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Abstract

Reinforcement learning algorithms are typically geared to-
wards optimizing the expected return of an agent. However,
in many practical applications, low variance in the return is
desired to ensure the reliability of an algorithm. In this paper,
we propose on-policy and off-policy actor-critic algorithms
that optimize a performance criterion involving both mean
and variance in the return. Previous work uses the second mo-
ment of return to estimate the variance indirectly. Instead, we
use a much simpler recently proposed direct variance estima-
tor which updates the estimates incrementally using temporal
difference methods. Using the variance-penalized criterion,
we guarantee the convergence of our algorithm to locally
optimal policies for finite state action Markov decision pro-
cesses. We demonstrate the utility of our algorithm in tabular
and continuous MuJoCo domains. Our approach not only per-
forms on par with actor-critic and prior variance-penalization
baselines in terms of expected return, but also generates tra-
jectories which have lower variance in the return.

Introduction
Reinforcement learning (RL) agents learn to solve a task
by optimizing the expected accumulated discounted rewards
(return) in a conventional setting. However, in risk-sensitive
applications like industrial automation, finance, medicine, or
robotics, the standard objective of RL may not suffice, be-
cause it does not account for the variability induced by the
return distribution. In this paper, we propose a technique that
promotes learning of policies with less variability.

Variability in sequential decision-making problems can
arise from two sources – the inherent stochasticity in the
environment (transition and reward), and imperfect knowl-
edge about the model. The former source of variability is
addressed by the risk-sensitive Markov decision processes
(MDPs) (Howard and Matheson 1972; Heger 1994; Borkar
2001, 2002), whereas the latter is covered by robust MDPs
(Iyengar 2005; Nilim and El Ghaoui 2005). In this work, we
address the former source of variability in an RL setup via
mean-variance optimization. One could account for mean-
variance tradeoffs via maximization of the mean subject
to variance constraints (solved using constrained MDPs
(Altman 1999)), maximization of the Sharpe ratio (Sharpe
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1994), or incorporation of the variance as a penalty in the
objective function (Filar, Kallenberg, and Lee 1989; White
1994). Here, we use a variance-penalized method to solve
the optimization problem by adding a penalty term to the
objective.

There are two ways to compute the variance in the return
Var(G). The indirect approach estimates Var(G) using the
Bellman equation for both the first moment (i.e. value func-
tion) and the second moment as Var(G) = E[G2] − E[G]2

(Sobel 1982). The direct approach forms a Bellman equa-
tion for the variance itself, as Var(G) = E[(G − E[G])2]
(Sherstan et al. 2018), skipping the calculation of the sec-
ond moment. Sherstan et al. (2018) empirically established
that in the policy evaluation setting, the direct variance es-
timation approach is better behaved compared to the indi-
rect approach, in several scenarios: (a) when the value esti-
mates are noisy, (b) when eligibility traces are used in the
value estimation, and (c) when the variance in return is es-
timated from off-policy samples. Due to the above benefits
and the simplicity of the direct approach, we build upon the
approach proposed by Sherstan et al. (2018) only for policy
evaluation setting, and, develop actor-critic algorithms for
both on- and off-policy settings (control).

Contributions: (1) We modify the standard policy gradi-
ent objective to include a direct variance estimator for learn-
ing policies that maximize the variance-penalized return. (2)
We develop a multi-timescale actor-critic algorithm, by de-
riving the gradient of the variance estimator in both the on-
policy and the off-policy case. (3) We prove convergence to
locally optimal policies in the on-policy tabular setting. (4)
We compare our proposed variance-penalized actor-critic
(VPAC) algorithm with two baselines: actor-critic (AC)
(Sutton et al. 2000; Konda and Tsitsiklis 2000), and an ex-
isting indirect variance penalized approach called variance-
adjusted actor-critic (VAAC) (Tamar and Mannor 2013). We
evaluate our on- and off-policy VPAC algorithms in both
discrete and continuous domains. The empirical findings
demonstrate that VPAC compares favorably to both base-
lines in terms of the mean return, but generates trajectories
with significantly lower variance in the return.

