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Abstract

In continuing tasks, average-reward reinforcement learning
may be a more appropriate problem formulation than the
more common discounted reward formulation. As usual,
learning an optimal policy in this setting typically requires
a large amount of training experiences. Reward shaping is
a common approach for incorporating domain knowledge
into reinforcement learning in order to speed up convergence
to an optimal policy. However, to the best of our knowl-
edge, the theoretical properties of reward shaping have thus
far only been established in the discounted setting. This pa-
per presents the first reward shaping framework for average-
reward learning and proves that, under standard assumptions,
the optimal policy under the original reward function can be
recovered. In order to avoid the need for manual construction
of the shaping function, we introduce a method for utilizing
domain knowledge expressed as a temporal logic formula.
The formula is automatically translated to a shaping func-
tion that provides additional reward throughout the learning
process. We evaluate the proposed method on three continu-
ing tasks. In all cases, shaping speeds up the average-reward
learning rate without any reduction in the performance of the
learned policy compared to relevant baselines.

Introduction
Reinforcement learning (RL) is a popular method for au-
tonomous agents to learn optimal behavior through repeated
interactions with the environment. Most RL algorithms aim
to optimize the total discounted reward received by the
learner. However, in cases involving infinite-horizon or con-
tinuing tasks, a discount factor can often lead to undesir-
able behaviors since the agent sacrifices long-term benefits
for short-term gains (Mahadevan 1996). Hence, the natu-
ral quantity to optimize for many continuing tasks is the
average reward. However, reinforcement learning with an
average reward objective has received very little attention
in the literature despite its importance in artificial intelli-
gence (Wan, Naik, and Sutton 2020).

Many robotics applications for RL have delayed or sparse
rewards, slowing down learning significantly due to long
stretches of possibly uninformative exploration (Mahadevan
1996). Reward shaping (Gullapalli and Barto 1992; Mataric

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1994) is a common way to inject domain knowledge to
guide exploration, but requires care so as not to change
the underlying RL problem. (Randløv and Alstrøm 1998)
added an intuitive signal to the reward of an agent learn-
ing to ride a bicycle, but had the unintended effect of caus-
ing the agent to ride in circles. Ng et al. (1999) considered
additional rewards that are expressed as the difference of a
potential function between the agent’s current state and its
next state and showed that this so-called potential-based re-
ward shaping (PBRS) does not affect the optimal policy.
Wiewiora et al. (2003) further extended PBRS to include
shaping functions of actions as well as states and Devlin &
Kudenko (2012) allow time-varying shaping functions. To
the best of our knowledge, all of the work in reward shaping
concentrates on the discounted-reward setting, and often for
Q-learning in particular. However, the reinforcement learn-
ing problem under discounted reward objectives is funda-
mentally incompatible with continuing learning tasks (Naik
et al. 2019) and requires a major modification to handle av-
erage reward objectives. In this paper, we develop a reward
shaping framework for average-reward RL.

In general, manually constructing a potential function is
difficult since it requires detailed knowledge of the task and
the reward structure (Grześ and Kudenko 2010). To address
this challenge, previous works provide methods of learning
shaping functions online (Grześ and Kudenko 2010) or of-
fline (Marthi 2007). In contrast, our focus is on incorporat-
ing side-information or domain knowledge into the shaping
function. For example, a user may wish to advise a robot
tasked with cleaning to spend more time in one room com-
pared to another. While this statement is intuitive for hu-
mans, it can be non-trivial to translate such a statement to
an appropriate shaping function. We introduce a method to
synthesize the shaping function directly from a temporal
logic formula representing the domain knowledge. Temporal
logic is a structured natural-like language designed to rea-
son about temporal information, which makes it a suitable
choice for non-expert users to encode knowledge for contin-
uing tasks, rather than directly interacting with a mathemat-
ical function. Furthermore, manually constructing a shaping
function requires taking into account the relative magnitudes
of rewards. In contrast, our proposed method allows for a
qualitative input of domain knowledge and does not depend
on knowledge of the original reward values and the underly-
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ing RL algorithm.
We test the proposed framework in three continuing learn-

