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Abstract

Convolutional neural networks (CNNs) have achieved re-
markable results; however, despite the development of deep
learning, practical user applications are fairly limited be-
cause heavy networks can be used solely with the latest hard-
ware and software supports. Therefore, network pruning is
gaining attention for general applications in various fields.
This paper proposes a novel channel pruning method, Lin-
early Replaceable Filter (LRF), which suggests that a fil-
ter that can be approximated by the linear combination of
other filters is replaceable. Moreover, an additional method
called Weights Compensation is proposed to support the LRF
method. This is a technique that effectively reduces the out-
put difference caused by removing filters via direct weight
modification. Through various experiments, we have con-
firmed that our method achieves state-of-the-art performance
in several benchmarks. In particular, on ImageNet, LRF-60
reduces approximately 56% of FLOPs on ResNet-50 without
top-5 accuracy drop. Further, through extensive analyses, we
proved the effectiveness of our approaches.

Introduction
Computer vision has been revolutionized with the ad-
vent of convolutional neural networks (CNNs) such
as AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
VGG (Simonyan and Zisserman 2014), and ResNet (He
et al. 2016a). Subsequently, even heavier networks (Huang
et al. 2017; Xie et al. 2017) were designed to achieve
higher performance. Advances in technology have enabled
the enormous computation these networks require. However,
in some environments like mobile devices, the computa-
tional resources are limited, and high speed is often required.
Therefore, the practical scope and everyday usage of deep
learning are extremely limited. For the widespread use of
artificial intelligence, we need method that makes networks
more compact while preserving most of their accuracies.

Recently, the network pruning field has been gaining at-
tention. Given a pre-trained network, the goal of network
pruning is to make this network more compact by reducing
redundant parameters and operations. Network pruning be-
gan with removing unnecessary weights (Han et al. 2015)
from the deep neural networks (DNNs). However, because
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Figure 1: Basic idea of proposed linearly replaceable filters
(LRF). At every layer, each filter can be approximated by
the linear combination of other n−1 filters. If Fi is the most
replaceable one which has the lowest approximation error,
the network can be recovered even if it is removed.

each channel of the CNNs is connected with a large number
of weights, removing individual weights does not necessar-
ily lead to the actual speedup of the CNNs. Thus, channel
pruning that removes a specific channel and all its connected
weights together is being researched more actively (He et al.
2019; You et al. 2019; Zhuang et al. 2018).

In this paper, we propose a novel channel pruning method
called Linearly Replaceable Filter (LRF), that considers the
linear replaceability of each filter. For a specific layer, there
are n different filters. As shown in Figure 1, we can approx-
imate each filter as a linear combination of the other n − 1
filters. If this approximation for a certain filter is accurate
enough with a low approximation error, this filter is con-
sidered to be replaceable, and the network can be easily re-
stored when this filter is pruned. These replaceable filters
have the advantage that other remaining filters can easily re-
place their role in the later fine-tuning process.

The proposed method does not end with simply identi-
fying and removing the filters that are expected to be re-
placeable. In addition to LRF, we propose an output differ-
ence compensation technique called Weights Compensation
to support LRF. Using the property of 1× 1 convolution, we
can effectively reduce the difference in output feature maps
caused by removing filters. When removing each channel,
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we directly modify the values of the remaining weights to
the appropriate values such that the network can be pre-
served. This process does not require any extra fine-tuning
or learning, and the difference is drastically reduced through
simple operations. Most existing studies have attempted to
identify the least important filter and simply remove it or de-
sign a special loss to make a particular filter less important.
However, the proposed method directly changes the value
of the remaining weight for the successful channel pruning.
This approach provides a clear theoretical basis, unlike tra-
ditional pruning methods. We have achieved state-of-the-art
results when the proposed LRF and Weights Compensation
are used together.

Moreover, we conducted various analyses of LRF and the
network pruning field. We demonstrate the effectiveness of
the proposed method and also discuss the problem of accu-
racy drop, an important metric in the field of pruning. The
key contributions of our work are summarized as follows:

1) We propose a novel perspective of channel pruning
called Linearly Replaceable Filter (LRF) that the network
can be successfully pruned with the replaceable filter that
can be expressed by a linear combination of other filters.

