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Abstract

Open Set Domain Adaptation (OSDA) is a challenging do-
main adaptation setting which allows the existence of un-
known classes on the target domain. Although existing OSDA
methods are good at classifying samples of known classes,
they ignore the classification ability for the unknown samples,
making them unbalanced OSDA methods. To alleviate this
problem, we propose a balanced OSDA methods which could
recognize the unknown samples while maintain high classifi-
cation performance for the known samples. Specifically, to
reduce the domain gaps, we first project the features to a hy-
perspherical latent space. In this space, we propose to bound
the centroid deviation angles to not only increase the intra-
class compactness but also enlarge the inter-class margins.
With the bounded centroid deviation angles, we employ the
statistical Extreme Value Theory to recognize the unknown
samples that are misclassified into known classes. In addition,
to learn better centroids, we propose an improved centroid up-
date strategy based on sample reweighting and adaptive up-
date rate to cooperate with centroid alignment. Experimental
results on three OSDA benchmarks verify that our method
can significantly outperform the compared methods and re-
duce the proportion of the unknown samples being misclassi-
fied into known classes.

Introduction
In the field of artificial intelligence, it is common to make
cross-domain knowledge transfer, e.g., cross-domain seman-
tic segmentation (Hoffman et al. 2018; Saito et al. 2018a),
cross-domain object classification (Long et al. 2018b; Jing
et al. 2020; Li et al. 2018b,a, 2019, 2020) and cross-language
text classification (Prettenhofer and Stein 2010). However,
in real-world applications, a more common situation is that
the target domain is mixed with samples of unknown classes.
Traditional domain adaptation methods would fail to cope
with this situation. Therefore, Open Set Domain Adaptation
(OSDA) is proposed to address the problem of domain adap-
tation with unknown classes in the target domain (Baktash-
motlagh et al. 2018; Panareda Busto and Gall 2017).

There are two major challenges in OSDA: (1) The large
inter-domain gaps make the well-trained classifier in the
source domain suffers a large classification risk in the target
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domain. (2) The existence of the unknown samples makes
it difficult to recognize the unknown samples while main-
tain the classification performance for the known samples.
Existing methods generally handle OSDA tasks by address-
ing the above two problems. For example, Saito et al. (Saito
et al. 2018b) train a classifier to build a decision bound-
ary for known and unknown, and train a generator to make
target samples far from the boundary. Liu et al. (Liu et al.
2019) adopt a coarse-to-fine weighting mechanism to pro-
gressively separate the samples of known and unknown.

Although many OSDA methods are good at classifying
the known samples, they ignore the classification ability
for the unknown samples, making them unbalanced OSDA
methods. Specifically, there are two widely used evalua-
tion metrics for OSDA, i.e., the mean accuracy for all
classes (OSacc) and the mean accuracy for the known classes
(OS∗acc) (Panareda Busto and Gall 2017). Under these met-
rics, many state-of-the-art methods achieve high OSacc and
OS∗acc, but in fact, they have low classification performance
for unknown samples. For example, in Office-31 dataset,
STA (Liu et al. 2019) has a high average accuracy for sam-
ples of the known classes (OS∗acc=94.6%), but its accuracy
for unknown class samples is only 50.5% (see Table 1).
Since all unknown classes are regarded as one class, with
the increase of the number of known classes, the smaller the
contribution of unknown samples to the total OSacc, the eas-
ier they are to be ignored by existing methods. Low clas-
sification performance for unknown samples causes a high
false positive rate for known classes, which reduces the prac-
tical value of many OSDA methods. In addition, ignoring
the classification ability for the unknown samples results in
that many existing OSDA methods suffer from high open set
risk (Luo et al. 2020; Fang et al. 2020).

