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Abstract
Constrained Markov decision processes (CMDPs) formalize
sequential decision-making problems whose objective is to
minimize a cost function while satisfying constraints on var-
ious cost functions. In this paper, we consider the setting of
episodic fixed-horizon CMDPs. We propose an online algo-
rithm which leverages the linear programming formulation of
repeated optimistic planning for finite-horizon CMDP to pro-
vide a probably approximately correctness (PAC) guarantee
on the number of episodes needed to ensure a near optimal
policy, i.e., with resulting objective value close to that of the
optimal value and satisfying the constraints within low toler-
ance, with high probability. The number of episodes needed
is shown to have linear dependence on the sizes of the state
and action spaces and quadratic dependence on the time hori-
zon and an upper bound on the number of possible successor
states for a state-action pair. Therefore, if the upper bound on
the number of possible successor states is much smaller than
the size of the state space, the number of needed episodes be-
comes linear in the sizes of the state and action spaces and
quadratic in the time horizon.

Introduction
Markov decision processes (MDPs) (Puterman 1994) offer
a natural framework to express sequential decision-making
problems and reason about autonomous system behaviors.
However, the single cost objective of a traditional MDP for-
mulation may fall short of fully capturing problems with
multiple conflicting objectives and additional constraints
that must be satisfied. Consider, for example, an autonomous
car that is required to reach a destination at the earliest, but
also satisfy a set of safety requirements and fuel consump-
tion constraints, while keeping a desired comfort level (Le,
Voloshin, and Yue 2019). The framework of constrained
MDPs (CMDPs) (Altman 1999) extended MDPs by consid-
ering additional constraints on the expected long-term per-
formance of a policy. The objective in a CMDP is to mini-
mize the expected cumulative cost while satisfying the addi-
tional constraints. In this paper, we consider episodic finite-
horizon CMDPs, where an agent interacts with a CMDP re-
peatedly in episodes of fixed length, a setting that can model
a large number of repetitive tasks such as goods delivery or
customer service.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We address the problem of online learning of CMDPs
with unknown transition probabilities, by requiring only ob-
served trajectories rather than sampling the transition func-
tion for any state-action pair from a generative model, which
may not always be available. An important question which
arises in online learning is the exploration-exploitation
dilemma, i.e., the trade-off between exploration, to gain
more information about the model, and exploitation, to min-
imize the cost. In this respect, the performance of learn-
ing algorithms is commonly evaluated in terms of (i) regret,
i.e., the difference between the cumulative cost of the agent
and that of the optimal policy in hindsight, and (ii) sample
complexity, i.e., the number of steps for which the learn-
ing agent may not play a near-optimal policy. We consider a
policy to be near-optimal if the expected cumulative cost is
close to the optimal and the constraints are satisfied within a
small tolerance. In this paper, we address sample efficiency
by proposing an algorithm that provides probably approxi-
mately correctness (PAC) guarantees.

Our algorithm leverages the concept of optimism in the
face of uncertainty (Lai and Robbins 1985; Auer, Jaksch,
and Ortner 2009) to balance exploration and exploitation.
The learning agent repeatedly defines a set of statistically
plausible transition models given the observations made so
far. It then chooses an optimistic transition probability model
and an optimistic policy with respect to the given con-
strained MDP problem. This planning step is formulated
as a linear programming (LP) problem in occupancy mea-
sures, whose solution gives the desired optimistic policy.
This policy is executed for multiple episodes until a state-
action pair has been visited sufficiently often. The total vis-
itation counts are then updated and these steps are repeated.
We show that the number of episodes in which the learn-
ing agent plays an ε-suboptimal policy is upper bounded by
Õ
( |S||A|C2H2

ε2 log2
1
δ

)
with probability at least 1− δ, where

C is an upper bound on the number of possible successor
states for a state-action pair, |S| and |A| are the state and
action space sizes, respectively, and H is the time horizon.

Contribution. In this paper, we present one of the
first online algorithms with PAC guarantees for episodic
constrained MDPs with unknown transition probabilities.
We build on a previous result which provides a probably
approximately correct (PAC) algorithm for unconstrained
episodic MDPs (Dann and Brunskill 2015). However, differ-
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ently from planning based on the Bellman optimality equa-
tions (Dann and Brunskill 2015), we address the presence of
constraints by formulating an optimistic planning problem
as an LP in occupancy measures. Consequently, our formu-
lation leverages a novel construction for the set of plausible
transition models and results in a sample complexity that is
quadratic in the time horizonH , thus improving on the cubic
bounds previously obtained with regret-based formulations
(e.g., see (Efroni, Mannor, and Pirotta 2020)).