Preliminaries
Notation We consider an infinite-horizon discrete MDP
〈S,A,R, P, γ〉 with finite state space S and finite action
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space A. R ∈ R denotes the reward function (with Rt+1

denoting the reward at time t). A policy π : S → A gov-
erns the behavior of the agent in state s, the agent chooses
an action a ∼ π(·|s), then transitions to next state s′ ac-
cording to transition probability P (s′|s, a). γ ∈ [0, 1] is the
discount factor. Let Gt =

∑∞
l=0 γ

lRt+1+l denote the ac-
cumulated discounted reward (also known as return) along
a trajectory. The state value function for π is defined as:
Vπ(s) = Eπ[Gt|St = s] and state-action value function is:
Qπ(s, a) = Eπ[Gt|St = s,At = a]. In this paper, Eπ[.] de-
notes expectation over transition function of MDP and prob-
ability distribution under π policy.

Actor-Critic (AC) The policy gradient (PG) method (Sut-
ton et al. 2000) is a policy optimization algorithm that
performs gradient ascent in the direction maximizing the
expected return. Given a parameterized policy πθ(a|s),
where θ is the policy parameter, an initial state distribu-
tion d0 and the discounted weighting of states dπ(s) =∑∞
t=0 γ

tP (St = s|s0 ∼ d0, π) encountered starting at some
state s0, the gradient of the objective function Jd0(θ) =∑
s0
d0(s0)Vπθ

(s0) (Sutton and Barto 2018) is given by:

∇θJd0(θ) = Es0∼d0
[∑

s

dπ(s)
∑
a

∇θπθ(a|s)Qπ(s, a)
]
.

(1)

Actor-critic (AC) algorithms (Sutton et al. 2000; Konda
and Tsitsiklis 2000) build on the PG theorem and learn both
a policy, called the actor, and a value function, called the
critic, whose role is to provide a good PG estimate. The one-
step AC update of the policy parameter is given by:

θt+1 = θt + α(Gt:t+1)∇θ log π(At|St, θ), (2)

where Gt:t+1 = Rt+1 + γV (St+1) is estimated by boot-
strapping with the next state value function.

On-Policy Variance-Penalized Actor-Critic
(VPAC)

The modified objective function of our proposed approach
is given as:

Jd0(θ) = Es∼d0
[∑

a

πθ(a|s)
(
Qπ(s, a)− ψσπ(s, a)

)]
,

(3)

where d0 is an initial state distribution, σπ(s, a) is the vari-
ance in the return under the policy π, and ψ ∈ [0,∞) is the
“mean-variance” trade-off parameter for the return. One can
also recover the the conventional AC objective by simply
setting ψ = 0. For completeness, we present the derivation
for σπ(s, a) in theorem 1.
Definition 1. Given a state-action pair, variance in the re-
turn, σ, is defined as
σπ(s, a) =

Eπ

[(
Gt,π − Eπ[Gt,π|St = s,At = a]

)2∣∣∣St = s,At = a

]
.

(4)

Using Definition 1, the state variance function is denoted
by σπ(s) =

∑
a π(a|s)σπ(s, a).

Theorem 1. (On-policy variance in return): Given a policy
π and γ̄ = γ2, the variance in return for a state-action pair
σπ(s, a) can be computed using Bellman equation as:

σπ(s, a) = Eπ
[
δ2
t,π + γ̄σπ(St+1, At+1)

∣∣St = s,At = a
]
,

where,
δt,π = Rt+1 + γQπ(St+1, At+1)−Qπ(St, At).

(5)

Proof in Appendix A.

Definition 2. The γ-discounted k-step transition is defined
as

P (k)
γ (St+k|St) = P (1)

γ (St+k|St+k−1)×P (k−1)
γ (St+k−1|St),

(6)
where, 1-step transition is

P (1)
γ (St+1|St) = γ

∑
a

πθ(a|St)P (St+1|St, a).

Theorem 2. (Variance-penalized on-policy PG theorem):
Given s0 ∼ d0 - an initial state distribution, a stochastic
policy πθ, γ̄ = γ2, the gradient of the objective J in (3)
w.r.t. θ is given by

∇θJd0(θ) =Es0∼d0

[ ∞∑
k=0

∑
s

[
P (k)
γ (s|s0)

∑
a

∇θπθ(a|s)Qπ(s, a)

− ψP (k)
γ̄ (s|s0)

∑
a

∇θπθ(a|s)σπ(s, a)
]]
.

(7)

Proof in Appendix A.