Considering the unbalanced problem, in this paper, we ar-
gue that we should pay equal attention to the classification
performance of known and unknown classes. To this end,
we propose a balanced OSDA method based on centroid
alignment in a hyperspherical latent space. The ”balanced”
means that our method can recognize the unknown class
samples while maintain high classification performance for
the known class samples. The motivation of our method is
that, we take the centroids of the classes in the source do-
main as the centroids of samples in both domains, and use
the centroid deviation angle to measure the discrepancy be-
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Figure 1: (a) Samples randomly distributed on the hyper-
sphere where each sample is a vector and the intra-class an-
gle θ1 may be larger than the inter-class angle θ2. (b) The
centroid deviation angles are bounded so that the intra-class
angle θ1 is minimized while the inter-class angle θ2 is maxi-
mized. Meanwhile, an unknown sample is misclassified into
a known class. (c) The unknown sample is rejected as un-
known due to its extremely larger centroid deviation angle.

tween a sample and a centroid. Then, we bound the cen-
troid deviation angles to not only increase margins of the
inter-class samples but also enhance the compactness of the
intra-class samples, as well as reduce domain gaps. With
the bounded centroid deviation angles, we further employ
the statistical Extreme Value Theory (EVT) to recognize the
unknown samples misclassified into known classes. Specif-
ically, in view of the existence of the domain gaps, we pro-
pose a Distance-Rectified Weibull model based on EVT,
which can effectively reduce the open set risk, thus keep bal-
ance in OSDA. As illustrated in Fig. 1, the domain gaps are
minimized by centroid alignment (see Fig. 1 (b)). Unfortu-
nately, an unknown sample (gray arrow) is misclassified into
a known class by the classifier. As the centroid deviation an-
gle of this sample (θ3) is extremely larger that it exceeds a
threshold ζ, this sample is statistically rejected as the un-
known sample (see Fig. 1 (c)).

In addition, to learn better centroids, we propose an im-
proved centroid update strategy based on sample reweight-
ing and adaptive update rate. This strategy can cooperate
well with the centroid alignment.

Our contributions are summarized as follows:

(1) We propose a balanced OSDA method via centroid
alignment. The features of both domains are first en-
coded into a hypersphere. Then, we bound the centroid
deviation angles to enhance the domain-invariance and
discrimination of the representations.

(2) We propose a Distance-Rectified Weibull model based
on EVT to recognize the unknown samples according
to the centroid deviation angles of the target features.
Experimental results show that this strategy can signifi-
cantly improve the performance of unknown class sam-
ples being correctly recognized. As a consequence, our
method could significantly reduce the open set risk.

(3) We propose a new centroid update strategy to cooperate
with centroid alignment based on sample reweighting
and adaptive update rate.

Related Work
Open Set Domain Adaptation. In OSDA, since the tar-
get unknown samples can easily be confused with the tar-
get known samples, they will mislead the alignment between
domains. Some methods try to use a binary classifier to filter
the unknown samples from the target domain, and then only
use the target known samples to align with the source do-
main (Panareda Busto and Gall 2017; Shermin et al. 2020;
Feng et al. 2019; Silvia Bucci 2020; Pan et al. 2020). For
example, Liu et al. (Liu et al. 2019) train a multi-binary
classifier to progressively separate the samples of unknown
and known classes. You et al. (You et al. 2019) quantify
the sample-level transferability and recognize the unknown
samples based on the transferability. Different from these
methods, our method uses EVT to recognize the unknown
samples according to the centroid deviation angles. Another
line of works, e.g., OSBP (Saito et al. 2018b), use the ad-
versarial learning to increase the prediction variances so that
the generator can choose to align a target sample with the
source known or reject it as an unknown target samples.
Extreme Value Theory. As a branch of statistics, Extreme
Value Theory (EVT) (Kotz and Nadarajah 2000) is used to
analyze and model the distribution of abnormally low or
abnormally high values of data. For example, Bendale et
al. (Bendale and Boult 2016) propose a EVT based meta-
recognition method OpenMax to address open set recog-
nition on the basis of softmax predictions of a classifier.
Scheirer et al. (Scheirer, Jain, and Boult 2014) propose
a Weibull-calibrated SVM (W-SVM) to combine EVT for
score calibration with two separated SVMs.

The Proposed Method
Problem Definition
The OSDA problem involves two domains: the labeled
source domain S = {xs, ys|xs∈ Xs, ys∈ Ys} and the un-
labeled target domain T = {xt|xt ∈ Xt}, where the two
domains share C classes, i.e., the known classes. In addi-
tion, the target domain contains classes that are not available
in the source domain. We regard these samples as the class
C+1, i.e., the unknown class. Samples in the source domain
S and the target domain T are drawn from different proba-
bilities p(xs) and p(xt), respectively. In both open set and
closed set settings, p(xs) 6= p(xt). The goal of our method
is to learn the domain-invariant latent representations zs,
zt and an adaptive classifier for recognizing the C known
classes in target domain and rejecting the unknown samples
simultaneously. The main idea is illustrated in Fig. 2.