Related Work. Significant research has been reported on
efficient learning for unconstrained MDPs. Algorithms like
UCBVI (Azar, Osband, and Munos 2017), UBEV (Dann,
Lattimore, and Brunskill 2017), EULER (Zanette and Brun-
skill 2019) and EULER-GP (Efroni et al. 2019) focus on
regret analysis for episodic finite-horizon MDPs. PAC al-
gorithms for unconstrained MDPs are addressed by (Dann
and Brunskill 2015; Brafman and Tennenholtz 2002; Strehl,
Li, and Littman 2009). While these algorithms are model-
based reinforcement learning (RL) algorithms, model-free
algorithms such as UCB-H and UCB-B (Jin et al. 2018) have
also been shown to be sample efficient.

Sample-efficient exploration in CMDPs has recently
started to receive more attention. Regret analysis for mul-
tiple model-based and model-free algorithms (Efroni, Man-
nor, and Pirotta 2020) has been performed in the setting
of episodic CMDPs with stochastic cost functions and un-
known transition probabilities. Our work addresses PAC
complexity, and is therefore complementary to the result
by (Efroni, Mannor, and Pirotta 2020). Regret analysis for
constrained MDPs has also been studied in the settings of
average cost (Singh, Gupta, and Shroff 2020), adversarial
cost with tabular MDPs (Qiu et al. 2020), and adversarial
cost with linear MDPs (Ding et al. 2020).

Still in the context of constrained MDPs, the C-UCRL al-
gorithm (Zheng and Ratliff 2020) has shown to have sub-
linear regret and satisfy the constraints even while learning,
albeit in the setting of known transition probabilities and un-
known cost functions. A regret-optimal algorithm for con-
strained MDPs with concave objectives and convex and hard
constraints (knapsacks) has also been studied (Brantley et al.
2020), dealing with problems with a fixed budget such that
the learning is stopped as soon as the budget is consumed.
Several of these regret algorithms can be modified follow-
ing an idea from (Jin et al. 2018) to provide PAC guarantees
for constrained MDP with time-horizon dependence of at
least H3. However, this procedure is impractical as it entails
saving an extremely large number of policies and uniformly
sampling them to get the PAC optimal policy. Finally, regret
or PAC analysis have not been addressed so far in the context
of policy optimization and Lagrangian-based efforts on con-
strained MDPs (Borkar 2005; Achiam et al. 2017; Tessler,
Mankowitz, and Mannor 2018; Miryoosefi et al. 2019).

Preliminaries

In this section, we introduce preliminary concepts from
finite-horizon MDPs and CMDPs.

Notation. We denote the set of natural numbers by N and
use h ∈ {1, . . . ,H} and k ∈ N to denote a time step in-
side an episode and a phase index, respectively. The indi-
cator function I(s = s1) evaluates to 1 when s = s1 and
0 otherwise. The probability simplex over set S is denoted
by ∆S . For functions f, p : S → R and S a finite set, we
write p(·)f =

∑
s∈S p(s)f(s). Finally, we adopt the nota-

tion Õ which is similar to the usual O notation but ignores
logarithmic factors.

Finite-Horizon MDPs. We consider an episodic finite-
horizon MDP (Puterman 1994), which can be formally de-
fined by a tuple M = (S,A, H, s1, p, c), where S and A
denote the finite state and action spaces, respectively. The
agent interacts with the environment in episodes of length
H and each episode starts with the same initial state s1. The
non-stationary transition probability is denoted by p where
ph(s′|s, a) is the the probability of transitioning to state s′
upon taking action a at state s at time step h. Further, we
denote by Succ(s, a) the set of possible successor states
of state s and action a. The maximum number of possible
successor states is denoted by C = maxs,a |Succ(s, a)|.
The non-stationary cost of taking action a in state s at step
h ∈ {1, . . . ,H} is a random variable Ch(s, a) ∈ [0, 1], with
mean ch(s, a). Finally, we set c = (c1, . . . , cH).

A non-stationary randomized policy π = (π1, . . . , πH) ∈
Π, where πi : S → ∆A, maps each state to a probability
simplex over the action space. We denote by ah ∼ πh(sh)
the action taken at time step h at state sh according to policy
π. For a state s ∈ S and time step h ∈ {1, . . . ,H}, the value
function of a non-stationary randomized policy, V πh (s; c, p),
is defined as:

V πh (s; c, p) = E

[
H∑
i=h

ci(si, ai)|sh = s, π, p

]
,

where the expectation is over the environment and policy
randomness. We omit π, c, p when they are clear from the
context. Similarly, for a state s ∈ S , an action a ∈ A, and
time step h ∈ {1, . . . ,H}, the Q-value function is defined
as Qπh(s, a; c, p) =

= ch(s, a) + E

[
H∑

i=h+1

ci(si, ai)|sh = s, ah = a, π, p

]
.