ing tasks: continual area sweeping (Ahmadi and Stone
2005; Shah et al. 2020), control of a cart pole in OpenAI
gym (Brockman et al. 2016), and motion-planning in a grid
world (Mahadevan 1996). We compare with two bench-
marks: the baseline differential Q-learning without reward
shaping; and shielding, which is a learning method where
the learning agent never violates the given temporal logic
formula (Alshiekh et al. 2018). The proposed framework
improves learning performance from the baseline in terms
of sample efficiency. We also show that when the provided
domain knowledge is inaccurate, the proposed method still
learns the optimal policy and is faster than the baseline dif-
ferential Q-learning. At the same time, shielding fails to
learn the optimal policy as the learner is forced to strictly
follow the inaccurate domain knowledge.

Our contributions are as follows: 1) we develop a reward
shaping method for average-reward RL, 2) we remove the
need for potential function engineering by allowing domain
knowledge to be specified as a temporal logic formula, 3)
we compare the approach to baseline differential Q-learning
without reward shaping as well as shielding to illustrate the
advantage of our method.

Related Work
The goal of this paper is to provide a framework to facilitate
high-level interactions with RL algorithms for users with-
out significant RL expertise. Specifically, we are interested
in providing a framework to allow users to provide advice
to help increase the rate of learning. As such, we focus on
providing guarantees of optimality regardless of the quality
of advice provided.

There are several existing areas of research that develop
techniques to learn from human knowledge. Learning from
demonstration is the problem of learning a policy from ex-
amples of a teacher performing a task (Argall et al. 2009;
Hussein et al. 2017). Knowledge from a human trainer
can be transferred through real-time feedback to improve
learning performance (Thomaz and Breazeal 2006; Knox
and Stone 2009; Warnell et al. 2018). These techniques
usually optimize some combination of inferred human re-
wards and task rewards. This work focuses on optimizing
natural environmental rewards regardless of the quality of
knowledge. For continuing tasks, demonstrations or real-
time feedback data can be difficult to collect. Our approach
takes a temporal-logic specification as input and does not re-
quire the human to perform the task or observe the learner
during training.

Since we focus on obtaining advice from users without
RL expertise, we use temporal logic to sidestep manual re-
ward engineering. In recent years, there has been growing
interest in using temporal logic in RL. For example, Icarte
et al. proposed using LTL formulas (Toro Icarte et al. 2018b)
and later reward machines (Toro Icarte et al. 2018a) to spec-
ify reward functions directly. In contrast, our work focuses
on using LTL formulas to shape a given reward function
from the environment to improve the rate of learning. Shap-
ing has also been used to improve reward machines so that

the output reward functions are easier to learn for (Camacho
et al. 2018, 2019), but it only exploits the values of different
reward machine states. Consider a simple specification “al-
ways follow the human.” The shaping approach introduced
by Camacho et al. (2019) would only differentiate states
based on whether the human is visible now. In contrast, our
synthesis of the potential function encourages actions that
keep the human visible in the future, assuming knowledge
of the transition graph.

Some other approaches use temporal logic formulas as
constraints that must be satisfied to guarantee safety dur-
ing learning (Alshiekh et al. 2018; Jansen et al. 2018). To
that end, the actions violating the safety formula are over-
written and never taken by the learning agent. In our setting,
these actions are not inherently unsafe but simply ”not rec-
ommended” based on the provided domain knowledge. Not
allowing the agent to take these actions can be overly restric-
tive, and in cases where the provided domain knowledge is
not exactly correct, can lead to sub-optimal policies.

Preliminaries
In this section, we introduce the definitions and concepts of
average-reward reinforcement learning, reward shaping, and
temporal logic used throughout the paper.