Hyperspherical Variational Auto-Encoders
In order to obtain the domain-invariant hyperspherical rep-
resentations, we employ S-VAE (Davidson et al. 2018) to
encode the data samples into a hyperspherical latent space.
Different from the vanilla VAE, S-VAE uses the von Mises-
Fisher (vMF) distribution as the prior and posterior distri-
butions. Using the vMF prior instead of the Gaussian prior
can avoid the limitations of origin gravity and soap bub-
ble effect (Davidson et al. 2018) so as to improve the dis-
crimination of the representations. The vMF distribution is
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Figure 2: Method overview. The dashed arrows represent the optimization directions, e.g., the arrow between (red,black) means
we optimize features to maximize distances between target unknown and source positive. Our method encodes deep features
into a hyperspherical latent space. In this space, we bound the centroid deviation angles so that the inter-domain divergence and
the intra-domain compactness are maximized simultaneously. With the bounded centroid deviation angles, we train a Distance-
Rectified Weibull model for each known class to recognize the misclassified unknown samples.

equivalent to the Gaussian distribution defined on the (d−1)-
dimensional hypersphere in Rd. Its probability density func-
tion w.r.t a d-dimensional random vector z is:

qθ(z|µ, κ) =Cd(κ)exp(κµT z) (1)

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2)

where µ ∈ Rd represents the mean direction and κ ∈ R rep-
resents the concentration degree around µ, ||µ|| = 1, κ > 0.
Cd(κ) is the normalizing constant, and Iu denotes the modi-
fied Bessel function of the first kind at order u. To obtain the
latent representations, we use an encoder to output µ and κ,
and then adopt the reparametrization sampling schemes to
obtain z, i.e., q(z|x) = q(z|µ(x), κ(x)). We train S-VAE by
minimizing the following loss:

Lvae = Lsvae + Ltvae, (3)

where

Lsvae=−KL[qθ(zs|xs)||q(zt|xt)]+Eqθ(zs|xs)[log pφ(xs|zs)],
Ltvae=−KL[qθ(zt|xt)||q(zs|xs)]+Eqθ(zt|xt)[log pφ(xt|zt)],
where KL(·) is the Kullback-Leibler divergence, q(z|x) and
p(x|z) are approximated by an encoder parameterized by θ
and a decoder parameterized by φ, respectively. Notably, we
take the source representations zs and the target represen-
tation zt as the prior of each other to enhance the domain-
invariance of the representations.

With the source representations and labels, we train a clas-
sifier f by optimizing the cross entropy loss:

Lcls =
1

Ns

Ns∑
i=1

`ce(f(z
i
s), y

i
s) (4)

Centroid Alignment on Hypersphere
Generally, the centroid of a class can well represent the di-
rection of the whole class. Therefore, we could reduce the

domain gaps by aligning the centroids of the two domains.
However, in the setting of OSDA, the target domain is un-
labeled. The pseudo-labels of the target domain are also un-
reliable and may mislead the alignment of the two domains.
Therefore, we use the centroids of the source domains as the
centroids of both domains, and then enforce all samples pro-
gressively approach their centroids. We define the angular
distance between a sample and a centroid as centroid devi-
ation angle. Then, we employ centroid alignment to bound
the centroid deviation angles. We try to achieve the follow-
ing three goals:
Goal1: In the source domain, the intra-class representations
cluster more tightly while the inter-class representations dis-
tribute more dispersedly.

We achieve Goal1 by minimizing the following loss:

Lca1=
1

Ns

Ns∑
i=1

max[m+ d(zis, c
yis
s )−min

j 6=yi
d(zis, c

j
s), 0], (5)

where d(z1, z2) = arccos(z1 ·z2) is a function to compute
the angular distance, Ns is the number of source samples,
cvs denotes the source centroid of class v, m is the angular
margin between two representations.

Achieving Goal1 can increase the intra-class density and
maximize the inter-class boundaries of the source domain.
Goal2: The target domain representations could align with
the source domain representations at both the class-level
and sample-level.