2) By directly modifying the values of remaining filters
after eliminating each channel, we can reduce the difference
occurring in the output feature maps. We call this Weights
Compensation.

3) We have conducted several analyses of network prun-
ing. In particular, we revealed that considering the accuracy
drop alone could be problematic when evaluating the perfor-
mance of pruning.

Related Work
Network Pruning. Network pruning aims to remove the
unnecessary weights of a pre-trained neural network while
maintaining high performance. Early pruning (Han et al.
2015) began with the removal of weights or nodes with
small-norm from the DNN; however, as CNN evolved, the
pruning of a single weight or node was not practically ef-
fective. Thus, channel pruning or filter pruning became the
mainstream in this field. Several heuristic methods that use
the average percentage of zero activations (Hu et al. 2016)
and Lasso regression (He, Zhang, and Sun 2017; Luo, Wu,
and Lin 2017) were proposed at the early stage of chan-
nel pruning research. Since then, various approaches such
as regularizing the scaling factor of BatchNorm (BN) (Ioffe
and Szegedy 2015) to prune corresponding channel (Liu
et al. 2017), measuring the importance score through back-
prop (Yu et al. 2018), or finding important channels by
adding a new loss to the intermediate layer (Zhuang et al.
2018) have been proposed. Recently, more unique methods
have emerged (He et al. 2019; You et al. 2019; Lin et al.
2020), such as investigating the value of pruning (Liu et al.
2018) or using meta-learning (Liu et al. 2019).

Other Methods. Knowledge distillation (Hinton,
Vinyals, and Dean 2015; Romero et al. 2014; Yim et al.
2017) is a technique of distilling information from a large
network and delivering it to a small network. Using this,
a small network can be trained significantly better than
training from scratch. Apart from using a pre-trained

network, several studies (Howard et al. 2017; Tan and Le
2019; Zhang et al. 2018) have been conducted to design
an efficient architecture away from the conventional CNN
structure either in theoretical or in automatic way. It should
be noted that these other methods are complementary to
pruning and our LRF although their goals look similar.
The LRF can be further combined with methods in this
subsection to achieve more compact network. Therefore,
these methods and LRF are in a good win-win relationship,
not in a comparative relationship.

Method
Preliminaries. We aim to reduce the computational com-
plexity of a pre-trained network by removing redundant
weights or filters. First, a pre-trained network φ(·) (we also
call it as an original network) is provided. For a specific con-
volutional layer with kernel size K ×K, the weight F has
a dimension of K ×K ×m × n where m and n represent
the number of input and output channels, respectively. The
lower-cased fi,j ∈ RK×K denotes the weights that connect
the i-th input channel to the j-th output channel. We denote
the collection of weights connected to the j-th output chan-
nel as f:,j , and collection of weights connected to the i-th
input channel as fi,: for notational convenience.

Our channel pruning proceeds by iteratively removing one
channel of a layer at a time, and stops when the desired
number of channels are pruned. When pruning of one layer
is finished, the pruning of the next layer proceeds sequen-
tially. In the following section, we explain how we find the
most replaceable filter using the concept of LRF. In the next
section, we discuss the weights compensation, one of our
key contributions. By applying weights compensation, we
finally present a complete version of our channel selection
criterion.

Linearly Replaceable Filters
Given any K ×K convolution layer (K ∈ N) of pre-trained
network φ(·), this layer has a weight F ∈ RK×K×m×n,
where m and n represent the number of input and output
channels, respectively. The F can be considered as a collec-
tion of n filters f:,j ∈ RK×K×m for j = 1, · · · , n. Then,
each filter f:,j can be approximated as a linear combina-
tion of the other n − 1 filters of the same layer. For all
j = 1, · · · , n, this approximation can be expressed using
the following equation:

f:,j =
∑
l6=j

λj,lf:,l + εj (1)

where εj is an approximation error with the same dimen-
sions as filter f:,j , and λj,l is a scalar coefficient. Because
our goal is to best approximate each f:,j , we select λj,l that
minimizes ||εj ||. The coefficients λj,l can be obtained by
solving the following problem:

minLj = min ||f:,j −
∑
l6=j

λj,lf:,l||2. (2)

First we reshape each filter f:,j as a vector with length K ·
K ·m. Then, by differentiating with respect to each λj,l′ for
all l′, we obtain the following equation:
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∂Lj