The link to Appendix is provided here1. Algorithm 1 con-
tains the pseudo-code of our proposed method. For a finite-
state, discrete MDP, our algorithm can be shown to con-
verge to a locally optimal policy using the ordinary differ-
ential equation (ODE) approach used in stochastic approx-
imation (Borkar 2009) (See Appendix C for the complete
proof). To ensure convergence of our method, the step size
parameters are selected such that the Q(·) is the first to con-
verge followed by σ(·) and π(·). An immediate consequence
is that the value estimate Q̂ will almost converge to Qπ be-
fore σ is updated, so we can use Q̂ for computing δ2

t,π (5).
Further, Sherstan et al. theoretically showed that if the value
function does not satisfy the Bellman operator of the ex-
pected return, the error in estimation of variance using the
above formulation is proportional to the error in the value
function estimate. The theoretical analysis of a biased value
function on the performance of variance-penalized policy is
an interesting direction and is left for the future work.

1Appendix available on https://arxiv.org/pdf/2102.01985.pdf
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Algorithm 1: On-policy VPAC
1: αw, αθ, αz stands for the step size of critic, policy and

variance respectively.
2: Input: differentiable policy πθ(a|s), value Q̂(s, a,w),

and variance σ̂(s, a, z)
3: Parameters: γ ∈ [0, 1], ψ ∈ [0,∞), αθ < αz < αw,
γ̄ = γ2

4: Initialize parameters θ, w, z
5: for Episode i = 1, 2, . . . do
6: Initialize S, sample A ∼ πθ(.|S)
7: IQ, Iσ = 1, 1
8: repeat
9: Take action A, observe {R,S′}; sample

A′ ∼ πθ(.|S′)
10: δ ← R+ γQ̂(S′, A′, w)− Q̂(S,A,w)
11: δ̄ ← δ2 + γ̄σ̂(S′, A′, z)− σ̂(S,A, z)

12: w ← w + αwδ∇wQ̂(S,A,w)
13: z ← z + αz δ̄∇zσ̂(S,A, z)

14: θ ← θ + αθ∇θ log(πθ(A|S))
(

15: IQQ̂(S,A,w)− ψIσσ̂(S,A, z)
)

16: IQ, Iσ = γIQ, γ̄Iσ
17: S ← S′, A← A′

18: until S′ is a terminal state
19: end for

Off-Policy Variance-Penalized Actor-Critic
(VPAC)

In the off policy setting, the experience generated by a be-
haviour policy b is used to learn a target policy π. We mod-
ify the objective function as in (8) to include an importance
sampling correction factor ρ(s, a) = π(a|s)

b(a|s) which accounts
for the discrepancy between the policy distributions:

Jd0(θ) = Es∼d0,a∼b
[
ρ(s, a)(Qπ(s, a)− ψσπ(s, a))

]
. (8)

Definition 3. Return given a state-action pair under a target
policy π when actions are sampled from a behavior policy b
is:

Gt,π,b = Rt+1 + γρt+1Gt+1,π,b. (9)

Rt+1 does not have a correction factor, because, Gt,π,b
is described given a state-action pair (action At is already
given). We extend the off-policy variance given a state σ(s)
(Sherstan et al. 2018) to a state-action pair σ(s, a). We re-
write the Bellman equation derivation for the off-policy vari-
ance (Theorem 3) for completeness.

Theorem 3. (Off-policy variance in return): Given a be-
haviour policy b and γ̄ = γ2, the off-policy variance in re-
turn for a state-action pair σπ(s, a) can be computed using
Bellman equation as follows:

σπ(s, a) =

Eb
[
δ2
t,π + γ̄ρ2

t+1σπ(St+1, At+1)
∣∣St = s,At = a

]
,

(10)

where,

δt,π =Rt+1 + γρt+1Qπ(St+1, At+1)

−Qπ(St, At).
(11)

Proof in Appendix B.

The above theorem provides a method to relate the vari-
ance under a target policy from the current to the next state-
action pair when the trajectories are generated from a dif-
ferent behaviour policy. Here, Eb[.] denotes the expectation
over the transition function and actions drawn from a behav-
ior policy distribution.
Definition 4. The γ-discounted 1-step transition under a
target-policy π is

T (1)
γ (St+1, At+1|St, At) =γρt+1P (St+1|St, At)

× b(At+1|St+1).
(12)

Definition 5. Let T̄ be 1-step γ̄-discounted transition

T̄
(1)
γ̄ (St+1, At+1|St, At) =γ̄ρ2

t+1P (St+1|St, At)
× b(At+1|St+1).