Average-Reward Reinforcement Learning
A Markov decision process (MDP) M = (S, sI ,A, R, P )
is a tuple consisting of a finite set S of states, an initial state
sI ∈ S , a finite set A of actions , reward function R : S ×
A×S → R, and a probabilistic transition function P : S ×
A × S → [0, 1] that assigns a probability distribution over
successor states given a state and an action. For a stationary
policy π : S → A, the expected average reward is defined
as

ρπM := lim inf
n→∞

1

n
E

[
n−1∑
k=0

R(sk, π(sk), sk+1)

]
. (1)

We are interested in reinforcement learning (RL) prob-
lems where the objective is to maximize an average reward
over time. More specifically, given an MDP M, where the
transition function P and/or reward function R are unknown
a priori, the objective is to learn an optimal policy π∗ such
that ρπ

∗

M ≥ ρπM for any stationary policy π.
Given a policy π, the Q-function QπM(s, a) is the differ-

ential value of taking action a in state s and thereafter fol-
lowing π, and defined as

QπM(s, a) := E

[ ∞∑
k=0

R(sk, ak, sk+1)− ρπM|s0 = s, a0 = a

]
.

(2)
The optimal differential Q-function Q∗M satisfies the

Bellman equation (Sutton, Barto et al. 1998):

Q∗M(s, a) = E[R(s, a, s′) + max
a′∈A

(Q∗M(s′, a′))|P (s, a, s′) > 0]

− ρ∗M, ∀s ∈ S, a ∈ A,
(3)
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where ρ∗M = ρπ
∗

M, the expected average reward of executing
the optimal policy π∗. From Q∗M, the optimal policy π∗ can
be determined by π∗(s) = arg maxa∈A(Q∗M(s, a)).

R-learning (Schwartz 1993; Mahadevan 1996) is a clas-
sical approach for average-reward RL but lacks theoretical
properties. Differential Q-learning (Wan, Naik, and Sutton
2020) is a recent provably convergent approach for learning
Q∗M and ρ∗M, where the standard action-value update step in
Q-learning is replaced with one derived from (3):

δt ←− rt + max
at+1

Qt(st+1, at+1)− ρt(st)−Qt(st, at),

Qt+1(st, at)←− Qt(st, at) + αtδt,

ρt+1(st)←− ρt(st) + ηαtδt,

where δt is the temporal-difference (TD) error at time step
t, α is the learning rate and η is a positive constant.

Potential-Based Reward Shaping and
Potential-Based Advice
Potential-based reward shaping (PBRS) augments the re-
ward function R by a shaping reward function F , where
F (s, s′) = γΦ(s′) − Φ(s), Φ : S → R is a potential
function, and 0 < γ < 1 is the discount factor. The re-
sulting MDP isM′ = (S, sI ,A, R′, P ) with R′ = R + F .
It has been proven, for the discounted and episodic settings,
thatM andM′ have the same optimal policy (Ng, Harada,
and Russell 1999). The goal is to learn the optimal policy in
M′ with improved sample efficiency compared to learning
inM. Potential-based look-ahead advice (Wiewiora 2003)
further extends PBRS such that the potential function also
depends on actions: F (s, a, s′, a′) = γΦ(s′, a′) − Φ(s, a),
where a′ is chosen by the current policy.

Temporal Logic
We first define some basic notations. The set of finite se-
quences w over a set Σ is denoted Σ∗, and the set of infinite
sequences is denoted Σω .

Given an MDP M = (S, sI ,A, R, P ) and a policy π,
a path σ = s0s1s2 · · · ∈ Sω is a sequence of states with
s0 = sI and P (si, π(si), si+1) > 0 for i ≥ 0. Given a
set AP of atomic propositions (Boolean variables), we in-
troduce the labelling function L : S → 2AP. For a path
σ = s0s1s2 · · · ∈ Sω , its corresponding label sequence is
w = w0w1 · · · ∈

(
2AP
)ω

, where wi = L(si).
A linear temporal logic (LTL) formula ϕ constrains all

finite and infinite label sequences w ∈
(
2AP
)ω ∪ (2AP)∗

corresponding to paths inM. For the full semantics of LTL,
we refer the reader to (Baier and Katoen 2008). We trans-
late the LTL formula ϕ to an equivalent deterministic finite
automaton (DFA) (Kupferman and Vardi 2001). A DFA is
a tuple T ϕ = (Q, qI , 2