∂λj,l′
= 2fT

:,l′(f:,j −
∑
l6=j

λj,lf:,l) = 0. (3)

Then, it becomes a system of linear equations with n − 1
variables and n−1 equations, and it can be solved by matrix
computation. After we obtain all the λ, we can easily cal-
culate all the approximation errors ε1, · · · , εn. Our channel
selection criterion for pruning is to pick the channel that cor-
responds to the most replaceable filter. Therefore, we choose
a filter f:,s that has the smallest approximation error εs, i.e.,
we choose to remove the filter f:,s such that

s = argmin
j

||εj || (4)

Because we are aiming for channel pruning, removing fil-
ter f:,s naturally leads to removing the s-th output channel
of this layer and all the associated weights simultaneously.
When pruning is completed, every operation is conducted
only using the remaining channels. We call this method as
Linearly Replaceable Filter (LRF); it means that we select
the filters that can be replaced by the linear combination
of other filters. Because the pruning process usually does
not simply finish with only removing unnecessary channels,
but fine-tuning proceeds with the remaining filters, it is very
important to identify how the deleted filter is related to the
other filters. Removing the replaceable filter can preserve the
performance of the original network because the remaining
filters can replace the role of the removed filter. Since this
step requires only some of simple matrix computations, the
time consumption for this process is negligible.

Weights Compensation
Although LRF provides the intuition that replaceability can
be beneficial, it does not provide an explicit explanation of
whether this can actually lead to successful pruning. There-
fore, we propose a supplement method weights compensa-
tion that makes our method more reliable.

We start by adding a 1×1 convolution on top of theK×K
convolution layer that we want to prune. This 1×1 convolu-
tion is initialized as an identity matrix such that the compu-
tation of the original network is not affected. This addition
of 1× 1 convolution enables two things: First, when remov-
ing the channels, the change in the network resulting from
pruning can be significantly reduced by modifying the re-
maining weights of this 1×1 convolution. Second, it enables
the pruning of any K×K convolution regardless of the net-
work structure, such as ResNet’s skip-connection. One thing
to note is that when we add this new 1× 1 convolution, any
function such as BN (Ioffe and Szegedy 2015) or ReLU is
not placed between the two convolutions.

Let X = {X1, · · · , Xm} and Y = {Y1, · · · , Yn} be
the input and output of given K × K convolution. Then,
Y becomes the input of the 1 × 1 convolution layer we
added on top of this K × K convolution. Further, let Z =
{Z1, · · · , Zn} be the output of this 1× 1 convolution layer.
Each Xi indicates the i-th channel of feature map X . The
number of channels of Y starts with n at the beginning, and
it decreases as pruning progresses. The computation of these
two convolution layers are as follows:

3 × 3 Conv 3 × 3 Conv

1 × 1 Conv

Add 1 × 1Conv with 
initialization as identity

Channel pruning
with Weight Compensation

3 × 3
Conv

1 × 1 Conv

with ratio p

1 × 1 Conv 1 × 1 Conv

Figure 2: Basic framework of LRF. In the illustration, the
width of the box implies the number of channels. A nar-
row width implies that the channel is pruned with a ratio
p. Given any pre-trained network, first, we add two 1 × 1
convolution layers at the bottom and top of every K × K
convolution layers in the network. Every 1 × 1 convolution
layers are initialized as an identity matrix that does not affect
the computation of the pre-trained network. Subsequently,
redundant filters are pruned following the criterion of LRF
with weights compensation.

Yj =

m∑
i=1

Xi ∗ fi,j := X ∗ f:,j (5)

Z =

n∑
j=1

Yj ∗ gj,: =
n∑

j=1

X ∗ f:,j ∗ gj,: (6)

where fi,j ∈ RK×K is the weight of K × K convolution
that connectsXi and Yj . Similarly, gj,k ∈ R is the weight of
1×1 convolution that connects Yj and Zk. If we remove, for
example, the first channel Y1 of Y , then the output feature
map Z ′ after the removal has a difference of ||Z − Z ′|| =
||X ∗ f:,1 ∗ g1,:|| from the original output Z.