We deploy the following loss to achieve Goal2:

Lca2 =
1

C

C∑
i=1

max[m+ d(cit, c
i
s)−min

j 6=i
d(cit, c

j
s), 0]

+
1

NC
t

NCt∑
i=1

max[m+ d(zit, c
yit
s )−min

j 6=yit
d(zit, c

j
s), 0] (6)

where the first and second term are the class-level alignment
loss and sample-level alignment loss, respectively.NC

t is the
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number of known class samples. cvt denotes the target cen-
troid of class v.

Note that as the target domain is unlabeled, we use the
classifier f to get pseudo-labels for the target samples.
Goal3: The unknown class representations go farther away
from centroids of all the known classes.

We achieve Goal3 through the following margin loss:

Lunk =
1

NC+1
t C

NC+1
t∑
i=1

C∑
j=1

max[m− d(zu(i)t , cjs), 0], (7)

where zu(i)t denote the i-th unknown sample and NC+1
t de-

notes the number of the unknown samples.
Since the unknown samples would hinder the process of

domain alignment and even lead to negative transfer (Pan
and Yang 2010), achieving Goal3 could circumvent this
negative effect.

Achieving the three goals is of double significance. On
one hand, we can learn the domain-invariant and discrimi-
native latent representations. On the other hand, the centroid
deviation angles of the target representations are bounded,
making it feasible to recognize the target unknown samples
based on EVT. The t-SNE in Fig. 3 verify that our method
can effectively achieve the three goals.

Then, the objective for aligning the two domains on the
hypersphere is formulated as follows:

Lalign = Lca1 + Lca2 + Lunk (8)

Finally, the overall objective is defined as:

L = Lvae + λLalign + γLcls (9)

Unknown Samples Recognition
Since there are only known samples in the source domain,
the classifier f trained on the source domain tends to mistak-
enly classify a target unknown feature into one of the known
classes though its classification space includes the unknown
class. In the hyperspherical latent space, we assume that if a
target unknown sample zut is misclassified into class k, then
the centroid deviation angle of it with the source centroid of
class k may be distinctly larger than that of the true sample
of class k with their centroid, i.e., d(zkt , c

k
s) < d(zut , c

k
s).

Motivated by (Bendale and Boult 2016; Scheirer, Jain, and
Boult 2014), we propose to adopt the Weibull distribution
to model the distribution of the centroid deviation angles.
Then, any representation with abnormally large centroid de-
viation angles will be predicted to be unknown class.

However, although there are many EVT-based open set
recognition methods (Bendale and Boult 2016; Scheirer,
Jain, and Boult 2014), these methods cannot be directly used
in the OSDA problem. Due to the existence of the domain
gaps, the centroid deviation angles of a target known sam-
ple zkt with the source centroid of class k is larger than that
of the source sample of class k, i.e., d(zks , c

k
s) < d(zkt , c

k
s).

Therefore, using the existing EVT-based open set recogni-
tion methods, e.g., OpenMax (Bendale and Boult 2016) and
WSVM (Scheirer, Jain, and Boult 2014), in OSDA will lead

Algorithm 1 Unknown Samples Recognition Using EVT
Training Phase:

Input: The source representations {zs} and their centroids:
{cs}, tail size η, classifier f .
1: Classify {zs} and get the correctly classified ones {z̃s}.
for k = 1 to C do
2: ∀ z̃ks ∈ class k, compute its centroid deviation angle
dk = arccos(z̃ks ·cks ) and get the distance set of class k
Dk = {dk}

3: Fit Weibull modelMk with Dk and tail size η.
end for
Output: Weibull model set {M} for all known classes.

Recognizing Phase:
Input: The target representation zt, Weibull model set {M},
classifier F , the set of source centroid {cs}, the set of target
centroid {ct}, threshold ζ.
1: Classify zt to get its prediction ŷt = k.
2: Compute the rectified distance d̃k according to Eq. (11).
3: Compute the probability of zt belonging to unknown class:
ωk =Mk(d̃k) according to Eq. (10).

4: Modify the prediction ŷt = C+1 if ωk > ζ.

to a large number of target known samples being misclassi-
fied as unknown. This is proved by the experimental results
in Ablation Study.