There always exists an optimal non-stationary deterministic
policy π∗ (Puterman 1994) such that V π

∗

h (s) = V ∗h (s) =

infπV πh (s) and Qπ
∗

h (s, a) = Q∗h(s, a) = infπQπh(s, a). The
Bellman optimality equations (Puterman 1994) enable us to
compute the optimal policy by backward induction:

V ∗h (s) = mina∈A
[
ch(s, a) + ph(·|s, a)V ∗h+1

]
,

Q∗h(s, a) = ch(s, a) + ph(·|s, a)V ∗h+1,

where V ∗H+1(s) = 0 and V ∗h (s) = mina∈AQ∗h(s, a). The
optimal policy π∗ is thus greedy with respect to Q∗h.

Finite-Horizon Constrained MDPs. A finite-horizon
constrained MDP is a finite-horizon MDP along with ad-
ditional I constraints (Altman 1999) expressed by pairs
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of constraint cost functions and thresholds, {di, li}Ii=1.
The cost of taking action a in state s at time step h ∈
{1, . . . ,H} with respect to the ith constraint cost func-
tion is a random variable Di,h(s, a) ∈ [0, 1], with mean
di,h(s, a). The total expected cost of an episode under pol-
icy π with respect to cost functions c, di, i ∈ {1, . . . , I}, is
the respective value function from the initial state s1, i.e.,
V π1 (s1; c), V π1 (s1; di), i ∈ {1, . . . , I}, respectively, by def-
inition. The objective of a CMDP is to find a policy which
minimizes the total expected objective cost under the con-
straint that the total expected constraint costs are below the
respective desired thresholds. Formally,

π∗ ∈ argmin
π∈Π

V π1 (s1; c, p)

s.t. V π1 (s1; di, p) ≤ li ∀i ∈ {1, . . . , I}.
(1)

The optimal value is V ∗ = V π
∗

1 (s1; c, p). The optimal pol-
icy may be randomized (Altman 1999), i.e., an optimal de-
terministic policy may not exist as in the case of the finite-
horizon MDP. Further, the Bellman optimality equations do
not hold due to the constraints. Thus, we cannot leverage
backward induction to find an optimal policy. A linear pro-
gramming approach has been shown (Altman 1999) to find
an optimal policy.

Linear Programming for CMDPs. Occupancy measures
(Altman 1999) allow formulating the optimization problem
(1) as a linear program (LP). Occupancy measure qπ of a
policy π in a finite-horizon MDP is defined as the expected
number of visits to a state-action pair (s, a) in an episode at
time step h. Formally,

qπh(s, a; p) = E [I{sh = s, ah = a}|s1 = s1, π, p]

= P [sh = s, ah = a|s1 = s1, π, p] .

It is easy to see that the occupancy measure qπ of a policy π
satisfies the following properties, expressing non-negativity
and flow conservation, respectively:

qπh(s, a) ≥ 0, ∀ (s, a, h) ∈ S ×A× {1, . . . ,H},
qπ1 (s, a) = π1(a|s)I(s = s1), ∀ (s, a) ∈ S ×A,∑

a

qπh(s, a) =
∑
s′,a′

ph−1(s|s′, a′)qπh−1(s′, a′),

∀s ∈ S, h ∈ {2, . . . ,H},
where I(s = s1) is the initial state distribution. The space
of the occupancy measures satisfying the above constraints
is denoted by ∆(M). A policy π generates an occupancy
measure q ∈ ∆(M) if

πh(a|s) =
qh(s, a)∑
b qh(s, b)

, ∀(s, a, h) ∈ S ×A× {1, . . . ,H}.

(2)
Thus, there exists a unique generating policy for all occu-
pancy measures in ∆(M) and vice versa. Further, the total
expected cost of an episode under policy π with respect to
cost function c can be expressed in terms of the occupancy
measure as follows:

V π1 (s1; c, p) =
∑
h,s,a

qπh(s, a; p)ch(s, a).

The optimization problem (1) can then be reformulated as
a linear program (Altman 1999; Zimin and Neu 2013) as
follows:

q∗ ∈ argmin
q∈∆(M)

∑
h,s,a

qh(s, a)ch(s, a),

s.t.
∑
h,s,a

qh(s, a)di,h(s, a) ≤ li, ∀i ∈ {1, . . . , I}.

The optimal policy π∗ can be obtained from q∗ following
(2).

The Learning Problem
We consider the setting where an agent repeat-
edly interacts with a finite-horizon CMDP M =
(S,A, H, s1, p, c, {di, li}Ii=1) with stationary transition
probability (i.e., ph = p, ∀h ∈ {1, . . . ,H}) in episodes of
fixed length H , starting from the same initial state s1. For
simplicity of analysis,1 we assume that the cost functions
c, {di}Ii=1 are known to the learning agent, but the transition
probability p is unknown. The agent estimates the transition
probability in an online manner by observing the trajectories
over multiple episodes.

