (LARS). Suppose a neural network
has K layers, we can rewrite w = [(w)1, (w)2, ..., (w)K]

with (w)k ∈ Rdk and d =
∑K
k=1 dk. The learning rate at

layer k is updated as follows:

γk = γscale × η ×
‖(wt)k‖2∥∥ 1

B

∑
i∈It ∇kfi(wt)

∥∥
2

, (3)

where γscale = γbase × B
Bbase

and η = 0.001 in (You,
Gitman, and Ginsburg 2017). γbase and Bbase depends on
model and dataset. For example, we set γbase = 0.1 and
Bbase = 128 to train ResNet on CIFAR10. However, LARS
should work together with warmup trick for large batch
training. Otherwise, it even diverges in the beginning of
training if warmup trick (Goyal et al. 2017) is absent.

Complete Layer-Wise Adaptive Rate Scaling
In this section, we propose to replace warmup trick
with a novel Complete Layer-wise Adaptive Rate Scaling
(CLARS) algorithm for large-batch deep learning optimiza-
tion.

Define U ∈ Rd×d as a permutation matrix where every
row and column contains precisely a single 1 with 0s every-
where else. Let U = [U1, U2, ..., UK] and Uk corresponds to
the parameters of layer k, the relation between w and wk is
w =

∑K
k=1 Ukwk. Let ∇kfi(wt) denote the stochastic gra-

dient with respect to the parameters at layer k and γk denote

its corresponding learning rate at layer k. Thus, Eq. (2) of
mNAG with batch It can be rewritten as:vt+1 = wt −

K∑
k=1

γkUk

(
1
B

∑
i∈It
∇kfi(wt)

)
wt+1 = vt+1 + β(vt+1 − vt)

. (4)

At each iteration, the learning rate γk at layer k is up-
dated using Complete Layer-wise Adaptive Rate Scaling
(CLARS) as follows:

γk = γscale × η ×
‖(wt)k‖2

1
B

∑
i∈It ‖∇kfi(wt)‖2

, (5)

where γscale = γbase × B
Bbase

and η ∈ {10−3, 10−2, 10−1}
is a constant. γbase and Bbase are user prescribed parame-
ters according to the model and dataset. For example, we set
γbase = 0.1 and Bbase = 128 to train ResNet on CIFAR10.
To obtain a clear understanding of Eq. (5), we can rewrite it
as follows:

γk = γscale × η ×
‖(wt)k‖2∥∥ 1

B

∑
i∈It ∇kfi(wt)

∥∥
2

×
∥∥ 1
B

∑
i∈It ∇kfi(wt)

∥∥
2

1
B

∑
i∈It ‖∇kfi(wt)‖2

.

It is easy to find out that Eq. (5) is equal to multiply-
ing the LARS learning rate in Eq. (3) with a new term
‖ 1

B

∑
i∈It
∇kfi(wt)‖

2
1
B

∑
i∈It
‖∇kfi(wt)‖2

, which plays a critical role in removing

the warmup. The proposed CLARS algorithm for gradient-
based methods is briefly summarized in Algorithm 1.

In the following section, we will show that warmup
trick and CLARS are both targeted to alleviate the train-
ing difficulties caused by Gradient Variance. CLARS algo-
rithm approximates the gradient variance properly through
‖ 1

B

∑
i∈It
∇kfi(wt)‖

2
1
B

∑
i∈It
‖∇kfi(wt)‖2

, and is well supported theoretically. In

the experimental section, we will also visualize the variation
of gradient variance at different layers for different neural
networks and demonstrate that it is an important factor to be
considered to accelerate the convergence.

Fine-Grained Convergence Analysis
Fine-Grained Micro-Steps and Assumptions
In this section, we propose a new fine-grained method for
the convergence analysis of gradient-based methods. Based
on the fine-grained analysis, we prove the convergence rate
of mini-batch Gradient Descent (mGD) and mini-batch Nes-
terov’s Accelerated Gradient (mNAG) for deep learning
problems. More insights are obtained by analyzing their con-
vergence properties.