AP, δ,H) where Q is a finite set of
states, qI ∈ Q is the initial state, 2AP is a finite input alpha-
bet, δ : Q × 2AP → Q is a deterministic transition function
and H ⊆ Q is a set of accepting states. A run q of T ϕ over
label sequence w is an infinite sequence q = q0q1 · · · ∈ Qω
where q0 = qI and qi+1 = δ(qi, wi). The run is accepted by
T ϕ if qi ∈ H for all i ≥ 0. A label sequence w satisfies ϕ iff
the induced run is accepted by T ϕ. Only a subclass of LTL

formulas can be translated to an equivalent DFA with accep-
tance condition as presented above. We informally refer to
such formulas as safety formulas and the translated DFA as
a safety automaton (Kupferman and Vardi 2001).
Example 1. Consider a cleaning robot operating in the en-
vironment with a human as shown in Figure 1a, which we
model as an MDP on a discrete gridworld shown in Fig-
ure 1b. Trash can appear in any state in the grid with a
given probability, and the robot is rewarded when it finds
trash. Suppose we wish to provide the domain knowledge
“the presence of humans tends to increase the probabil-
ity of trash appearance”. We provide this knowledge in the
form of advice as an LTL formula “Always human visi-
ble” written as � human visible. We use this formula
to guide the agent during learning to more quickly asso-
ciate human presence with the appearance of trash. The
robot has line-of-sight with a range of 5. We have AP =
{human visible}, and labelling function L that labels all
states in visible range as {human visible} and all other
states as {¬ human visible}. The corresponding DFA is
shown in Figure 1c.

In the above example, trash appears in states with a higher
probability if the state is occupied by a human. However, the
given formula ϕ to always keep the human visible, if never
violated by the robot, will likely result in the robot learn-
ing suboptimal behavior for the house cleaning task since
trash could accumulate in other areas as well. In the next
sections, instead of relying on LTL formulas to constrain the
RL agent’s behavior, we discuss how to use a given LTL
formula to guide the learning of an optimal policy that may
violate the formula.

Reward Shaping for Average-Reward RL
The main contribution of this paper is a novel approach to
provide shaping rewards based on an LTL formula to guide
a reinforcement learning agent in the average-reward setting
while allowing the optimal policy to be learned even if it
violates the given formula. We first define a potential-based
shaping function, and prove that the optimal policy can be
recovered given any potential function (see supplementary
material for the proof).
Theorem 1. Let F : S ×A×S → R be a shaping function
of the form

F (s, a, s′) = Φ
(
s′, arg max

a′
(Q∗M(s′, a′))

)
−Φ(s, a), (4)

where Φ : S ×A → R is a real-valued function and Q∗M is
the optimal average-reward Q-function satisfying (3). Define
Q̂M′ : S ×A → R as

Q̂M′(s, a) := Q∗M(s, a)− Φ(s, a). (5)

Then Q̂M′ is the solution to the following modified Bellman
equation inM′ = (S, sI , A,R′, P ) with R′ = R+ F :

Q̂M′(s, a) = E[R′(s, a, s′) + Q̂M′(s
′, a∗)]− ρπ

∗

M′ , (6)

where a∗ = arg maxa′(Q̂M′(s
′, a′) + Φ(s′, a′)), and ρπ

∗

M′
is the expected average reward of the optimal policy inM,
π∗M, executed inM′.
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(a) Gazebo environment for
cleaning robot example.

(b) Grid world representation
of (a).

qI

start
q1

q2

¬human visible

hum
an

visi
ble

¬human visible

human visible

¬human visible

(c) DFA for ϕ = � human visible.

Figure 1: A service robot example where the robot is rewarded for detecting trash that can appear at any state in the gridworld.
Both robot and human can move in any of the cardinal directions.

In MDPs with finite state and action spaces, Q̂M′ is the
unique solution to (6) because it forms a fully-determined
linear system. After learning Q̂M′ with the shaping rewards
inM′, it follows from (5) that the optimal policy π∗ can be
recovered as:

π∗(s) = arg max
a∈A

(Q̂M′(s, a) + Φ(s, a)).

It is important to note that our goal is not to learn the opti-
mal policy of M′. Rather, we learn a value function Q̂M′
from which it is possible to recover the optimal policy of
M. Note that Q̂M′ is not the same as Q∗M′ where Q̂M′ sat-
isfies (6) butQ∗M′ satisfies the following Bellman optimality
equation:

Q∗M′(s, a) = E[R(s, a, s′) + max
a′∈A

(Q∗M′(s
′, a′))]− ρ∗M′ .