The main objective is to design an online learning al-
gorithm such that, for given ε ∈ (0, 1], δ ∈ (0, 1) and
CMDPM, the number of episodes for which the agent fol-
lows an ε-suboptimal policy is bounded above by a poly-
nomial (up to logarithmic factors) in the relevant quanti-
ties (|S|, |A|, H, 1

ε ,
1
δ ) with high probability, i.e., with prob-

ability at least 1 − δ (PAC guarantee). A policy π is said
to be ε-optimal if the total expected objective cost of an
episode under policy π is within ε of the optimal value,
i.e., V π1 (s1; c, p) ≤ V ∗ + ε, and the constraints are satis-
fied within an ε tolerance, i.e., V π1 (s1; di, p) ≤ li + ε, ∀ i ∈
{1, . . . , I}. We make the following assumption of feasibil-
ity.

Assumption 1 The given CMDP M is feasible, i.e., there
exists a policy π such that the constraints are satisfied.

The UC-CFH Algorithm
Algorithm Description. We consider an adaptation of the
model-based algorithm UCFH (Dann and Brunskill 2015)
to the setting of CMDPs, which we call Upper-Confidence
Constrained Fixed-Horizon episodic reinforcement learning
(UC-CFH) algorithm. The algorithm leverages the approach
of optimism in the face of uncertainty (Auer, Jaksch, and
Ortner 2009) to balance exploration and exploitation.

The algorithm operates in phases indexed by k and whose
length is not fixed but, instead, depends on the observations
made until the current episode. Each phase consists of three
stages: planning, policy execution, and update of the visita-
tion counts.

1The complexity of learning the transition probability domi-
nates the complexity of learning the cost functions (Auer and Ort-
ner 2005). The algorithm can be readily extended to the setting of
unknown cost functions by using an optimistic lower bound of the
cost function obtained from its empirical estimate in place of the
known cost function.
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For each phase k, UC-CFH defines a set of plausible tran-
sition models based on the number of visits to state-action
pairs (s, a) and transition tuples (s, a, s′) so far. A policy πk
is chosen by solving an optimistic planning problem, which
is expressed as an LP problem (lines 13-16 in Algorithm
1). The planning problem (CONSTRAINEDEXTENDEDLP in
the algorithm) is detailed below.

The algorithm maintains two types of visitation counts.
Counts v(s, a) and v(s, a, s′) are the number of visits to
state-action pairs (s, a) and transition tuples (s, a, s′), re-
spectively, since the last update of state-action pair (s, a).
Counts n(s, a) and n(s, a, s′) are the total number of vis-
its to state-action pairs (s, a) and transition tuples (s, a, s′),
respectively, before the update of state-action pair (s, a).
These visitation counts are all initialized to zero.

During the policy execution stage of phase k (lines 18-27
in Algorithm 1), the agent executes the current policy πk,
observes the tuples (st, at, st+1), and updates the respective
visitation counts v(st, at) and v(st, at, st+1). This policy πk
is executed until a state action pair (s, a) has been visited
often enough since the last update of (s, a), i.e., v(s, a) is
large enough (lines 26-27 in Algorithm 1).

In the next stage of phase k (lines 29-33 in Algorithm 1),
the visitation counts n(s, a) and n(s, a, s′) corresponding
to the sufficiently visited state-action pair (s, a) are updated
as n(s, a) = n(s, a) + v(s, a), n(s, a, s′) = n(s, a, s′) +
v(s, a, s′) and visitation counts v(s, a), v(s, a, s′) are reset
to 0. This iteration of planning-execution-update describes a
phase of the algorithm.

Optimistic Planning. At the start of each phase k,
UC-CFH estimates the true transition model by its empiri-
cal average as

p̄k(s′|s, a) =
nk(s, a, s′)

max{1, nk(s, a)}
, ∀(s, a, s′) ∈ S×A×S.

The algorithm further defines confidence intervals for the
transition probabilities of the CMDP, such that the true tran-
sition probabilities lie in them with high probability. For-
mally, for any (s, a) ∈ S ×A, we define:

Bkp (s, a) = {p̃(.|s, a) ∈ ∆S : ∀s′ ∈ S
|p̃(s′|s, a)− p̄k(s′|s, a)| ≤ βkp (s, a, s′)},

where the size of the confidence intervals βkp (s, a, s′) is built
using the empirical Bernstein inequality (Maurer and Pontil
2009) and, for any (s, a, s′) ∈ S ×A× S , is defined as

βkp (s, a, s′) =

√
2p̄k(s′|s, a)(1− p̄k(s′|s, a)) ln 4

δ′

max(1, nk(s, a))
+

+
7 ln 4

δ′

3 max(1, nk(s, a)− 1)
,

where δ′ is as defined in the algorithm and p̄k(s′|s, a)(1 −
p̄k(s′|s, a)) is the variance associated with the empirical es-
timate p̄k(s′|s, a).