Each step of mNAG in Eq. (4) can be regarded as the re-
sult of updating v, w for K micro-steps, where the gradient
at each micro-step is 1

B

∑
i∈It ∇kfi(wt). At micro-step t:s,

we have layer index k(s) = s (mod K) + 1. For exam-
ple, when s = 0, we are updating the parameters of layer

7884

Algorithm 1 Complete Layer-Wise Adaptive Rate Scaling

Require: γscale: Maximum learning rate
Require: β: Momentum parameter
Require: η = 0.01

1: for t = 0, 1, 2, · · · , T − 1 do
2: Sample large-batch It randomly with batch size B;
3: Compute large-batch gradient 1

B

∑
i∈It ∇fi(wt);

4: Compute the average of gradient norm for K layers
1
B

∑
i∈It ‖∇k∇fi(wt)‖

2
2;

5: Update layer-wise learning rate γk following Eq. (5);
6: Update the model wt and momentum term vt follow-

ing Eq. (4);
7: end for
8: Output wT as the final result.

k(0) = 1. Defining wt:0 = wt, wt:K = wt+1, we can ob-
tain Eq. (4) after applying following equations from s = 0
to s = K − 1:{

vt:s+1 = wt:s − γk
B

∑
i∈It

Uk∇kfi(wt)

wt:s+1 = vt:s+1 + β(vt:s+1 − vt:s)
. (6)

Following the idea of block-wise Lipschitz continuous as-
sumption in (Beck and Tetruashvili 2013) and regarding lay-
ers as blocks, we suppose that two layer-wise assumptions
are satisfied for any K-layer neural network throughout this
paper, .
Assumption 1 (Layer-Wise Lipschitz Continuous Gradient)
Assume that the gradient of f is layer-wise Lipschitz con-
tinuous and the Lipschitz constant corresponding to layer
k is Lk for any layer k ∈ {1, 2, ...,K}. For any w ∈ Rd
and v = [v1, v2, ..., vK] ∈ Rd, the following inequality is
satisfied that for any k ∈ {1, 2, ...,K}:

‖∇kf(w)−∇kf(w + Ukvk)‖2 ≤ Lk‖vk‖2.

In addition, we also assume that there is a “global” Lips-
chitz constant Lg such that:

‖∇f(w)−∇f(w + v)‖2 ≤ Lg‖v‖2.

Lipschitz constants Lk of different layers are not equal and
can be affected by multiple factors, for example, position
(top or bottom) or layer type (CNN or FCN). (Zou, Balan,
and Singh 2018) estimated Lipschitz constants empirically
and verified that Lipschitz constants of gradients at different
layers vary a lot. Lk represents the property at layer k and
plays an essential role in tuning learning rates.
Assumption 2 (Layer-Wise Bounded Variance) Assume
that the variance of stochastic gradient with respect to
the parameters of layer k is upper bounded. For any
k ∈ {1, 2, ...,K} and w ∈ Rd, there exists Mk > 0 and
M > 0 so that:

E ‖∇kfi(w)−∇kf(w)‖22 ≤ MkE‖∇kf(w)‖22 +M.

Mk presents the variation of gradient variance at layer k of
the neural network. In the analysis, we will show that the

upper bound of learning rate at layer k is dependent on the
value of Mk. In the experimental section, we will also show
that Mk varies greatly in different layers and taking it into
consideration can greatly accelerate the convergence of neu-
ral networks training.
Difficulties of Convergence Analysis: There are two ma-
jor difficulties in proving the convergence rate using the
proposed fine-grained micro-steps. (I) Micro-step induces
stale gradient in the analysis. At each micro-step t:s in
Eq. (6), gradient is computed using the stale modelwt, rather
than the latest model wt:s. (II) K Lipschitz constants and
bounded variance forK layers are considered separately and
simultaneously, which are much more complicated than just
considering a single Lg or Mg = maxMk for the whole
model.

Convergence Guarantees of Two Gradient-Based
Methods
Based on the proposed fine-grained analysis, we prove that
both of mini-batch Gradient Descent (mGD) and mini-batch
Nesterov’s Accelerated Gradient (mNAG) admit sub-linear
convergence guarantee O

(
1√
T

)
for non-convex problems.