In practice, the shaping rewards in (4) require knowledge of
Q∗M(s′, a′), which can be bootstrapped by Q̂M′(s

′, a′) +
Φ(s′, a′) as its estimate. When shaping is applied to dif-
ferential Q-learning, action selection is also based on
Q̂M′(s, a) + Φ(s, a) rather than Q̂M′(s, a).

Potential Function Synthesis
We now present an algorithm for constructing a potential
function Φ from a given temporal logic formula ϕ. Infor-
mally, the reward shaping function captures the information
in the formula ϕ by penalizing the learning agent for visiting
the states from which a violation of ϕ can occur with a non-
zero probability. We illustrate this concept with an example.
Example 2. Consider again the example shown in Figure 1.
In order to not violate the formula ϕ = � human visible,
the robot must “plan ahead” to ensure that no matter what
the human does in the future, the robot will still not lose
visibility of them. Figure 1b, shows a case where the current
state does not cause a violation of ϕ as the robot can still
see the human. However, there is a non-zero probability that
the human will move south into a room, and the robot will
not be able to maintain visibility and hence will violate ϕ.

Informally, we compute the set of state-action pairs from
which the probability of violating ϕ is 0. We refer to this set

W as the almost-sure winning region. Some knowledge of
the dynamics, i.e., the graph structure ofM (not necessar-
ily the transition probabilities), is necessary to “plan ahead”
and compute W . To this end, we define a product MDP
Mϕ = M× T ϕ. Given an MDP M = (S, sI ,A, R, P ),
a DFA T ϕ = (Q, qI , 2

AP, δ,H), and a labelling function
L a product MDP is defined as Mϕ = M × T ϕ =(
V, vI ,A,∆, H

)
where V = S × Q is the joint set of

states, vI = (sI ,QI) = (sI , δ(qI , L(sI))) is the initial
state, ∆ : V × Σ × V → [0, 1] is the probability transi-
tion function such that ∆((s, q), a, (s′, q′)) = P (s, a, s′), if
δ(q, L(s′)) = q′, and 0, otherwise, and H = (S ×H) ⊆ V
is the set of accepting states.

In order to compute the almost-sure winning regionW ⊆
S×A in the MDPM, we first compute the setWmin

0 (H) ⊆
V ×A of states and corresponding actions that have a min-
imum probability of 0 of leaving H . This set can be com-
puted using graph-based methods in O (V ×A) (Baier and
Katoen 2008). An algorithm for computing the set as well
as ways to improve scalability for very large state spaces are
provided in the supplementary material. We can then extract
W from Wmin

0 (H) by defining W := {(s, a) ∈ S × A |
(s, q, a) ∈ Wmin

0 (H)}.
GivenW , we construct Φ as:

Φ(s, a) =

{
C (s, a) ∈ W
d(s, a) (s, a) /∈ W (7)

where C ∈ R is an arbitrary constant, and d : S × A →
R is any function such that d(s, a) < C for all s, a. This
construction incentivizes the agent to follow the advice by
ensuring that state-action pairs in the almost-sure winning
region are assigned higher potential values.
Example 3. Continuing the cleaning robot example, we set
C = 1 and d(s, a) as the negative of the distance between
s and the closest state inW . The results are detailed in the
Experiments section.

The hyperparameters are formulated generally to allow
encoding helpful knowledge about the domain if it is avail-
able (such as the Manhattan distance in a grid world), but
they can be set arbitrarily as long as d(s, a) < C. The re-
sults are not sensitive to the precise values, as the shaping
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function takes the relative difference between the potential
values.

Remark 1. We note that while the method presented in this
section can be applied for any safety formula, the synthe-
sized potential function will not, in general, be Markovian.
Since the goal of this paper is to help the agent learn an op-
timal policy with respect to a Markovian reward function
R(s, a), it suffices to consider Markovian potential func-
tions. Restricting ϕ to a subclass of safety formulas called
invariant formulas will guarantee Φ is Markovian (Baier
and Katoen 2008).