In view of the domain gaps, we propose a Distance-
Rectified Weibull model for OSDA. Specifically, for a tar-
get sample zt pseudo-labeled as class k, the probability of
zt belonging to the unknown class can be expressed as:

ωk=1− exp

(
−

(
d̃(zt, c

k
s)− νk
σk

)τk)
(10)

where νk, σk and τk are three parameters for the Weibull
model of class k. d̃(zt, cks) is the rectified angular distance
which can be computed as:

d̃(zt, c
k
s) = max[d(zt, c

k
s)− d(ckt , cks), 0] (11)

We train multiple Weibull models, one for each class.
Then, for a target representation zt predicted to be class k,
we use the Weibull model of class k to estimate its unknown
probatility ωk. If ωk is larger than a prior threshold ζ, the
prediction of zt will be modified to C+1.

For a clear understanding, we present the process of the
unknown samples recognition in Algorithm 1.

Noteworthily, in the model training phase, we only use
the correctly classified source representations to train the
Weibull models, this is in line with (Bendale and Boult
2016). Moreover, the tail size η controls the ratio of the ex-
treme value in the distribution, we report the sensitivity of
our method w.r.t. η in Parameter Sensitivity Analysis.

Adaptive Centroid Update Strategy
Xie et al. (Xie et al. 2018) propose a centroid update strategy,
the centroid of class k in iteration n is updated as follows:

ckl (n) =
1

Nk

Nk∑
i=1

xki , c
k
g(n) = (1− α)ckg(n− 1) + αckl (n)
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where ckl (n) and ckg(n) are the local and global centroid of
class k, respectively.Nk is the number of samples belonging
to class k in iteration n, α is the update rate.

However, there are two limitations in Xie’s strategy. First,
it does not consider the number of samples of different
classes in a mini batch. All classes, regardless of their quan-
tity, are updated at a same rate α. For classes with few or
even only one sample, the risk of being misled by the mis-
classified samples will increase. Second, it does not consider
the confidence score of the classifier for each target sample.
If a target sample is classified into a class with very low con-
fidence, this sample is quite likely to be wrongly classified.

To alleviate these limitations, we improve Xie’s strategy
by reweighting samples and adopting adaptive update rate.
Specifically, we use entropy to quantify the prediction of the
classifier: H(p) = −plogp, where p is the confidence score
of a sample predicted to a class, and compute a weight w
for each target sample: w = 1 + e−H(p). Then the local
centroid of class k in iteration n can be updated as ckl (n) =
1
Sk

∑Nk

i=1 w
k
i z
k(i), where wki is the weight for i-th sample of

class k, Sk =
∑Nk

i=1 w
k
i is the sum of weights for all samples

predicted to be class k, zk(i) is the i-th sample of class k.
In addition, we compute a scale factor r to adaptively ad-

just the update rate for each class which considers the sam-
ple quantity of a class: r = SkC

S , where S is the sum of
weights for all samples in a mini-batch. Therefore, the more
samples belonging to a class or the higher their confidence
scores, the larger their scale factors are. Finally, the global
centroid is updated as:

ckg(n) = (1− rα)ckg(n− 1) + rαckl (n). (12)

Note that the source samples have the ground-truth labels,
so we fix w = 1 for all the source samples.

Theoretical Insight
Theorem 1. Open Set Domain Adaptation Theory (Luo
et al. 2020). Given a hypothesis H with a mild condition
that constant function C+1 ∈ H, then for any h ∈ H, the
expected error on the target domain can be bounded by:

Rt(h)

1− πtC+1

≤Rs(h) +DH(p(zs), p(zt)) + λ

+
πtC+1

1− πtC+1

Rt,C+1︸ ︷︷ ︸
open set risk

, (13)

where λ = min
h∈H

Rs(h) + R∗t (h) is the adaptability of the

known samples between domains (Ben-David et al. 2010),
Rs(h) and Rt(h) are the expected error on the source and
target domain, respectively. DH(p(zs), p(zt)) denotes the
discrepancies between two distributions. πtC+1 = p(zt =
C+1) is the class-prior probability. Rt,C+1(h) is the risk
of h on the unknown class.