Finally, we obtain some new insights about the gradient-
based methods by taking mNAG as an example. At first, we
let β = 0 in Eq. (4) and Eq. (6), and analyze the convergence
of mGD method.

Theorem 1 (Convergence of mGD) Under Assumptions 1
and 2, let finf denote the minimum value of prob-
lem f(w), κk =

Lg

Lk
≤ κ, γk = γ

Lk
, and∑K

k=1 qkE ‖∇kf(wt)‖
2
2 represents the expectation of

E ‖∇kf(wt)‖22 with probability qk = 1/Lk∑K
k=1(1/Lk)

for any

k. As long as γk ≤ min
{

1
8Lk

, B
8LkMk

}
and 1

K

K∑
k=1

γk ≤

min
{

1
2Lg

, 1
2Lg

√
B
Mg

}
, it is guaranteed that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖22 ≤
8(f(w0)− finf)

Tγ
K∑
k=1

1
Lk

+ CB .

where CB = (4+2κ)Mγ
B .

In Theorem 1, we use
K∑
k=1

qkE ‖∇kf(wt)‖22 to measure

convergence in the paper. Specially, if Lk = Lg for
all k, it is easy to know that qk = 1

K for all k and
K∑
k=1

qkE ‖∇kf(wt)‖22 = 1
KE ‖∇f(wt)‖22 which is similar

to the criterion in (Yang, Lin, and Li 2016). So far, we have
proved the convergence of mGD method for non-convex
problems. When β 6= 0, we can also prove the convergence
of mNAG as follows:

From Theorem 1, we prove that mGD admits sub-linear
convergence rate O

(
1√
T

)
for non-convex problems.

7885

Corollary 1 (Sub-Linear Convergence Rate of mGD)
Theorem 1 is satisfied and follow its nota-
tions. Suppose 1

8Lk
dominates the upper bound

of γk, 1
K

K∑
k=1

γk ≤ min
{

1
2Lg

, 1
2Lg

√
B
Mg

}
, and

γ = min

 1
8 ,
√

B(f(w0)−finf)

TM
K∑

k=1

1
Lk

, mGD is guaranteed

to converge that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖22 ≤ 64(f(w0)− finf)

T
K∑
k=1

1
Lk

+(12 + 2κ)

√√√√√M(f(w0)− finf)

TB
K∑
k=1

1
Lk

.

Then, we also analyze the convergence rate of Nesterov’s
Accelerated Gradient method, which shows better conver-
gence empirically optimizing deep neural networks.

Theorem 2 (Convergence of mNAG) Under Assumptions
1 and 2, let finf denote the minimum value of problem f(w),
κk =

Lg

Lk
≤ κ, γk = γ

Lk
, and

∑K
k=1 qkE ‖∇kf(wt)‖

2
2

represents the expectation of E ‖∇kf(wt)‖22 with prob-
ability qk = 1/Lk∑K

k=1(1/LK)
for any k. Therefore, as

long as γk ≤ min
{

(1−β)
8Lk

, (1−β)B8LkMk

}
and 1

K

K∑
k=1

γk ≤

min

{
(1−β)2
4β2Lg

, (1−β)2
√
B

4β2Lg

√
Mg

, (1−β)
√
B

4Lg

√
Mg

, (1−β)4Lg

}
, it is satisfied

that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖22 ≤
8(1− β)(f(w0)− finf)

Tγ
K∑
k=1

1
Lk

+
Mγ

(1− β)B

(
4 + 2κ+

2κ

(1− β)

)
.