Experiments
We evaluate our temporal-logic-based reward shaping
framework in three average-reward RL benchmarks: contin-
ual area sweeping, cart pole, and continuing grid world. In
all scenarios, we compare against the standard differential
Q-learning approach that we refer to as the baseline and the
same differential Q-learning approach where actions violat-
ing the given temporal logic formula are disallowed using
the method introduced by Alshiekh et al. (2018). We refer
to the latter as shielding, and we refer the framework pre-
sented in this paper as shaping. Furthermore, we study cases
when the optimal learned policy must violate the given for-
mula - in such situations, we refer to the provided formula
as imperfect advice.

We show that 1) our reward shaping framework speeds up
baseline average-reward RL, 2) shaping cannot outperform
shielding with perfect advice, but 3) when the advice is im-
perfect, shaping still learns the optimal policy faster than the
baseline, whereas shielding fails to learn the optimal policy.
All source code is available as supplementary material.

Continual Area Sweeping

The problem of a robot sweeping an area repeatedly and
non-uniformly for some task has been formalized as con-
tinual area sweeping, where the goal is to maximize the av-
erage reward per unit time without assuming the distribution
of rewards (Shah et al. 2020). We run the set of experiments
on the environment in Figure 1b, where the robot has a maxi-
mum speed of 3, i.e. it can move to any cell within a Manhat-
tan distance of 3. We study three cases. First, the robot op-
erates without a human and is given the formula � kitchen
where the kitchen is the bottom right room of Figure 1b.
Second, a human is also present, and the robot is given the
formula � human visible as described in Examples 1-3.
Third, a human is present and there is trash appearing in the
corridor, enabling us to study how these approaches handle
complex formulae such as conjunctions. The second and the
third cases are examples where it is difficult to hand-craft a
function, since the winning region is non-trivial, but the ad-
vice can be captured with simple and intuitive LTL formulas.
In all three scenarios, we compare our framework against the
DQN-based deep average-reward RL approach introduced
by Shah et al. (2020), with their R-learning update replaced
by the recent differential Q-learning approach.

Always kitchen In this scenario, the kitchen has the most
cleaning needs, and the given formula is to always stay in the
kitchen. State-action pair (s, a) ∈ W if L(s) = {kitchen}
and L(s′) = {kitchen} for all s′ such that P (s, a, s′) > 0.
The potential function Φ is constructed as Equation 7, where
C = 1 and d(s, a) is the negative of the minimal distance
between s and the kitchen and plus 1 if a gets closer to the
kitchen. For the shielding approach, (s, a) is allowed only
if (s, a) ∈ W or a will decrease the distance to the kitchen
from s.

Experiments are conducted in the following two scenar-
ios: a) cleaning is required only in the kitchen and nowhere
else, and b) cleaning can be required in the kitchen and some
states that are randomly selected from the right half of the
corridor. Each cell that might require cleaning is assigned a
frequency between 1/20 and 1/10 so that the robot has to
learn an efficient sweeping strategy among those cells. At
each time step, there is also a 0.2 probability that a dirty cell
no longer needs cleaning (such as trash gets picked up by
people, the wet floor dries as time passes).

Figure 2a reports the learning curves when the formula
is perfect, i.e., trash only appears in the kitchen. While
shielding performs well from the beginning, shaping quickly
catches up, and both learn significantly faster than the base-
line. Figure 2b reports the results in the second case where
there are unexpected rewards outside of the specified region.
Shielding gets a head-start by blocking actions away from
the region, but it fails to discover the unexpected reward out-
side the region. Shaping performs better than the baseline at
the beginning and converges to a better policy that sweeps
in the corridor too.

Always keep human visible Consider the scenario de-
scribed in Examples 1-3. At every time step, there is a 0.2
probability that the current position of the human needs
cleaning. There is also a 0.2 probability that a dirty cell be-
comes clean by itself with every step. The human moves
randomly between the corridor and the top left room and
has a speed of 1 cell per step. The state space includes the
current location of the human if the human is visible. Φ is
constructed as described in Example 3. When the human is
invisible to the robot, the winning region is unknown, and
d(s, a) is set to −6.