Instead of simply removing f:,1 and Y1, if we approximate
f:,1 using Eq. 1, where the first filter can be expressed as
f:,1 =

∑
l 6=1 λ1,lf:,l + ε1, we can achieve more improved

pruning. By substituting this approximation to Eq. 6, we get

Z =
∑
j 6=1

X ∗ f:,j ∗ (gj,: + λ1,jg1,:) +X ∗ ε1 ∗ g1,:. (7)

This shows the fact that the output feature map Z can be ex-
pressed without using f:,1. After we eliminate the first chan-
nel, if we change all the weights gj,: to gj,:+λ1,jg1,:, then the
output feature mapZ ′′ in that situation has a feature map dif-
ference of ||Z−Z ′′|| = ||X∗ε1∗g1,:||which would be much
smaller than the ||Z − Z ′|| in the above removal without
weight modification. We call this modification as Weights
Compensation which implies that the difference caused by
pruning can be compensated by direct weight change.

Without loss of generality, the above process can be ex-
tended to other filters f:,j , not only for f:,1. Therefore, the
proposed weights compensation can be further generally de-
fined as follows. Whenever we remove a specific l-th chan-
nel Yl, we directly modify the remaining weight value gj,: of

8023



1× 1 convolution to g′j,: for all j 6= l where

g′j,: = gj,: + λl,jgl,:. (8)

Then, the difference in the output caused by pruning can
be drastically reduced. Eq. 7 also implies another fact that
the difference in output after the removal of the l-th chan-
nel does not depend on only the approximation error εl.
The output difference of Z ′′ after weights compensation is
||Z − Z ′′|| = ||X ∗ εl ∗ gl,:||, which is also a function of
the weight g. Therefore, we finally propose a selection cri-
terion that considers both ε and g. Intuitively, if both εl and
gl,: are of smaller magnitude, it is more likely to have small
||X ∗ εl ∗ gl,:||. Thus, we replace the previous criterion in
Eq. 4 by the following selection criterion, where we remove
the s-th channel such that

s = argmin
l
||εl|| · ||gl,:||. (9)

Our pruning process is summarized in Alg 1. Because we
already have a pre-trained network, f, g, λ, ε can be easily
obtained without much cost.

Following the above process, we can reduce the number
of output channels of the given K×K convolution. In addi-
tion, if we add the identity initialized 1×1 convolution at the
bottom of the K ×K convolution and apply the same pro-
cess, then we can also reduce the number of input channels
of the K ×K convolution. However, this time, the process
should be applied symmetrically because the 1× 1 convolu-
tion is at the bottom. We have to find the replaceable filters
using the transposed filter fi,: ∈ RK×K×n which is the set
of weights connected to the i-th input channel of K × K
convolution. The process is briefly illustrated in Figure 2.

LRF can reduce both the number of input and output
channels of any convolution without being affected by the
network structure or other modules near the convolution.
For example, while existing techniques have made it diffi-
cult to reduce the channels connected to the skip-connection
in ResNet, the proposed method can reduce the computation
of K ×K convolution regardless of the existence of nearby
skip-connection. The proposed method can be used for all
convolution layers with any kernel sizes. Therefore, one of
the main advantages of this technique is that it is generally
applicable to any type of CNN architecture.

Because weights compensation plays a very important
role in the LRF, it is applied together in all further experi-
ments when using the LRF. Therefore, any future reference
to LRF henceforth implies the usage of LRF and weights
compensation together.

Number of FLOPs and Params
One might wonder whether it is fine to add two additional
1 × 1 convolution layers. When the number of channels
is n, the FLOPs of the original K × K convolution is
∝ K2n2. After the addition of two 1 × 1 convolutions,
the FLOPs become ∝ (K2 + 2) · n2. However, when we
prune the channels with ratio p, then the FLOPs become
∝ 2n2(1− p) +K2n2(1− p)2 which is significantly lower
than the original FLOPs. For example, if p = 0.5 and
K = 3, it shows 64% of FLOPs reduction.