From Theorem 2, we can easily prove that mNAG is guaran-
teed to converge for non-convex problems with a sub-linear
rate O

(
1√
T

)
as follows:

Corollary 2 (Sub-Linear Convergence of mNAG)
Theorem 2 is satisfied and follow its notations,
Suppose 1−β

8Lk
dominates the upper bound of γk,

1
K

K∑
k=1

γk ≤ min

{
(1−β)2
4β2Lg

, (1−β)2
√
B

4β2Lg

√
Mg

, (1−β)
√
B

4Lg

√
Mg

, (1−β)4Lg

}
,

and γ = min

 1−β
8 ,
√

B(f(w0)−finf)

TM
K∑

k=1

1
Lk

, mNAG is guaran-

teed to converge that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖22 ≤
64(f(w0)− finf)

(1− β)T
K∑
k=1

1
Lk

+

(
8

+
1

(1− β)
(
4 + 2κ+

2κ

(1− β)
))√√√√√M(f(w0)− finf)

TB
K∑
k=1

1
Lk

. (7)

Similarly, we know that the result in (Yang, Lin, and Li
2016) is a special case of Theorem 2 when Lk = Lg and
Mk =Mg .

Corollary 3 (Convergence when Lk = Lg and Mk =Mg)
Suppose Theorem 2 is satisfied and follow its nota-
tions. If Lk = Lg , and Mk = Mg , MC = KM , we
have κk = 1, γg = γk. As long as the learning rate

γg ≤ min

{
1−β
8Lg

, B(1−β)
8LgMg

, (1−β)
√
B

4Lg

√
Mg

, (1−β)2
√
B

4β2Lg

√
Mg

, (1−β)
4β2Lg

}
, it

is guaranteed that:

1

T

T−1∑
t=0

E ‖∇f(wt)‖22 ≤ 8(1− η)(f(w0)− finf)
Tγg

+
MCLgγg
(1− β)

(
6 +

2

1− β

)
.(8)

Discussions About the Convergence of mNAG
According our fine-grained convergence analysis of
gradient-based methods, we take mNAG as an example and
gain more insights about the convergence of mNAG for
neural networks.

Layer-Wise Gradient Variance Factor Mk. Define Mk

as the gradient variance factor at layer k, which is depen-
dent on the data and the model, and varies in the pro-
cess of training. Because of the upper bound of γk ≤
min

{
(1−β)
8Lk

, (1−β)B8LkMk

}
in Theorem 2, it shows that batch size

B can be scaled up as long as B ≤ Mk. Therefore, a larger
Mk helps the algorithm obtain faster speedup. Besides, if B
is fixed, it also denotes that a large Mk leads to a smaller
learning rate γk with convergence guarantee. In the follow-
ing section, we will show that warmup is closely related to
Mk.

Layer-Wise Scaled Learning Rate. From Theorem 2,
we know that the upper bound of learning rate γk at each
layer is dependent on 1

Lk
. LARS (You, Gitman, and Gins-

burg 2017) scales the learning rate of each layer adaptively
at step t by multiplying ‖(wt)k‖2

‖ 1
B

∑
i∈It
∇kfi(wt)‖2

in Eq. (3). From

Assumption 1, we can think of LARS as scaling the learn-
ing rate at layer k by multiplying the approximation of 1

Lk
≈

‖(wt)k‖2
‖∇kf(wt)‖2

, where we make vk = 0 and wt + Ukvk = 0.
Therefore, the procedure of LARS is consistent with our the-
oretical analysis in Theorem 2 that learning rate of layer k is
dependent on the Lipschitz constant at this layer γk = γ

Lk
.

7886

0 20 40 60 80 100 120 140 160 180 200

Epoch

0

10

20

30

40

50

60

70

80

90

100

T
o

p
-1

 T
e
s
ti

n
g

 A
c
c
u

ra
c
y

ResNet56 on CIFAR-10

LARS B=128

LARS B=512

LARS B=2048

LARS B=8192

mNAG B=8192

0 20 40 60 80 100 120 140 160 180 200

Epoch

0

10

20

30

40

50

60

70

80

90

T
o

p
-1

 T
e
s
ti

n
g

 A
c
c
u

ra
c
y

VGG11 on CIFAR-10

LARS B=128

LARS B=512

LARS B=2048

LARS B=8192

mNAG B=8192

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Steps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L
e
a
rn

in
g

 R
a
te

 V
a
lu

e

s
c

a
le

Learning Rate

Warmup + Polynomial decay

Figure 1: Training loss and Top-1 testing accuracy of training ResNet56 and VGG11 (with batch normalization layer) on
CIFAR-10. Batch size B scales up from B = 128 to B = 8192. The right figure presents the variation of γscale in Eq. (3) when
B = 2048.