Algorithm 1 UC-CFH: Upper-Confidence Constrained
Fixed-Horizon Episodic Reinforcement Learning Algorithm

1: Input: Desired tolerance ε ∈ (0, 1], failure tolerance
δ ∈ (0, 1), fixed-horizon MDPM

2: Result: With probability at least 1− δ, ε-optimal policy
3:
4: k := 1, wmin := ε

4H|S||A| , δ′ := δ
2NmaxC

;

5: Nmax := |S||A| log2
|S|H
wmin

;
6:
7: m := 2304C2H2

ε2 (log2 log2H)2 log2
2

8H2|S|2|A|
ε ln 4

δ′ ;
8: n(s, a) = v(s, a) = n(s, a, s′) := 0,
9: ∀s ∈ S, a ∈ A, s′ ∈ Succ(s, a);

10:
11: while True do
12:
13: p̄(s′|s, a) := n(s,a,s′)

max{1,n(s,a,s′)} ,

14: ∀s ∈ S, a ∈ A, s′ ∈ Succ(s, a);
15:
16: πk := CONSTRAINEDEXTENDEDLP(p̄, n);
17:
18: repeat
19: for t = 0 to H − 1 do
20: at ∼ πkh(st);
21: st+1 ∼ p(.|st, at);
22: v(st, at) := v(st, at) + 1;
23: v(st, at, st+1) := v(st, at, st+1) + 1;
24: end for
25: until there is (s, a) ∈ S ×A,
26: s.t. v(s, a) ≥ max{mwmin, n(s, a)} and
27: n(s, a) < |S|mH
28:
29: n(s, a) := n(s, a) + v(s, a);
30: n(s, a, s′) := n(s, a, s′) + v(s, a, s′),
31: v(s, a) = v(s, a, s′) := 0,
32: ∀s′ ∈ Succ(s, a);
33: k := k + 1;
34:
35: end while

Given the confidence intervals Bkp , the algorithm then
computes a policy πk by performing optimistic planning.
Given a confidence set of possible transition models, it se-
lects an optimistic transition probability model and opti-
mistic policy with respect to the given constrained MDP
problem. This can be expressed as the following optimiza-
tion problem:

(p̃k, πk) = argmin
π∈Π,p̃∈Bkp

V π1 (s1; c, p̃) (3)

s.t. V π1 (s1; di, p̃) ≤ li ∀i ∈ {1, . . . , I}.

We allow time-dependent transitions, i.e., choosing different
transition models at different time steps of an episode, even
if the true CMDP has stationary transition probability. This
does not affect the theoretical guarantees, since the true tran-
sition probability still lies in the confidence sets with high
probability.
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These confidence intervals differ from the ones consid-
ered in UCFH (Dann and Brunskill 2015), which have an
additional condition that the standard deviation associated
with a transition model, i.e.,

√
p̃(1− p̃), be close to that of

the empirical estimate
√
p̄(1− p̄). We remove this condition

to be able to express the optimistic planning problem (3) as a
linear program. However, this causes the PAC bound to have
a quadratic dependence onC instead of a linear dependence.

CONSTRAINEDEXTENDEDLP Algorithm. Problem (3)
can be expressed as an extended LP by leveraging the state-
action-state occupancy measure zπ(s, a, s′; p), defined as
zπh (s, a, s′; p) = ph(s′|s, a)qπh(s, a; p), to express the con-
fidence intervals of the transition probabilities(Efroni, Man-
nor, and Pirotta 2020). The extended LP over z can be for-
mulated as follows:

min
z≥0

∑
h,s,a,s′

zh(s, a, s′)ch(s, a),

∑
h,s,a,s′

zh(s, a, s′)di,h(s, a) ≤ li, ∀i ∈ {1, . . . , I}

∑
a,s′

zh(s, a, s′) =
∑
s′,a′

zh−1(s′, a′, s), ∀s ∈ S, ∀h ∈ {2, . . . , H}

∑
a,s′

z1(s, a, s′) = I(s = s1), ∀s ∈ S

zh(s, a, s′)− (p̄k(s′|s, a) + βk
p (s, a, s′))

∑
y

zh(s, a, y) ≤ 0,

∀(s, a, s′, h) ∈ S ×A× S × {1, . . . , H}

− zh(s, a, s′) + (p̄k(s′|s, a)− βk
p (s, a, s′))

∑
y

zh(s, a, y) ≤ 0,

∀(s, a, s′, h) ∈ S ×A× S × {1, . . . , H}.