Algorithm 1: Iterative algorithm for single layer
Given: Weights fi,j ∈ RK×K , gj,k ∈ R, pruning ratio p,
set of removed channel indices P , set of remaining channel
of indices T
Initialization: P ← ∅, T ← {1, . . . , n}
while |P | < n× p do

Obtain λ:,:, ε: from channels in T using Eq. 1, 3
Find index s using the Eq. 9, and move s from T to P
Remove s-th output channel and associated weights
for j in T do

gj,: ← g′j,: = gj,: + λs,jgs,:
fine-tune φ(·)

Move on to the pruning of input channels of K ×K
convolution, and repeat the above process symmetrically

Move on to the next layer

BN
, R

eLU

BN
, R

eLU

1
×
1

1
×
1

1
×
1

3
×
3

1
×
1

LRF

Figure 3: General view of pruning for bottleneck block. Or-
ange convolution layers are newly added for LRF. Channels
related to 3 × 3 convolutions are already pruned using LRF
(blue box), and channels between consecutive 1 × 1 convo-
lutions (green box) will be subsequently pruned with Eq. 10.

Pruning for Bottleneck
Unlike the usual network, the FLOPs of bottleneck block
in ResNet are concentrated on the 1 × 1 convolution layer.
Therefore, in our basic framework, it is difficult to achieve
a significantly high compression rate in the deeper ResNet.
Here, we propose the modified small-norm criterion as an
additional method to reduce the FLOPs in bottleneck block.

In the bottleneck block, the 3× 3 convolution in the mid-
dle can be pruned first using LRF with the addition of two
1 × 1 convolutions (blue box in Figure 3). Then, two pairs
of two consecutive 1×1 convolutions remain at the block as
shown in the green boxes of Figure 3. The traditional small-
norm criterion applied to 3× 3 convolution was a problem-
atic method because that considers only the magnitude of
weights and ignores the spatial computation mechanism of
convolution. Unlike 3 × 3 convolution, 1 × 1 convolution
does not observe the spatial relationship in the feature map,
therefore the scale of 1 × 1 convolution contains much sig-
nificant information. In addition, since the feature map is
multiplied by the BN scaling factor γk, this is also an impor-
tant factor to consider when choosing the channel to prune.
Using these facts, we propose to use the following modified
small-norm criterion to prune the channel between the two
1× 1 convolutions. We remove the s-th channel such that

s = argmin
k

||wlower
:,k || · γk · ||wupper

k,: || (10)
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Network Method Baseline
Acc (%)

Pruned
Acc (%)

Acc ↓
(%)

FLOPs ↓
(%)

Param ↓
(%)

ResNet-32

SFP (He et al. 2018) 92.63 92.08 0.55 41.5 -
LFPC (He et al. 2020) 92.63 92.12 0.51 52.6 -
FPGM (He et al. 2019) 92.63 91.93 0.70 53.2 -

LRF-50 (Ours) 92.49 92.54 -0.05 62.0 63.3
LRF-60 (Ours) 92.49 92.02 0.47 73.5 74.0

ResNet-56

NISP (Yu et al. 2018) - - 0.03 43.6 42.6
DCP (Zhuang et al. 2018) 93.80 93.81 -0.01 47.1 70.3
HRank (Lin et al. 2020) 93.26 93.17 0.09 50.0 42.4

SFP (He et al. 2018) 93.59 92.26 1.33 52.6 -
FPGM (He et al. 2019) 93.59 93.49 0.10 52.6 -
LFPC (He et al. 2020) 93.59 93.24 0.35 52.9 -
GBN (You et al. 2019) 93.10 93.43 -0.33 60.1 52.5

LRF-50 (Ours) 93.45 93.73 -0.28 62.4 63.4
GBN (You et al. 2019) 93.10 93.07 0.03 70.3 66.7

LRF-60 (Ours) 93.45 93.19 0.26 73.9 74.1
HRank (Lin et al. 2020) 93.26 90.72 2.54 74.1 68.1

ResNet-110

SFP (He et al. 2018) 93.68 93.38 0.30 40.8 -
NISP (Yu et al. 2018) - - 0.18 43.8 43.3

FPGM (He et al. 2019) 93.68 93.85 -0.17 52.3 -
HRank (Lin et al. 2020) 93.50 93.36 0.14 58.2 59.2
LFPC (He et al. 2020) 93.68 93.07 0.61 60.3 -

LRF-50 (Ours) 93.76 94.34 -0.58 62.6 63.5
HRank (Lin et al. 2020) 93.50 92.65 0.85 68.6 68.7

LRF-60 (Ours) 93.76 94.16 -0.40 74.1 74.2

Table 1: Comparison results of ResNet on CIFAR-10. Acc ↓ (the smaller, the better) is the accuracy drop of pruned model com-
pared to the baseline model. FLOPs ↓ and Param ↓ represent the reduction of FLOPs and parameters in percentage, respectively.

where wlower is a set of weights of the lower 1 × 1 con-
volution, and wupper is a set of weights of the upper 1 × 1
convolution. γk is the k-th scaling factor of the BN. Three
factors in the above equation encompass every weight con-
nected to the k-th channel between two 1× 1 convolutions.