We compare LARS with mNAG using a large batch size.
Results in Figure 1 demonstrate that LARS converges much
faster than mNAG when B = 8192. mNAG even diverges
in training VGG11 using CIFAR-10. In the experiments,
γbase = 0.1, Bbase = 128, and η = 0.001 for LARS al-
gorithm.

Linear Learning Rate Scaling. Data parallelism is
widely used in the training of deep learning models, and lin-
ear speedup can be obtained if learning rate and communi-
cation can be properly handled. According to Theorem 2, if
the upper bound of learning rate γk is dominated by (1−β)B

8LkMk
,

it is easy to know that increasing mini-batch sizeB will also
increase the upper bound linearly. Therefore, it is reasonable
to use scale up the learning rate linearly in large batch train-
ing.

Experimental Results
In this section, we conduct large-batch deep learning train-
ing experiments to validate our analysis empirically and
demonstrate the superior performance of CLARS method
over warmup trick. All experiments are implemented in Py-
Torch 1.0 (Paszke et al. 2017) with Cuda v10.0 and per-
formed on a machine with Intel(R) Xeon(R) CPU E5-2683
v4 @ 2.10GHz and 4 Tesla P40 GPUs.

Variations of Gradient Variance
The gradual warmup was essential for large-batch deep
learning optimization because linearly scaled γscale can be
so large that the loss cannot converge in early epochs (Goyal
et al. 2017). In the gradual warmup, γscale is replaced with
a small value at the beginning and increased back gradually
after a few epochs.

According to our analysis in Section , we guess that the
gradual warmup is to compensate the effect of 1

Mk
in the

upper bound of learning rate. We train 5-layer FCN, 5-
layer CNN on MNIST (LeCun et al. 1998) and ResNet8 on
CIFAR-10 using mNAG for 6-10 epochs. Constant learning
rate 0.001 is used for all layers and batch size B = 128.
After each epoch, we approximate the gradient variance fac-
tor Mk by computing the ratio of 1

n

∑n
i=1 ‖∇kfi(wt)‖

2
2 to

‖ 1n
∑n
i=1∇kfi(wt)‖22 on training data. Figure 2 presents the

variation of Mk at each layers. It is obvious that Mk of top
layers are larger than the values ofMk at lower layers, which
indicates that the upper bound of learning rate at top layers
are smaller. Thus, smaller learning rates should be used on
top layers at early epochs. Our observation matches the re-
sult in (Gotmare et al. 2018) that freezing fully connected
layers at early epochs allows for comparable performance
with warmup.

Comparison with Related Methods
We evaluate the proposed Algorithm 1 by conducting ex-
tensive experiments. Current Pytorch library does not sup-
port computing the individual gradient’s norm in parallel
in the process of gradient computation. To reduce the time
consumption in computing Mk, we approximate it using

Mk ≈
‖ 1

B

∑
i∈It
∇kfi(wt)‖2

2
1

|Jt|
∑

j∈Jt
‖∇kfj(wt)‖22

, where |Jt| = 512 for all ex-

periments in this section. The numerator is known after the
gradient computation, and the denominator is obtained in a
small size. Since |Jt| � B, the computational time of ap-
proximating Mk can be ignored when the computation is
amortized on multiple devices.

In Figure 3, we make a comparison of warmup trick, fully-
connected layer freezing (which freezes the update of fully-
connected layers in first few epochs) (Gotmare et al. 2018),
and CLARS (layer-wise warmup). We train ResNet56 and
VGG11 (with batch normalization layer) on CIFAR-100 us-
ing mNAG (β = 0.9) with batch size B = 8192 for 200
epochs. Learning rate starts from 1.0 and multiplies by 0.1
at epochs 60, 120 and 150. The compared methods only take
effect in the first 20 epochs. Standard data preprocessing
techniques are used as in (He et al. 2016). Visualization in
Figure 3 shows that CLARS always outperforms other com-
pared methods. FC freezing works well in the beginning for
VGG11, while it diverges after that.