Figure 2c shows the results when the human is the only
source of trash appearance. Shielding outperforms shaping
and the baseline by forcing the agent to always follow the
human. The learning curves of shaping and baseline meth-
ods do not converge to the optimal average reward because
softmax action selection is used throughout learning. The
exploratory actions can lose sight of the human, which is
very costly in this task.

Always keep human visible and always corridor Sup-
pose each cell in the corridor is assigned a frequency be-
tween 1/20 and 1/10 to require cleaning besides the cell that
the human occupies at each step. In this case, the best strat-
egy is to always follow the human in the corridor and keep
sweeping the corridor when the human goes into the top left
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(a) Trash only appears in the
kitchen.
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(b) Trash can occur outside the
kitchen as well.
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(c) Trash only appears where
the human has been.
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(d) Trash can appear in other
states as well.

Figure 2: Learning rate comparison for shaping, shielding, and the baseline in the two continual area sweeping tasks - � kitchen
(top row) and � human visible (bottom row). In (a) and (b), the average reward of every 500 steps is plotted, averaged by 100
runs. (c) plots the average reward every 2500 steps, and (d) plots the average reward every 1000 steps, averaged by 100 runs.
Only (c) shows the average reward for 100,000 steps (while the rest show 10,000 steps) because the reward is much sparser
when trash only appears with human presence. The shaded areas represent one standard deviation from the mean.

room. Shielding cannot use the conjunction of always keep-
ing human visible and always staying in the corridor because
there are no allowed actions when the human leaves the cor-
ridor. Shaping can easily combine both pieces of advice by
adding a potential function based on distance to corridor to
the potential function in Example 3. Figure 2d shows that
the shielding method fails to learn the optimal policy if it is
forced to strictly follow the human and misses the reward of
staying the corridor; the shaping method is able to leverage
both specifications even though they sometimes contradict
each other, and outperforms both shielding and the baseline.

Cart Pole
Cart pole is a widely studied classic control problem in the
reinforcement learning literature. The agent is a cart with
a pole attached to a revolute joint. Situated on a horizontal
track, the agent must keep its pole balanced upright by ap-
plying a force to the right or the left. Each state is composed
of the position x, the linear velocity ẋ, the pole angle θ, and
the angular velocity θ̇. At each step, the agent receives re-
ward of 1 if x ∈ [−2.4, 2.4] and θ ∈ [−π/15, π/15]. Other-
wise, the episode terminates. We modify the cart pole envi-
ronment in OpenAI Gym (Brockman et al. 2016) to a contin-
uing task by removing the termination conditions. As shown
in Figure 3a, we allow the cart to move anywhere on the x-
axis and the pole to be at any angle, and restrict the max lin-
ear velocity by |ẋ| ≤ 1. Other aspects of the motion model
are kept the same, and reward is given under the same con-
ditions. Therefore, the agent has to learn a policy that keeps
the cart position in the scoring range (i.e., x ∈ [−2.4, 2.4])
and swings the pole up when it falls down.

We compare our shaping framework with the same base-
line deep differential Q-learning and shielding. The specifi-
cation is to keep the cart position in the scoring range. We
test the methods in the case of not knowing the full dynam-
ics model, and approximate the winning region by predict-
ing the next x position as xt+1 = xt + ẋt∆t where ∆t is
the time between steps. The shield blocks the action in the
direction of xt+1 if xt+1 is not in the scoring range. Φ(s, a)
is constructed with C = 1 and d(s, a) as the minimal dis-

tance between the scoring range and xt+1 (and multiplied
by a constant1).

Figure 3b plots the learning performance when the accu-
rate scoring range [−2.4, 2, 4] is given to shaping and shield-
ing. Figure 3c shows the results when an inaccurate scoring
range [−2, 2] is used. Because the cart can leave the scoring
range and never reset, the baseline gets extremely sparse re-
ward and fails to solve the problem in a reasonable amount
of time in most trials. Shaping and shielding are both able
to significantly improve the learning performance, but when
the knowledge is inaccurate, shielding over-restricts action
choices and achieves worse average reward than shaping.
The results also show that shaping is robust to only knowing
approximate dynamics.