Overall Pruning Framework for LRF
The overall process of LRF is demonstrated in Algorithm 1.
Given a pre-trained network, we add two 1 × 1 convolution
layers initialized as an identity at the bottom and top of ev-
ery K×K convolution layer. Using LRF, we can reduce the
number of input and output channels of the K×K convolu-
tion with a ratio p which is pre-defined by the user. Pruning
starts from the top layer which is closest to the classifier be-
cause pruning the bottom layer first is likely to affect the
value of the top layer. After we prune all the layers from
top to bottom, we fine-tune the entire network to improve
the generalization ability of the pruned network. In the bot-
tleneck block, we prune the channels related to the K ×K
convolution of the entire network using LRF first, and the
channels between the consecutive 1× 1 convolutions are re-
moved using Eq. 10.

Experiments
Training Details. We used two image classification
datasets, CIFAR-10 (Krizhevsky, Hinton et al. 2009) and Im-
ageNet (Russakovsky et al. 2015). CIFAR-10 is a 10-class
image classification dataset with an image size of 32×32. It

contains 50k training images and 10k validation images. For
the CIFAR-10, all the training settings follow the settings
of ResNet (He et al. 2016a). ImageNet is a large-scale im-
age classification dataset which contains 1.28 million train-
ing images and 50k validation images. For the ResNet on
ImageNet experiment, we used the pre-trained network offi-
cially provided by PyTorch torchvision (Paszke et al. 2019).
LRF Details. At the pruning stage, we fine-tune the network
for one epoch each time we prune a layer. After pruning is
finished, we finally fine-tune the pruned network. For the
CIFAR-10, the learning rate starts from 0.01, and is divided
by 10 at the half of the training. The total fine-tuning epochs
are 1.5 times longer than the original training schedule. For
the final fine-tuning of ImageNet, general training settings
are used with a reduced learning rate to one-tenth of the orig-
inal. Whenever we fine-tune a pruned network, dark knowl-
edge (Hinton, Vinyals, and Dean 2015) (T = 2) is used with
the original pre-trained network as the teacher network. Be-
cause an original model is already given, no additional cost
is required. All the results of LRF are average of three runs.

Comparison Results
ResNet on CIFAR-10. CIFAR-10 is the most widely used
dataset to evaluate pruning performance. ResNet is the basis
of the latest CNN models which show state-of-the-art per-
formance in several computer vision tasks. Since recent net-
works such as DenseNet (Huang et al. 2017), pre-activated
ResNet (He et al. 2016b), and Wide-ResNet (Zagoruyko
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Network Method Pruned
Top-1 (%)

Top-1 ↓
(%)

Pruned
Top-5 (%)

Top-5 ↓
(%)

FLOPs ↓
(%)

Param ↓
(%)

ResNet-18

MIL (Dong et al. 2017) 66.33 3.65 86.94 2.30 34.6 -
SFP (He et al. 2018) 67.10 3.18 87.78 1.85 41.8 -

FPGM (He et al. 2019) 68.41 1.87 88.48 1.15 41.8 -
LRF-40 (Ours) 69.78 -0.02 89.32 -0.25 45.5 46.9
LRF-50 (Ours) 69.07 0.69 88.99 0.08 57.6 59.7

ResNet-50

SFP (He et al. 2018) 74.61 1.54 92.06 0.81 41.8 -
HRank (Lin et al. 2020) 74.98 1.17 92.33 0.54 43.8 36.7
NISP (Yu et al. 2018) - 0.89 - - 44.0 43.8
GDP (Lin et al. 2018) 71.89 3.24 90.71 1.59 51.3 -