We also evaluate CLARS algorithm by training
ResNet50, DenseNet121, and MobileNetv2 on Ima-
geNet (Deng et al. 2009). Because there are not enough
GPUs to compute 16384 gradients at one time, we set batch
size B = 512 and accumulate the gradients for 32 steps

7887

5-layer FCN

fc
1.

w
ei

ght

fc
1.

bia
s

fc
2.

w
ei

ght

fc
2.

bia
s

fc
3.

w
ei

ght

fc
3.

bia
s

fc
4.

w
ei

ght

fc
4.

bia
s

fc
5.

w
ei

ght

fc
5.

bia
s

1

2

3

4

5

6

7

8

9

10

E
p

o
c
h

 0

 2

 4

 6

 8

5-layer CNN

co
nv1

.w
ei

ght

co
nv1

.b
ia

s

co
nv2

.w
ei

ght

co
nv2

.b
ia

s

co
nv3

.w
ei

ght

co
nv3

.b
ia

s

co
nv4

.w
ei

ght

co
nv4

.b
ia

s

co
nv5

.w
ei

ght

co
nv5

.b
ia

s

1

2

3

4

5

6

7

8

9

10

E
p

o
c
h

 0

 20

 40

 60

 80

ResNet8

co
nv_

1_
3x

3.
w
ei

ght

bn_1
.w

ei
ght

bn_1
.b

ia
s

st
ag

e_
1.

0.
co

nv_
a.

w
ei

ght

st
ag

e_
1.

0.
bn_a

.w
ei

ght

st
ag

e_
1.

0.
bn_a

.b
ia

s

st
ag

e_
1.

0.
co

nv_
b.w

ei
ght

st
ag

e_
1.

0.
bn_b

.w
ei

ght

st
ag

e_
1.

0.
bn_b

.b
ia

s

st
ag

e_
2.

0.
co

nv_
a.

w
ei

ght

st
ag

e_
2.

0.
bn_a

.w
ei

ght

st
ag

e_
2.

0.
bn_a

.b
ia

s

st
ag

e_
2.

0.
co

nv_
b.w

ei
ght

st
ag

e_
2.

0.
bn_b

.w
ei

ght

st
ag

e_
2.

0.
bn_b

.b
ia

s

st
ag

e_
3.

0.
co

nv_
a.

w
ei

ght

st
ag

e_
3.

0.
bn_a

.w
ei

ght

st
ag

e_
3.

0.
bn_a

.b
ia

s

st
ag

e_
3.

0.
co

nv_
b.w

ei
ght

st
ag

e_
3.

0.
bn_b

.w
ei

ght

st
ag

e_
3.

0.
bn_b

.b
ia

s

cl
as

si
fie

r.w
ei

ght

cl
as

si
fie

r.b
ia

s

1

2

3

4

5

6

E
p

o
c

h

 100

 200

 300

 400

 500

 600

 700

 800

 900

1000

1100

Figure 2: Visualizations of the variation of Mk. We train 5-layer FCN, 5-layer CNN with sigmoid activation on MNIST for 10
epochs, and ResNet8 on CIFAR-10 for 6 epochs. Empirical results show that top layers have higher value of Mk than bottom
layers in the first few epochs.