The last two constraints of the above LP encode the con-
dition that the transition probability must lie in the desired
confidence interval. The desired policy πk and the chosen
transition probabilities are recovered from the computed oc-
cupancy measures as:

πkh(a|s) =

∑
s′ zh(s, a, s′)∑
a,s′ zh(s, a, s′)

and

p̃kh(s′|s, a) =
zh(s, a, s′)∑
s′ zh(s, a, s′)

.

The above planning routine, referred to as CON-
STRAINEDEXTENDEDLP in the algorithm, was also
used in the context of adversarial MDPs (Jin and Luo 2019;
Rosenberg and Mansour 2019). The following theorem
establishes the PAC guarantee for the algorithm UC-CFH.

Theorem 1 For ε ∈ (0, 1], δ ∈ (0, 1), with proba-
bility at least 1 − δ, algorithm UC-CFH yields at most
Õ
( |S||A|C2H2

ε2 log2
1
δ

)
episodes with ε-suboptimal policies

πk, i.e., V π
k

1 (s1, c) − V ∗ > ε or V π
k

1 (s1, di) − li > ε, for
any i ∈ {1, . . . , I}.

Thus, in the natural setting of a limited size of successor
states, i.e., C � |S|, the number of episodes needed by
UC-CFH to obtain an ε-optimal policy with high proba-
bility has a linear dependence on the state and action space
sizes |S| and |A|, respectively, and quadratic dependence on
the time horizon H .

PAC Analysis
For state-action pairs, we introduce a notion of knownness,
to indicate how often the pair has been visited relative to its
expected number of visits under a policy, and a notion of
importance, to indicate the influence that the pair has on the
total expected cost of a policy (Dann and Brunskill 2015).
We consider a fine-grained categorization of knownness of
state-action pairs, similar to the one by (Lattimore and Hut-
ter 2012; Dann and Brunskill 2015), instead of a binary cat-
egorization (Brafman and Tennenholtz 2002; Strehl, Li, and
Littman 2009). These notions are essential for the analysis
of the algorithm.

We define the weight of a state-action pair (s, a) under
policy πk as its expected number of visits in an episode, i.e.,

wk(s, a) =
H∑
t=1

P
[
st = s, at = a|πk, s1

]
.

The importance ιk of a state-action pair (s, a) with respect
to policy πk is an integer defined as its relative weight with
respect to wmin on a logarithmic scale:

ιk(s, a) = min

{
zi : zi ≥

wk(s, a)

wmin

}
,

where z1 = 0, zi = 2i−2, ∀ i ≥ 2. Similarly, the knownness
κk of a state-action pair (s, a) is an integer defined as

κk(s, a) = max

{
zi : zi ≤

nk(s, a)

mwk(s, a)

}
,

where z1 = 0, zi = 2i−2, ∀ i ≥ 2, and the constant m is as
defined in Algorithm 1. We then divide the (s, a)-pairs into
categories as follows:

Xk,κ,ι = {(s, a) ∈ Xk : κk(s, a) = κ, ιk(s, a) = ι},
X̄k = S ×A\Xk,

where Xk = {(s, a) ∈ S × A : ιk(s, a) > 0} is the active
set and X̄k is the inactive set, i.e., the set of state-action pairs
that are unlikely to be visited under policy πk. The idea is
that the model estimated by the algorithm is accurate if only
a small number of state-action pairs are in categories with
low knownness, that is, they are important under the current
policy but have not yet been sufficiently observed.

We therefore distinguish between phases k, where the
condition |Xk,κ,ι| ≤ κ for all κ and ι holds, and phases
where this does not hold. This condition ensures that the
number of state-action pairs in categories with low known-
ness are small and there are more state-action pairs in cate-
gories with higher knownness. We will further prove that the
policy is ε-optimal in episodes which satisfy this condition.
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Proof of Theorem 1
The proof of Theorem 1 consists of the following parts, sup-
ported by technical lemmas that are postponed to the next
subsection to improve readability. We first show in Lemma 2
that the true transition model is contained within the confi-
dence sets for all phases with high probability, i.e., the true
transition probability p belongs to Bkp for all k with proba-
bility at least 1− δ

2 .
We then use a result from (Dann and Brunskill 2015) to

provide a high probability upper bound on the number of
episodes for which the condition ∀ κ, ι : |Xk,κ,ι| ≤ κ is vio-
lated. This result is restated as Lemma 3, with minor modifi-
cation to accommodate randomized policies instead of deter-
ministic policies. By Lemma 3, the number of episodes with
|Xk,κ,ι| > κ for some κ, ι is bounded above by 6NEmax,
where N = |S||A|m and Emax = log2

H
wmin

log2 |S||A|
with probability at least 1− δ

2 . The choice ofm in Theorem 1
satisfies the condition on m in Lemma 3. We therefore have,
with high probability, i.e., at least 1− δ

2 , |Xk,κ,ι| ≤ κ for all
κ, ι for the remaining episodes.