LRF-50 (Ours) 75.78 0.43 92.85 -0.03 51.8 49.1
FPGM (He et al. 2019) 74.83 1.32 92.32 0.55 53.5 -

GBN-50 (You et al. 2019) 75.18 0.67 92.41 0.26 55.1 53.4
ThiNet (Luo, Wu, and Lin 2017) 71.01 1.87 90.02 1.12 55.8 51.6

DCP (Zhuang et al. 2018) 74.95 1.06 92.32 0.51 55.8 51.5
LRF-60 (Ours) 75.71 0.50 92.80 0.02 56.4 53.5

Table 2: Comparison results of ResNet on ImageNet. Pruned Top-1 and Pruned Top-5 denote the top-1 and top-5 accuracy after
the pruning. Top-1 ↓ and Top-5 ↓ denote the accuracy drop of the pruned model compared to the baseline model.

and Komodakis 2016) are all based on the basic ResNet,
the pruning ability on ResNet represents that the proposed
method could be generally applicable to modern networks.
We conducted experiments on ResNet using three different
depths, 32, 56, and 110.

The pruning results are shown in Table 1. LRF-60 repre-
sents that we have pruned 60% of the channels. Our LRF
outperforms the previous state-of-the-art models on several
criteria. All our models have reduced the FLOPs by more
than 60% and nonetheless can outperform most existing net-
works. For the ResNet-32, LRF-50 outperforms the previ-
ous SOTA model FPGM although 16% more FLOPs are re-
duced. For the ResNet-56, LRF-60 also shows the best per-
formance compare to the previous SOTA model GBN and
HRank. Compared to GBN, our model achieves a slightly
lower accuracy increase, but the comparison is unfair be-
cause GBN used a baseline with low accuracy. The final ac-
curacy is actually more important than the accuracy drop
when evaluating the performance of the pruning method. To
confirm that, we conducted a detailed analysis of the corre-
lation between the baseline accuracy and the final accuracy
afterward.
ResNet on ImageNet. Unlike the ResNet on CIFAR which
only uses basic blocks, ResNet on ImageNet uses bottleneck
blocks for deeper networks. To demonstrate that LRF works
for any structures, we used both ResNet-18 which is com-
posed of basic blocks and ResNet-50 which employs the
bottleneck blocks. The results are shown in Table 2.

Regarding ResNet-18, LRF-40 achieves the highest per-
formance with a margin of 1.37% than FPGM in Top-1 accu-
racy. For the first time, on ResNet-18, our pruned model has
succeeded in outperforming the original model. In ResNet-
50, which has a bottleneck structure, the channels between
the 1 × 1 convolutions have been removed by half. For the
ResNet-50, we outperform the previous SOTA in both Top-1
and Top-5 accuracy while achieving more FLOPs reduction.
Especially, the accuracy drop of the Top-5 is only 0.02%

Model Training/Inference (ms) Volume (MB)

Baseline 566.9 / 157.9 100.1
LRF-50 244.4 / 78.3 51.1
LRF-60 226.6 / 77.8 46.5

Table 3: Training/inference time & Volume of the model.

Method Baseline (%) Pruned (%) Scratch Scratch-long

LRF-50 93.45 93.73 89.85 91.44
LRF-60 93.45 93.19 89.81 91.13

Table 4: Investigation on the training from scratch at
ResNet-56 on CIFAR-10. scratch indicates that the training
our final pruned network from scratch. scratch-long is simi-
lar, but training epochs are extended to be fairly compared.

which represents that the accuracy of the original model is
almost maintained.

Analyses on LRF
Training/Inference time & Volume of the model. 1) We
measured the actual training/inference time of the ResNet-
50 on four RTX 2080Ti GPU with a batch size of 256. The
results are shown in Table 3. Despite the addition of several
1 × 1 convolutions, the actual times are improved substan-
tially. This result is due to the fact that the amount of compu-
tation is more important to the training speed than the effect
from the number of layers. 2) Actual volume of the ResNet-
50 models are also shown in Table 3. These results resolve
the question about the practical advantage of our method.
Training from Scratch. LRF is a pruning method which
utilizes the properties of 1x1 convolution when removing
existing convolution layers. And, it is quite different from
designing a new efficient network structure. However, one
might suspect that the effectiveness of our work could come
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Figure 4: (a) Difference in output feature map that occurs
when removing channels iteratively following each method.
LRF with weights compensation shows significantly better
results than other methods. (b) Difference in output feature
maps when removing each channel in a layer. The horizontal
axis implies the index of channel that we removed. Each 16
channel shows a significant difference.