0 20 40 60 80 100 120 140 160 180 200

Epoch

0

10

20

30

40

50

60

70

T
e
s
ti

n
g

 T
o

p
-1

 A
c
c
u

ra
c
y

ResNet32 on CIFAR-100

No Warmup

Warmup

FC freeze

Layer-Wise Warmup

0 20 40 60 80 100 120 140 160 180 200

Epoch

0

10

20

30

40

50

60

70

T
e
s
ti

n
g

 T
o

p
-1

 A
c
c
u

ra
c
y

VGG11 on CIFAR-100

No Warmup

Warmup

FC freeze

Layer-Wise Warmup

Figure 3: Testing Top-1 accuracy of warmup trick, fully-connected layer freezing (FC freeze), and CLARS (layer-wise warmup).
We optimize ResNet56 and VGG11 on CIFAR-100 with batch size B = 4096 for 200 epochs. We apply warmup trick and FC
freeze in the first 20 epochs and keep the learning rate constants afterwards.

before updating the model as (You, Gitman, and Ginsburg
2017). Following the official implementation in (You,
Gitman, and Ginsburg 2017), we set η = 10−3 for LARS,

γscale = 25.0 for B = 16384 and adjust the learning rate
using 5-epoch warmup and polynomial decay. For CLARS,
there is no warmup and we set η = 10−2 (LARS always

7888

0 10 20 30 40 50 60 70 80 90

Epoch

0

1

2

3

4

5

6

7

T
ra

in
in

g
 L

o
s

s

ResNet50 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 10 20 30 40 50 60 70 80 90

Epoch

1

2

3

4

5

6

7

T
ra

in
in

g
 L

o
s

s

DenseNet121 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 50 100 150

Epoch

1

2

3

4

5

6

7

T
ra

in
in

g
 L

o
s

s

MobileNetv2 on ImageNet

LARS B=16384,
scale

=6.0

CLARS B=16384,
scale

=6.0

0 10 20 30 40 50 60 70 80 90

Epoch

0

10

20

30

40

50

60

70

80

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

ResNet50 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 10 20 30 40 50 60 70 80 90

Epoch

0

10

20

30

40

50

60

70

80

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

DenseNet121 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 50 100 150

Epoch

0

10

20

30

40

50

60

70

80

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

MobileNetv2 on ImageNet

LARS B=16384,
scale

=6.0

CLARS B=16384,
scale

=6.0

Figure 4: Comparison between LARS and CLARS methods on training ResNet50, DenseNet121, and MobileNetv2 for Ima-
geNet. We train ResNet50, DenseNet121 for 90 epochs with batch size B = 16384 and γscale = 25.0. MobileNetv2 is trained
for 150 epochs with batch size B = 16384 and γscale = 6.0.

Model small batch LARS CLARS
ResNet50 75.3 75.1 75.1

DenseNet121 75.0 70.4 73.6
MobileNetv2 72.0 69.6 70.9

Table 1: Comparison of Top-1 Testing Accuracy between
small batch training, and two large batch training using
LARS and CLARS on ImageNet with batch sizeB = 16384
for 90 epochs.

diverges with this value). Experimental results in Figure
4 present that CLARS algorithm always converges much
faster than the state-of-the-art large-batch optimizer LARS
with warmup trick on advanced neural networks. Besides,
CLARS can obtain better test error than LARS as in Table
1, which demonstrates that it has a better generalization
performance than the compared method.

Conclusion
In this paper, we proposed a novel Complete Layer-
wise Adaptive Rate Scaling (CLARS) algorithm to remove
warmup in the large-batch deep learning training. After
that, we introduced fine-grained analysis and prove the con-
vergence of the proposed algorithm for non-convex prob-
lems. We proved its convergence by introducing a new fine-
grained analysis of gradient-based methods. Furthermore,
the new analysis also helps to understand two other empiri-
cal tricks, layer-wise adaptive rate scaling and linear learn-

ing rate scaling. Extensive experiments demonstrate that the
proposed algorithm outperforms warmup trick by a large
margin and defeats the convergence of the state-of-the-art
large-batch optimizer (LARS) in training advanced deep
neural networks on ImageNet dataset.

Acknowledgements
This work was partially supported by NSF IIS 1845666,
1852606, 1838627, 1837956, 1956002, 2040588.

References
Beck, A.; and Tetruashvili, L. 2013. On the convergence of
block coordinate descent type methods. SIAM journal on
Optimization 23(4): 2037–2060.

Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.;
Mao, M.; Senior, A.; Tucker, P.; Yang, K.; Le, Q. V.; et al.
2012. Large scale distributed deep networks. In Advances
in neural information processing systems, 1223–1231.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, 248–255. Ieee.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 .