By union bound, for episodes beyond the first 6NEmax,
we can conclude that |Xk,κ,ι| ≤ κ for all κ, ι and p ∈ Bkp
with probability at least 1−δ. Further, in Lemma 9, we show
that, in episodes with |Xk,κ,ι| ≤ κ for all κ, ι, the optimistic
expected total cost is ε-close to the true expected total cost.
Therefore, the following hold:

|V π
k

1 (s1, c)− Ṽ π
k

1 (s1, c)| ≤ ε,

|V π
k

1 (s1, di)− Ṽ π
k

1 (s1, di)| ≤ ε, ∀i ∈ {1, . . . , I}.
We note that p̃k, πk were obtained by solving the following
optimization problem:

(p̃k, πk) = argmin
π∈Π,p̃∈Bkp

V π1 (s1; c, p̃) (4)

s.t. V π1 (s1; di, p̃) ≤ li ∀i ∈ {1, . . . , I}.

Thus, for p ∈ Bkp , we have,

V π
k

1 (s1, c)− V ∗ = V π
k

1 (s1, c)− Ṽ π
k

1 (s1, c)+

+ Ṽ π
k

1 (s1, c)− V ∗

≤ V π
k

1 (s1, c)− Ṽ π
k

1 (s1, c)

(by (4), since p ∈ Bkp )

≤ ε (by Lemma 9).

Similarly, for all i ∈ {1, . . . , I}, we obtain

V π
k

1 (s1, di)− li = V π
k

1 (s1, di)− Ṽ π
k

1 (s1, di)+

+ Ṽ π
k

1 (s1, di)− li
≤ V π

k

1 (s1, di)− Ṽ π
k

1 (s1, di)

(since πk satisfies the constraints of (4))
≤ ε (by Lemma 9).

By putting the above inequalities together we have that,
with probability at least 1 − δ, UC-CFH has at most
6|S||A|m log2

H
wmin

log2 |S||A| ε-suboptimal episodes.

Technical Lemmas
We state the main lemmas used in the proof of Theorem 1.

Capturing the true transition model with high proba-
bility. We first restate the lemma that provides an up-
per bound on the total number of phases in the algorithm
UC-CFH from (Dann and Brunskill 2015).

Lemma 1 The total number of phases in the algorithm is
bounded above by Nmax = |S||A| log2

|S|H
wmin

.

The above result is used along with concentration results
based on the empirical Bernstein inequality (Maurer and
Pontil 2009) and union bounds to show that the true tran-
sition model is contained within the confidence sets for all
phases with high probability.

Lemma 2 The true transition probability is contained
within the confidence intervals for all phases with high prob-
ability, i.e., p ∈ Bkp , ∀k with probability at least 1− δ

2 .

The above lemma implies that the extended LP of the plan-
ning stage is feasible in all phases with high probability,
since the true CMDP is feasible by Assumption 1.

Number of episodes which violate |Xk,κ,ι| ≤ κ, ∀κ, ι .
We restate the following result from (Dann and Brunskill
2015), with minor modification to accommodate random-
ized policies instead of deterministic policies, to provide a
high probability upper bound on the number of episodes for
which |Xk,κ,ι| ≤ κ, ∀κ, ι is violated.

Lemma 3 Let E be the number of episodes for which there
are κ, ι with |Xk,κ,ι| > κ, and let m ≥ 6H2

ε ln 2Emax
δ . Then,

we obtain

P (E ≤ 6NEmax) ≥ 1− δ/2,

where N = |S||A|m and Emax = log2
H

wmin
log2 |S||A|.

Difference between true and optimistic total cost. We
use the following value difference lemma (Efroni, Mannor,
and Pirotta 2020) to express the difference in value functions
of policy π at time step h with respect to MDPs of different
transition probabilities p, p̃, i.e., V πh − Ṽ πh , in terms of the
value functions beyond h, Ṽ πt , t > h, and difference in tran-
sition probabilities (pt − p̃t), t > h. In the following, We
also use the shorthand notations V πh (s; c) and Ṽ πh (s; c) for
V πh (s; c, p) and Ṽ πh (s; c, p̃), respectively. The cost function
c is omitted when clear from the context.

Lemma 4 Consider the MDPs M and M̃ denoted by
(S,A, p, c) and (S,A, p̃, c), respectively. Then, the differ-
ence in the values with respect to the same policy π for any
s, h can be written as

V πh (s)− Ṽ πh (s) = (5)

E

[
H∑
i=h

(pi(·|si, ai)− p̃i(·|si, ai))Ṽ πh+1|π, p, sh = s

]
.