In Theorem 1, the source expected error Rs(h) is mini-
mized by Lcls, the domain discrepancies dH(p(zs), p(zt))

are reduced by Lalign. In addition, as we employ the EVT-
based Weibull model to enhance the ability of recogniz-
ing the unknown samples, Rt,C+1(h) is minimized. Corre-
spondingly, the open set risk is reduced. As for the domain
adaptability λ, usually, it is considered sufcient low (Saito
et al. 2018a; Long et al. 2018a). Otherwise, one should con-
sider choosing a more related source domain for adaptation.
Therefore, the proposed method could bound the expected
error on the target domain theoretically.

Experiment
Evaluation Protocol
In line with the previous work (Silvia Bucci 2020), we eval-
uate all the compared methods with three metrics, i.e., the
average accuracy for known classes OS∗, the accuracy for
the unknown class Unk and the harmonic mean accuracy
H = 2×OS∗×Unk/(OS∗+Unk). H is a balanced evalua-
tion metric which correctly assesses the performance of the
methods on both known and unknown class samples.

Datasets and Compared Methods
Office-31 (Saenko et al. 2010) includes 31 classes from 3
domains: A, W and D. Following (Saito et al. 2018b), we
select 10 classes as known and 11 classes as unknown.
VisDA-2017 (Peng et al. 2017) contains 2 domains: Syn-
thetic and Real. Each domain includes 12 classes. Follow-
ing (Saito et al. 2018b), we take the first 6 classes as known
and the remaining as unknown.
Image-CLEF1 includes 4 domains: I, C, P and B. Each do-
main contains 12 classes. We use the first 6 classes in alpha-
betical order as the known and the rest as the unknown.

The compared methods include: ROS(Silvia Bucci 2020),
OSBP (Saito et al. 2018b), STA (Liu et al. 2019), UAN (You
et al. 2019), DAOD (Fang et al. 2020) and CDAN (Long
et al. 2018b). All the methods are proposed in recent 3 years.

Implementation Details
For the model structrue, the encoder of the S-VAE includes
3 fully-connected (FC) layers, its output is activated by soft-
plus. The decoder is composed of 2 FC layers. The output
of its first FC layer is activated by ReLU and then fed into
the second FC layer. The classifier contains only one FC
layer, and its output is processed by Logsoftmax. We adopt
adam (JLB 2015) to optimize these models with learning
rate 4e-4 for S-VAE models and 1e-3 for the classifier. All
the learning rate decreases during the training following an
inverse decay scheduling.

As for the hyperparameters, we get the optimal
hyperparameters through importance-weighted cross-
validation (Sugiyama, Krauledat, and MÃžller 2007). As
our method performs stably under some hyperparameters,
we fix the centroid update rate α = 0.2, the tail size
η = 0.02, the threshold ζ = 0.98, and the margin angle
m = 90◦ across all the experiments. In addition, for
Office-31 and Image-CLEF, we set λ = 1.0, γ = 1.0. For
VisDA-2017, we set λ = 0.5, γ = 0.5.

1http://imageclef.org/2014/adaptation
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Method A→W A→D W→A W→D D→A D→W Avg.
OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H

UAN 95.5 31.0 46.8 95.6 24.2 38.9 94.1 38.8 54.9 81.5 41.4 53.0 93.5 53.4 68.0 99.8 93.0 96.0 93.4 40.3 55.1
STA 92.1 58.0 71.0 95.4 45.5 61.6 92.1 46.2 60.9 96.6 48.5 64.4 94.1 55.0 69.4 97.1 49.7 65.5 94.6 50.5 65.5
OSBP 86.8 79.2 82.7 90.5 75.5 82.4 73.0 74.4 73.7 99.1 84.2 91.1 76.1 72.3 75.1 97.7 96.7 97.2 87.2 80.4 83.7
ROS 88.4 76.7 82.1 87.5 77.8 82.4 69.7 86.6 77.2 100.099.4 99.7 74.8 81.2 77.9 99.3 93.0 96.0 86.6 85.8 85.9
Ours 88.8 92.6 90.7 92.4 88.6 90.5 81.9 98.3 89.4 96.5 100.0 98.2 82.9 92.0 87.2 89.3 98.5 93.7 88.6 95.0 91.6

Table 1: Accuracy (%) on Office-31 with ResNet-50 as backbone. The best results are highlighted by bold numbers.