(13)

One can also define the k-step transition here similar
to Definition 2. The off-policy state-action value Qπ(s, a)
using (12) with importance sampling correction factor in-
cluded is defined as:

Qπ(s, a) = r(s, a) +
∑
s′,a′

T (1)
γ (s′, a′|s, a)Qπ(s′, a′). (14)

Theorem 4. (Variance-penalized off-policy PG theorem):
Given s0 ∼ d0, a0 ∼ b, a stochastic target policy πθ,
T

(k)
γ (s, a|s0, a0) and T̄

(k)
γ̄ (s, a|s0, a0) following (12) and

(13) respectively, the gradient of the objective function J in
(8) w.r.t. θ is

∇θJd0(θ) = Es0∼d0,a0∼b

[ ∞∑
k=0

∑
s,a

[
T (k)
γ (s, a|s0, a0)∇θ log πθ(a|s)Qπ(s, a)

− ψT̄ (k)
γ̄ (s, a|s0, a0)[1 + 1k≥1]∇θ log πθ(a|s)σπ(s, a)

]]
.

Proof in Appendix B.

Here, the importance sampling factor is rolled inside the
T and T̄ terms. This is an incremental update which uses the
experience from the exploratory behavior policy to improve
a different target policy. Similar to on-policy VPAC, using
the multi-timescale argument, we use the value estimate Q̂,
instead of the true state-action valueQπ in the calculation of
δ2
t,π in (11). Algorithm 1 in Appendix D shows a prototype

implementation for off-policy VPAC.

Experiments
We present an empirical analysis in both discrete and con-
tinuous environments for the proposed on-policy and off-
policy VPAC algorithms. We compare our algorithms with
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(a) AC trajectory (b) AC variance (c) AC frequency

(d) VPAC trajectory (e) VPAC variance (f) VPAC frequency

Figure 1: Visualizations in four rooms: Qualitative analysis of converged policy’s behavior in AC and VPAC algorithms. AC
algorithm: (a),(b),(c) Sampled trajectory, variance in return for initial state distribution, state visitation frequency over 10000
trajectories respectively. Similarly, (d),(e),(f) depicts outcome on VPAC algorithm. F / red region depicts the frozen states, S
the start state and G the goal state. VPAC produces a lower variance in the return than AC by taking lower hallway to avoid the
variable F region.

two baselines: AC and VAAC, an existing variance penal-
ized actor-critic algorithm using an indirect variance esti-
mator (Tamar and Mannor 2013) (refer Related Work sec-
tion for further details). Given the penalty term is added
to the objective function, we hypothesize that our approach
should achieve a reduction in variance, but on-par average
returns compared to the baselines. Implementation details
along with the hyperparameters used for all the experiments2

are provided in Appendix E.

On-Policy Variance Penalized Actor-Critic (VPAC)
Tabular environment We modify the classic four rooms
(FR) environment (Sutton, Precup, and Singh 1999) to in-
clude a patch of frozen states (see Fig. 1) with stochastic
reward. In the normal (non-frozen) states, the agent gets a re-
ward of 0, whereas in the frozen states, the reward is sampled
from a normal distributionN (µ = 0, σ = 8). Upon reaching
the goal, a reward of 50 is observed. Note that in expectation,
the reward for the normal and the frozen states is the same.
Hence, an agent that only optimizes expected return would
have no reason to prefer some of these states over others.
However, intuitively it would make sense to design agents
that avoid the frozen states, which can be achieved by algo-
rithms sensitive to the variance. We keep γ = 0.99. We use
Boltzmann exploration and do a grid search to find the best
hyperparameters for all algorithms, where the least variance
is used to break ties among policies with maximum mean
performance. We show the impact of varying the hyperpa-
rameters on both the mean and the variance performance in
Appendix E. We also show the table of best hyperparame-
ters (found using grid search) used for all algorithms in Ap-
pendix E.