Grid World
We further evaluate our method in a continuing grid world
environment. The purpose of this experiment is to include
a common benchmark that has been studied in the context
of both average-reward RL (Mahadevan 1996) and reward
shaping (Ng, Harada, and Russell 1999), and showcase that
our temporal-logic-based approach performs as well as the
hand-crafted shaping function. Figure 4a shows the 6*6 grid
with a +100 reward in the green cell. The agent can move
to a neighboring cell in one of the four cardinal directions
deterministically at every step, and gets “transported” to a
random cell when it reaches the green cell and when it fails
to reach the green cell after 100 steps.

The following four methods are compared: our temporal-
logic-based reward shaping, hand-crafted reward shaping,
shielding, and the baseline. Shielding blocks actions up and
left and only allows actions down and right. For temporal-
logic-based shaping, the winning region consists of all
states, but only with the actions down and right. The poten-
tial function Φ is constructed with C = 1 and d(s, a) = −1.

1It is intuitive to penalize the agent for going out of the scoring
range by scaling d(s, a). We tried scaling factors of 1, 10, and 100,
and saw the most improvements with 100. Overall, no fine tuning
was required for the hyperparameters C and d(s, a).
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(a) Continuing cart pole setup.
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(c) Unexpected cart range.

Figure 3: Learning rate comparison between shaping, shielding, and the baseline in the continuing cart pole task
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(a) Grid world setup.
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(b) Perfect knowledge.

0 20,000 40,000 60,000 80,000 100,000
0

5

10

15

20

25

Number of steps
A

ve
ra

ge
re

w
ar

d

Shaping (ours)
Shaping (Ng et al.)
Shielding
Baseline

(c) Unexpected wall.

Figure 4: Grid world experiments comparing the performance of temporal-logic-based reward shaping (ours), hand-crafted
reward shaping (Ng et al.), shielding, and baseline. The average reward of every 100 steps is plotted, averaged by 100 runs.

The hand-crafted potential function is introduced by Ng et
al. (1999), where Φ(s) is defined as the negative of the dis-
tance from s to the green cell. The correctness of the advice
is varied by adding the red wall from (2, 2) to (2, 5) as shown
in Figure 4a. When the agent is directly above the wall, it
cannot reach the green cell by only moving down or right.

Figure 4 compares the learning performance of each
method in the two conditions. The observations are con-
sistent with the results reported in the other benchmarks.
Shielding outperforms other methods when the advice is
perfect, i.e., there is no wall, and fails to reach the maxi-
mum average reward when the wall is added. Our temporal-
logic-based reward shaping method performs similarly to
the hand-crafted shaping function while allowing the re-
ward shaping to be automatically constructed. Both shaping
methods still outperform the baseline differential Q-learning
when the advice is imperfect.

Conclusion
We provide a reward shaping framework to construct shap-
ing functions from a temporal logic specification to improve
performance of average-reward RL. We prove and empiri-
cally show that our shaping framework speeds up the learn-
ing rate, and allows the optimal policy to be learned when

the provided advice is imperfect.
Since this is the first work to extend reward shaping to

the average-reward setting (to the best of our knowledge),
we focus on providing theoretical guarantees and intuitive
examples rather than evaluations in a large suite of bench-
marks. Given that average-reward RL remains under-studied
and thus lacks a wide range of benchmarks, this paper also
contributes the Continual Area Sweeping task and our con-
tinuing version of Cart Pole as new possible benchmarks.

This paper focuses on the (not uncommon) case when the
user has some knowledge of the dynamics. In robotics ap-
plications, knowledge of the underlying graph is a reason-
able assumption as the high-level dynamic capabilities of
the robot are generally known even if there is low-level vari-
ation which is captured by the detailed (unknown) transition
probabilities. The proposed approach is also robust to the
user only knowing approximate dynamics, similar to imper-
fect advice. One direction for future research is extending
the work to apply when the dynamics or models are fully
unknown.

Another interesting direction for future work that this pa-
per opens up is studying adversarial advice - i.e., formulas
provided to actively hinder the learning process. We are also
interested in expanding the learning problem to include both
non-Markovian reward structures and shaping functions.
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