Method B→C B→I B→P C→B C→I C→P
OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H

DAOD 79.4 82.0 80.7 78.4 90.9 84.2 72.1 80.8 76.2 51.3 47.1 49.1 79.0 88.6 83.6 74.5 78.9 76.6
STA 93.3 51.7 66.5 86.0 60.7 71.2 77.7 48.7 59.8 61.3 69.7 65.2 91.7 66.7 77.2 84.0 54.0 65.7

OSBP 87.0 81.0 83.9 85.3 65.7 74.2 66.3 66.7 66.5 62.0 58.0 59.9 89.0 80.0 84.3 87.7 53.7 66.6
ROS 78.3 90.0 83.8 73.0 76.3 74.6 59.0 67.3 62.9 59.0 68.3 63.3 78.3 83.0 80.6 68.7 78.7 73.3
Ours 95.7 98.3 97.0 87.7 86.7 87.2 80.3 66.0 72.5 57.0 86.7 68.8 94.7 92.3 93.5 76.7 76.7 76.7

I→B I→C I→P P→B P→C P→I Avg.
OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H OS∗ Unk H

DAOD 54.5 56.9 55.7 80.3 82.0 81.2 73.3 80.8 76.9 51.7 51.0 51.3 79.0 82.0 80.5 79.6 88.6 83.9 71.1 75.8 73.3
STA 62.3 54.0 57.9 94.0 53.7 68.4 80.7 59.0 68.2 61.3 43.7 51.0 93.7 47.7 63.2 90.0 51.0 65.1 81.3 55.1 65.0
OSBP 55.7 60.7 58.1 80.7 92.7 86.3 66.3 74.3 70.1 52.3 61.0 56.3 94.0 68.0 78.9 66.0 80.7 72.6 74.4 70.2 71.5
ROS 58.0 59.7 58.8 88.7 92.7 90.6 78.0 76.0 77.0 47.3 59.3 52.7 71.3 90.3 79.7 79.7 81.3 80.5 69.9 76.9 73.1
Ours 54.0 82.7 65.3 95.7 97.3 96.5 81.3 88.7 84.8 55.7 70.3 62.1 94.7 91.3 93.0 84.0 91.7 87.7 79.8 85.7 82.1

Table 2: Accuracy (%) on Image-CLEF with ResNet-50 as backbone. The best results are highlighted by bold numbers.

Method bcyc bus car mcyc train truck OS∗ Unk H
CDAN 49.6 58.1 71.4 86.6 85.6 12.3 60.6 0 0
STA 38.2 69.1 51.2 87.6 78.0 11.1 55.9 75.2 64.1
OSBP 53.9 77.6 56.4 89.1 74.4 22.2 62.3 71.3 66.5
Ours 77.7 72.0 48.8 82.2 81.5 34.7 66.2 94.1 77.7

Table 3: Accuracy (%) on VisDA-2017 with ResNet-50 as
backbone. The best results are highlighted by bold numbers.

Settings A→W
OS∗

acc Unkacc Hacc OS∗
prc Unkprc Hprc

w/o CA, UnkR 90.5 50.6 64.9 68.9 88.3 77.4
w/o UnkR 92.6 84.8 88.5 87.3 91.9 89.6

w/o CA 90.8 67.7 77.6 78.8 87.5 82.9
w/o DR 82.2 98.9 89.8 98.1 82.1 89.4

Ours 88.8 92.6 90.7 93.4 87.4 90.3

Table 4: Ablation study: accuracy (%) and precision (%) of
the proposed method and its four variants. CA, UnkR and
DR denote centroid alignment, unknown recognition and
distance rectification, respectively.

For all the compared methods, we either report the results
of the original papers if the results are tested under the same
setting, or the best results we can achieve.

Experimental Results
We report the experimental results on three datasets in Ta-
ble 1-3. The backbone network is ResNet-50.

On Office-31, we observe that the harmonic mean accu-
racies of our method outperform all the compared methods
on 5 out of 6 tasks. The only exception is W→D, on which

the proposed method still achieves the second best results.
Notebly, UAN and STA achieve the best OS∗ on 5 out of 6
tasks. However, due to their low classification performance
for the unknown samples, their harmonic mean accuracies
are very low. Obviously, the classification abilities of UAN
and STA are biased. As a comparison, our method is no
doubt more balanced: the average accuracy for the unknown
samples is 95.0%, which is 9.2% higher than the second best
method ROS. Simultaneously, our method still maintains
very high classification performance for the known samples,
which makes the average harmonic mean accuracies of our
method exceed at least 5.7% of the compared methods. Sim-
ilar trends could be observed on Image-CLEF and VisDA.