2Code for all the experiments is available on https://github.
com/arushi12130/VariancePenalizedActorCritic.git

In Fig. 2, we compare the mean and the variance in the
return of the proposed Algorithm 1 VPAC and two other
indirect variance penalized algorithms: Algorithm 2 VAAC
(Tamar and Mannor 2013) (a Monte-Carlo critic update),
and Algorithm 3 VAAC TD (we modified VAAC to do a TD
critic update for a fair comparison) and risk-neutral AC. Al-
gorithms 2 and 3 are presented in Appendix E. The figure
shows that VPAC has comparable mean performance to AC
and less variance in return (red line). For all algorithms, we
rolled out 800 trajectories for each policy along the learning
curve to calculate the variance in return. Note, here variance
penalization does not highly impact the mean performance
even though number of steps to reach the goal increases, be-
cause γ = 0.99. In Fig. 3 we show the effect of varying the
mean-variance tradeoff ψ on both the mean and the variance
performance of VPAC algorithm. This shows with very high
values of ψ, the exploration is curbed causing a decay in
the performance. In Appendix E, we show the sensitivity of
VPAC and VAAC TD with the step size ratios of policy, vari-
ance and value function. We empirically observe that keep-
ing the step sizes of value and variance function closer to
each other and the step size of policy very small in compar-
ison to the other two, results in a better performance (both
higher mean and lower variance).

Qualitative analysis: We compare AC and VPAC to anal-
yse the learned policy’s behaviour. Fig. 1, (a) & (d), shows
the sampled trajectory where VPAC clearly learns to avoid
the variance-inducing frozen region. The variance in the re-
turn is depicted in Fig. 1, (b) & (e), where each cell color
represents variance intensity in trajectories initialized from
that cell. VPAC shows smaller variance compared to AC, and
its trajectories avoid the F region. This is further strength-
ened by Fig. 1, (c) & (f), showing the state visitation fre-
quency, where VPAC has higher visitation frequency for the
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Figure 2: Performance in four rooms: Mean and variance performance comparison of our VPAC and baselines ( AC, VAAC,
VAAC TD) algorithms where standard deviation error-bars from 100 runs are shown. VPAC achieves significantly lower variance
in the return (right plot) while maintaining similar average return as the baselines (left plot).

Figure 3: Mean-variance tradeoff (ψ) vs performance in four
rooms: Plot shows VPAC’s learning curves for different val-
ues of ψ in terms of the mean and the variance performance.
The performance is averaged over 100 runs.

lower hallway. Fig. 4 shows the comparison between VPAC
and VAAC TD algorithm’s observed variance in return for a
converged policy (obtained after 1000 episodes) being ini-
tialized from each different states in the FR environment.
Policy learnt using VPAC algorithm displays lower variance,
highlighting better capability in learning and avoiding states
that cause variability in the performance.

Continuous state-action environments We now turn to
continuous state-action tasks in the MuJoCo OpenAI Gym
(Brockman et al. 2016). Note, here our aim is not to beat
the mean performance with state-of-the-art PG methods, but
to show the effect of introducing variance-penalization in a
PG method. We can use the proposed objective with various
existing PG methods, here, we limit our comparison with
the proximal policy optimization (PPO) algorithm (Schul-
man et al. 2017).

A separate network for variance estimation is added in
PPO to implement the variance-penalized objective func-
tion. Further details are provided in Appendix E. We com-
pare the performance of our method VPAC with standard
PPO and self-implemented VAAC in the PPO framework.
Fig. 5 shows the box plot of the variance in the return
for converged policies across multiple runs in Hopper,
Walker2D, and HalfCheetah environments. As seen in the
figure, a lowered concentration mass for the variance distri-
bution is observed for VPAC in comparison to the baselines,
supporting a reduction in the variance induced by the algo-

Figure 4: Comparison of variance in return for four rooms:
Compares the converged policy’s variance in return for ini-
tial state distribution of VPAC and baseline VAAC TD algo-
rithm. The variance in performance over 5000 trajectories
is averaged over 50 runs. VPAC’s converged policy achieves
significantly lower variance in return demonstrating the ef-
fectiveness in avoiding the variable F region.

rithm (see red median line and inter-quartile range). Table 1
shows the mean and the variance in return from 100 rolled
out trajectories of the converged policies of different algo-
rithms. We averaged the above performance measure over
multiple runs. Our method VPAC observes a reduction in
the variance, but also suffers slightly in terms of mean per-
formance. Note, Table 1 and Fig. 5 shows different metrics,
mean and median of variance in performance respectively
over multiple runs. The learning curve mean performance
for different algorithms is shown in Appendix E.