Gotmare, A.; Keskar, N. S.; Xiong, C.; and Socher, R.
2018. A Closer Look at Deep Learning Heuristics: Learn-

7889

ing rate restarts, Warmup and Distillation. arXiv preprint
arXiv:1810.13243 .

Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He,
K. 2017. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677 .

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.

Hoffer, E.; Hubara, I.; and Soudry, D. 2017. Train longer,
generalize better: closing the generalization gap in large
batch training of neural networks. In Advances in Neural
Information Processing Systems, 1731–1741.

Huang, G.; Liu, Z.; Weinberger, K. Q.; and van der Maaten,
L. 2016. Densely connected convolutional networks. arXiv
preprint arXiv:1608.06993 .

Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen,
M.; Lee, H.; Ngiam, J.; Le, Q. V.; Wu, Y.; et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. In Advances in Neural Information Processing
Systems, 103–112.

Huo, Z.; Gu, B.; Yang, Q.; and Huang, H. 2018. Decoupled
parallel backpropagation with convergence guarantee. arXiv
preprint arXiv:1804.10574 .

Keskar, N. S.; Mudigere, D.; Nocedal, J.; Smelyanskiy,
M.; and Tang, P. T. P. 2016. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836 .

Krizhevsky, A. 2014. One weird trick for parallelizing con-
volutional neural networks. arXiv preprint arXiv:1404.5997
.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; et al. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11): 2278–2324.

Lian, X.; Huang, Y.; Li, Y.; and Liu, J. 2015. Asynchronous
parallel stochastic gradient for nonconvex optimization. In
Advances in Neural Information Processing Systems, 2737–
2745.

Lian, X.; Zhang, H.; Hsieh, C.-J.; Huang, Y.; and Liu, J.
2016. A comprehensive linear speedup analysis for asyn-
chronous stochastic parallel optimization from zeroth-order
to first-order. In Advances in Neural Information Processing
Systems, 3054–3062.

Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.; Paluri,
M.; Li, Y.; Bharambe, A.; and van der Maaten, L. 2018. Ex-
ploring the limits of weakly supervised pretraining. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 181–196.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .
Nesterov, Y. E. 1983. A method for solving the convex pro-
gramming problem with convergence rate O (1/kˆ 2). In
Dokl. akad. nauk Sssr, volume 269, 543–547.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS-W.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. OpenAI Blog 1: 8.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing sys-
tems, 91–99.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Yadan, O.; Adams, K.; Taigman, Y.; and Ranzato, M.
2013. Multi-gpu training of convnets. arXiv preprint
arXiv:1312.5853 .
Yang, T.; Lin, Q.; and Li, Z. 2016. Unified convergence
analysis of stochastic momentum methods for convex and
non-convex optimization. arXiv preprint arXiv:1604.03257
.
You, Y.; Gitman, I.; and Ginsburg, B. 2017. Scaling sgd
batch size to 32k for imagenet training. arXiv preprint
arXiv:1708.03888 6.
You, Y.; Hseu, J.; Ying, C.; Demmel, J.; Keutzer, K.; and
Hsieh, C.-J. 2019a. Large-Batch Training for LSTM and
Beyond. arXiv preprint arXiv:1901.08256 .
You, Y.; Li, J.; Hseu, J.; Song, X.; Demmel, J.; and Hsieh,
C.-J. 2019b. Reducing BERT Pre-Training Time from 3
Days to 76 Minutes. arXiv preprint arXiv:1904.00962 .
Zhang, G.; Li, L.; Nado, Z.; Martens, J.; Sachdeva, S.; Dahl,
G.; Shallue, C.; and Grosse, R. B. 2019. Which algorithmic
choices matter at which batch sizes? insights from a noisy
quadratic model. In Advances in Neural Information Pro-
cessing Systems, 8194–8205.
Zou, D.; Balan, R.; and Singh, M. 2018. On Lipschitz
Bounds of General Convolutional Neural Networks. arXiv
preprint arXiv:1808.01415 .

7890