In Table 3, we report results of a closed set method, i.e.,
CDAN. We observe that CDAN misclassify all the unknown
samples into known ones, which reveals that the closed set
method would fail in the open set setting.

Ablation Study
We conduct ablation study on A→W to evaluate contribu-
tions of different components in our method and report re-
sults in Table 4. Apart from the results based on the accuracy
metric, we also report the results based on the precision met-
ric, which is computed as: precision = TP

TP+FP , i.e., of the
samples predicted to be class k, the proportion of samples
that actually belong to class k.

From Table 4, we can make the following observations:
(1) With Centroid Alignment (CA), OS∗acc and Unkacc are
improved compared with the setting without CA, which ver-
ifies that CA could not only reduce the domain gaps but also
increase the separation between known and unknown. (2) In
the setting without CA, the accuracy for unknown samples
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(a) ResNet-50 (b) OSBP (c) ROS (d) Ours

Figure 3: The t-SNE visualization of the source and target representations on D→A.
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Figure 4: (a) Comparison of the deviation angles between
the learned centroids and the ground-truth centroids under
different update strategies. (b) Experimental results w.r.t.
varying openness on B→C.

is only 67.7%, while it increases to 92.6% after adding CA.
These results indicate that UnkR requires CA as a prereq-
uisite. UnkR alone does not have a strong unknown sam-
ples recognition ability. Without CA to enlarge the angu-
lar distances of known and unknown, the bound of known
and unknown will not be so clear, making it difficult for
UnkR to recognize unknown samples correctly. (3) With-
out distance rectification, OS∗acc and Unkprc decrease, while
Unkacc and OS∗prc increase, which means that many known
samples are misclassified into unknown samples. This re-
veals that Weibull models trained with source samples can-
not be directly applied to the target samples due to the exis-
tence of domain gaps.

Therefore, all the components in the proposed method are
effective and indispensable.

Feature Visualization
We plot t-SNE of D→A in Fig. 3 to visualize the distribution
of different representations. From Fig. 3, we observe that
the representations learned by our method are closely clus-
tered together (Goal1). Secondly, the representations be-
longing to the same class from the source domain (in red)
and the target domain (in blue) are closely distributed to-
gether, while the features of different classes have very clear
boundaries (Goal2). Thirdly, the target unknown represen-
tations (in gray) distribute far away from the known repre-
sentations (Goal3). Therefore, of all the methods, only our
method successfully achieves Goal1-Goal3 simultaneously.

Effectiveness of the New Centroid Update Strategy

We plot the curves of the average deviation angles between
the centroids learned by different strategies (Xie’s and ours)
and the ground-truth centroids across all the known classes
in Fig. 4 (a). With the increase of the iterations, the centroids
learned by our method always have smaller deviation angles
than the centroids learned by Xie’s strategy, which verifies
that our method could align two domains more accurately.

Robustness to Different Openness

To evaluate the robustness of our method with different
openness, we report results of three methods with openness
varying from 0.167 to 0.833 in Fig. 4 (b). The openness is the
ratio of unknown classes to all classes in the dataset. We ob-
serve that our method can keep high performance under dif-
ferent levels of openness. OSBP suffers from performance
degradation when the openness approaches 1. ROS performs
better than OSBP under large openness, but its performance
will reduce when the openness is nearly 0.

Limited by space, we present more experimental analyses
in Supplementary Material.

Conclusion
In this paper, we propose a balanced OSDA method based
on centroid alignment in the hyperspherical latent space. We
propose to bound the centroid deviation angles to ensure that
the learned representations are not only domain invariant,
but also discriminative. With the bounded centroid devia-
tion angles, we further propose a Distance-Rectified Weibull
model based on EVT to recognize the unknown samples
misclassified into known classes, which can reduce the open
set risk. In addition, we propose an improved centroid up-
date strategy to cooperate with centroid alignment. The ex-
perimental results verify the effectiveness of our method.
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