Off-Policy Variance-Penalized Actor-Critic (VPAC)
We compare off-policy VPAC with both VAAC (Tamar and
Mannor 2013) and AC algorithms. Since VAAC is a on-
policy AC algorithm, we modify it to its off-policy counter-
part by appropriately incorporating an importance sampling
correction factor. Note that, VAAC uses Monte-Carlo critic,
whereas, AC and VPAC use TD critic. We left the compari-
son with off-policy version of VAAC TD, since its derivation
in AC was not straightforward.

Tabular environment We investigate a modified puddle-
world environment with a variable reward puddle region in
the centre. The goal state G is placed in the top right cor-

7903



PPO VAAC VPAC (ours)
Environment Mean Var (1e5) Mean Var (1e5) Mean Var (1e5)

HalfCheetah 1557 1.6 1525 0.8 (50%) 1373 0.1 (93%)
Hopper 1944 6.6 1991 6.5 (1.5%) 1624 4.0 (39.4%)
Walker2d 3058 12.1 3102 12.5 (-3.3%) 2625 9.2 (23.9%)

Table 1: Performance in Mujoco: Compares the averaged performance of PPO, VAAC, VPAC algorithms over multiple runs in
terms of the mean and the variance in the score over 100 trajectories. Bold highlights the least variance in the score. Numbers in
braces show the percentage reduction of variance in comparison to PPO. VPAC achieves a lower variance in the score compared
to the baselines, but also suffers slightly in terms of mean performance.

(a) Hopper (b) Walker2D

(c) HalfCheetah

Figure 5: Variance analysis in Mujoco: The box plots show
the distribution of variance in the return of converged pol-
icy across multiple runs for VPAC and baselines PPO and
VAAC. Overall, in comparison to the baselines, VPAC ex-
hibits a lowered, tighter distribution along with a reduction
in the median of variance.

ner of the grid. The reward from normal and puddle region
is same on expectation. Samples are generated from a uni-
form behavior policy. The target policy is a Boltzmann dis-
tribution over policy parameters. We use Retrace (Munos
et al. 2016) for off-policy correction. Fig. 6a compares the
mean and the variance in return of target policy for off-
policy baselines AC,VAAC with VPAC. VPAC observes the
least variance in the return, without sacrificing the mean per-
formance. Fig. 7 (a),(b) compares a sampled trajectory for
AC and VPAC. The baseline takes the shortest path to the
goal, whereas, VPAC avoids the variable reward puddle re-
gion. The state visitation frequency plots are provided in Ap-
pendix E.

Continuous state environment Next, we examine the
performance of off-policy VPAC in continuous 2-D puddle-
world environment similar to the discrete case, but with lin-
ear function approximation. We use tile coding (Sutton and
Barto 2018) for discretization of the state-space. Further ex-
perimental details are presented in Appendix E. Fig. 6b,

compares the mean and the variance performance of VPAC
with the baselines. We observe a significant reduction in
the variance for VPAC as compared to other baselines. In
Fig. 6b, as mean-variance tradeoff ψ increases (compare
pink and red lines), we observe not only substantially lower
variance (right plot) for VPAC, but, also a slight reduction
in the mean performance (left plot). This observation high-
lights that role of ψ in the mean-variance tradeoff. Fig. 7
(c), (d) displays the sampled trajectories for AC and VPAC
converged policies, highlighting VPAC avoids the variance
inducing regions.

Related Work
There has been significant effort to reduce the variability
in the performance of AI agents, by minimizing the risk
in the form of exponential utility function (Howard and
Matheson 1972; Borkar 2001; Basu, Bhattacharyya, and
Borkar 2008; Nass, Belousov, and Peters 2019), Sharpe ra-
tio (Sharpe 1994), worst-case outcome (Heger 1994; Mi-
hatsch and Neuneier 2002), value-at-risk (VaR) (Duffie and
Pan 1997), conditional-value-at-risk (CVaR) (Rockafellar,
Uryasev et al. 2000; Chow and Ghavamzadeh 2014; Tamar,
Glassner, and Mannor 2015), or variance (Markowitz 1959;
Filar, Kallenberg, and Lee 1989; Sobel 1982; White 1994).
Garcıa and Fernández (2015) provide a detailed analysis of
different approaches to limit the variability. Although, many
risk-sensitive RL methods have been introduced, variance
based risk methods have an explicit advantage in being more
interpretable (Markowitz and Todd 2000).