from the addition of 1x1 convolution in architecture.
We trained our newly changed final model after pruning

from the scratch. To compare them fairly, we also trained
‘scratch-long’ which has the same total training epochs with
our LRF pruning. The comparison result is shown in Table 4.
This result proves that our benefit comes from the suggested
LRF technique, not from the change in structure.
Effectiveness of Weights Compensation. LRF with
weights compensation can reduce the differences in output
feature map caused by pruning, and it enables the pruned
network to preserve its original performance. To demon-
strate the effectiveness of our proposed method, we observed
the difference in output feature maps when pruning each
channel based on each baseline method.

Given a K × K convolution layer that we try to prune,
we first record the output feature map of the next layer for a
particular training input batch. Then, we remove the most
redundant channel one by one iteratively following each
method, and calculate the norm of the difference between
the resulting output feature map and the already-recorded
value. There are four baselines, namely, 1) Random: choose
the channel randomly, 2) ThiNet: greedily find the channel
with the smallest difference, 3) LRF without weights com-
pensation: apply LRF, but simply remove the channel with-
out weight modification, 4) LRF with weights compensa-
tion: use LRF and modify the weight values with the pro-
posed weights compensation method. For this ablation, the
last convolution layer of ResNet-56 on CIFAR-10 was used.

The results are shown in Figure 4a. Using LRF with-
out weights compensation shows a slightly larger difference
than that of ThiNet, which is a greedy way of finding the

Baseline Acc (%) Pruned Acc (%) Acc Drop (%)

92.91 93.13 (± 0.14) -0.22
93.23 93.18 (± 0.13) 0.05
93.45 93.27 (± 0.11) 0.18
93.55 93.16 (± 0.15) 0.39

Table 5: Investigation on the correlation between baseline
accuracy and accuracy drop. Although the same pruning
method is used for the same network, the pruned accuracy
is similar regardless of the baseline accuracy.

smallest difference. However, LRF with weights compensa-
tion shows outstanding results with a much lower difference
in output feature maps.

In addition to the above ablation, we also observed the
distribution of output feature map difference depending on
which channel is removed (Figure 4b). In this experiment,
we did not remove multiple channels iteratively, but rather
recorded the difference after removing each channel inde-
pendently. There are total 16 bars in the figure because this
convolution layer has 16 channels. For all the channels, the
value of the orange bar is much smaller than the value of
the blue bar. This also shows that weights compensation
is good at reducing the output feature map difference. One
thing to be noted here is that, the channel selection crite-
rion of ThiNet and LRF are also different. In this result, the
ThiNet selects the 10-th channel which has the lowest blue
bar. However, we select the third channel that has the lowest
orange bar after the weights compensation.
Accuracy Drop vs Baseline Accuracy. Unfortunately, in
the field of network pruning, the criterion for comparing
each proposed method is unclear. The most standard way is
to measure the accuracy drop when the reduced FLOPs are
similar. However, the question is whether it is fair to con-
sider only the accuracy drop without considering the base-
line accuracy or not. To investigate the actual correlation be-
tween the baseline accuracy and the accuracy drop, we ob-
served the performance by applying the same LRF to four
baseline models with different performances. As can be seen
in Table 5, the performance of each baseline was different,
but we ultimately obtained the similar final pruned accuracy.
Using a baseline with low performance tends to be an easy
way to obtain a good accuracy drop. Therefore, it is unrea-
sonable to evaluate the ability of the pruning method by only
comparing the accuracy drop. A better way is to compare the
pruned accuracy, rather than the accuracy drop.

Conclusion
In this study, we propose a new effective channel pruning
method called Linearly Replaceable Filters (LRF). LRF sug-
gests a novel pruning criterion that selects the channel by
using a linear combination approximation of other filters in
the same layer. In addition, a technique called weights com-
pensation is proposed to support LRF in various manners.
When used together, they significantly reduce output feature
map differences in general CNNs regardless of kernel size,
block type, and even architectures. Extensive experiments
and analyses demonstrate the effectiveness of our approach.
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