Our work involves mean-variance optimization, and
therefore, we limit our discussion to variance-related risk
measures. Sobel (1982) introduced an indirect approach to
estimate the variance using the first and the second mo-
ments of return. Later, White and White (2016) extended
the traditional indirect variance estimator to λ-returns. In-
direct approaches to estimate the variance have been stud-
ied (Tamar, Di Castro, and Mannor 2012; Tamar and Man-
nor 2013; Tamar, Di Castro, and Mannor 2013; Prashanth
and Ghavamzadeh 2013, 2016) in many mean-variance opti-
mization problems. Guo, Ye, and Yin (2012) studied mean-
variance optimization, with the aim to minimize the vari-
ance, assuming access to already optimal expected reward,
dealing with a much simpler problem than ours. In the
episodic AC setting, Tamar and Mannor (2013) studied a
variance-penalized method with an indirect approach to es-
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(a) Discrete puddle-world (b) Continuous puddle-world

Figure 6: Off-policy learning curves: Off-policy performance comparison over baselines AC, VAAC and VPAC averaged over
100 trials a) discrete, and 50 trials for b) continuous setting in puddle-world environment. The graph shows both the mean and
the variance in return for the learnt target policy. ψ is mean-variance tradeoff.

(a) Discrete AC (b) Discrete VPAC

(c) Continuous AC (d) Continuous VPAC

Figure 7: Off-policy puddle-world trajectories: Compares
sampled trajectories for both off-policy AC and VPAC in
{(a),(b)} discrete, and {(c),(d)} continuous puddle-world
environment. VPAC avoids variable reward puddle region
(shown in red/blue).

timate the variance (using the second moment of return).
Prashanth and Ghavamzadeh (2013; 2016) extended the in-
direct variance estimator to AC algorithm using simultane-
ous perturbation methods. Another risk-averse policy gradi-
ent method proposed by Bisi et al. (2019) measures risk us-
ing a different metric called reward volatility which captures
the variance of the reward at each time step (as opposed to
variance in return which measures variance in the accumu-
lated rewards among trajectories). Reward constrained pol-
icy optimization (RCPO) (Tessler, Mankowitz, and Mannor
2019) approach uses a fixed constraint signal as a penalty in
the reward function. In our work, we use varying variance
in return as a constraint which depends on both the policy
and Q function, thus, making combined Bellman update for
critic (value and variance) impossible unlike RCPO.

Thomas, Theocharous, and Ghavamzadeh (2015) esti-
mated safety in the off-policy setting by bounding the prob-
ability of performance for a given confidence. White and
White (2016), Sherstan et al. (2018) measured the variance

for a target policy using off-policy samples in the policy
evaluation setting. It is to be noted that an alternative ap-
proach to estimate the variance in return is by using the dis-
tribution over return (Morimura et al. 2010; Bellemare, Dab-
ney, and Munos 2017).

Our work is closely related to Tamar and Mannor (2013),
Prashanth and Ghavamzadeh (2013) and Sherstan et al.
(2018). The former (Tamar and Mannor 2013; Prashanth and
Ghavamzadeh 2013) developed an AC method for mean-
variance optimization using the return’s first and second mo-
ments for variance estimation (an indirect variance computa-
tion approach described in Introduction). On the other hand,
direct variance estimator proposed by Sherstan et al. for pol-
icy evaluation provides an alternative over indirect estima-
tors. Our work is an extension to both of these methods,
wherein, we propose a new AC algorithm which uses the
TD style direct variance estimator (Sherstan et al. 2018) to
compute a variance-penalized objective function in a control
setting.

Conclusion & Future Work
We proposed an on- and off-policy actor-critic algorithm
for variance penalized objective which leverages multi-
timescale stochastic approximations, where both value and
variance critics are estimated in TD style. We use the direct
variance estimator for our proposed objective function. The
empirical evidence in our work (see section Experiments)
demonstrates that both our algorithms result in trajectories
with much lower variance as compared to the risk-neutral
and existing indirect variance-penalized counterparts.

Furthermore, we provided convergence guarantees for the
proposed algorithm in the tabular case. Extending theoreti-
cal analysis to the linear function-approximation is a promis-
ing direction for future work. Another potential direction
is to study the effects of a scheduler on the mean-variance
tradeoff ψ, which can provide a balance between exploration
at beginning and variance reduction towards the later stage.
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