Moreover, we prove the following lemma which is used to
upper bound the difference in transition probability |p − p̃|
in (5) in terms of p̃ and visitation counts n.
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Lemma 5 Let p̄, p̃, p ∈ [0, 1], δ ∈ (0, 1) such that p, p̃ ∈
CI , where

CI :=

{
p′ ∈ [0, 1] : |p′ − p̄| ≤

√
2p̄(1− p̄) ln 4

δ

max(1, n)
+ (6)

+
7 ln 4

δ

3 max(1, n− 1)

}
.

Then, |p̃− p| ≤ 2
√

2
√

p̃ ln 4
δ

max(1,n−1) + 5(
ln 4
δ

max(1,n−1) )
3
4 +

+
21 ln 4

δ

max(1,n−1) .

The above lemma is proved by viewing (6) as a quadratic
inequality in terms of

√
p̄ and solving for p̄. The resulting

inequality is then substituted back in the original inequality
to get the desired result.

For each phase k, the true transition probability p belongs
to the confidence set Bkp with high probability and the opti-
mistic transition model p̃k is chosen from the confidence set.
Then, p and p̃k belong to CI for a suitable δ, by definition
of Bkp . By Lemma 5, |p− p̃k| can then be upper bounded in
terms of p̃k and n as described above. The following lemma
upper bounds the summand in (5), (p − p̃h)(·|s, a)Ṽh+1,
which is the difference between the expected values of suc-
cessor states in MDPs with true transition probability p and
optimistic transition probability model p̃.
Lemma 6 Let

|p(s′|s, a)− p̃h(s′|s, a)| ≤ c1(s, a) + c2(s, a)
√
p̃h(s′|s, a),

for all s, s′ ∈ S and a ∈ A. Then, for any policy π,

|(p− p̃h)(·|s, a)Ṽh+1| ≤ c1(s, a)|Succ(s, a)|‖Ṽh+1‖∞+

+c2(s, a)
√
|Succ(s, a)|σ̃h(s, a),

for any (s, a) ∈ S ×A, where σ̃2
h is the local variance func-

tion defined as: σ̃2
h(s, a) =

E[(Ṽh+1(sh+1)− E(Ṽh+1(sh+1)|sh = s, p̃, π))2

|sh = s, ah = a, p̃].

We then consider a sequence of MDPsM(d) which have
the same transition probability p of the true MDP but dif-
ferent cost functions c(d), and a similar sequence of MDPs
M̃(d) with the same transition probability p̃. In both se-
quences, for d = 0, the cost function is the same as that of
the original cost function, i.e., c(0)

h ,c̃(0)
h = ch, 1 ≤ h ≤ H .

The following cost functions are defined recursively as
c
(2d+2)
h (s, a), c̃

(2d+2)
h (s, a) = σ̃

(d),2
h (s), where σ̃(d),2

h is the
local variance of the value function under policy π with re-
spect to the costs c(d), defined as σ̃(d),2

h (s) =

E
[
(Ṽ

(d)
h+1(sh+1)− E(Ṽ

(d)
h+1(sh+1)|sh = s, p̃, π))2|sh = s, π, p̃

]
.

We note that c(d)
h (s, a) ∈

[
0, Hd

]
, and use the notation V (d)

and Ṽ (d) for value functions of M(d) and M̃(d), respec-
tively.

We also use the following lemma (Dann and Brunskill
2015) to bound

∑H
i=1 E

[
σ̃2
i (si)|sh = s, p̃, π

]
in Lemma 8

by O(H2) instead of the trivial O(H3).

Lemma 7 The variance of the value function defined as
Vπh (s) = E

[
(
∑H
i=h ci(si, ai)− V πi (si))

2|sh = s, π
]

satis-

fies a Bellman equation Vh(s) = E [Vh(sh+1)|sh = s, π] +

σ2
h(s), which gives Vπh (s) =

∑H
i=h E

[
σ2
i (si)|sh = s, π

]
.

Since 0 ≤ V1 ≤ H2c2max, for all s ∈ S , we have
0 ≤

∑H
i=1 E

[
σ2
i (si)|sh = s, π

]
≤ H2c2max.

If p, p̃ ∈ Bkp , the condition of Lemma 6 holds true by
Lemma 5 for suitable constants. Then, by utilizing Lemmas
4, 6, and 7, we have the following recursive relation relat-
ing |V (d)

1 (s1)− Ṽ (d)
1 (s1)|with |V (2d+2)

1 (s1)− Ṽ (2d+2)
1 (s1)|

when the condition |Xκ,ι| ≤ κ for all (κ, ι) ∈ K × I holds.
With constants m and δ′ as defined in Algorithm 1, the anal-
ysis follows by splitting the state action pairs by importance,
i.e., (s, a) ∈ X and (s, a) 6∈ X and using the definitions of
weight w, knownness κ, and importance ι.
Lemma 8 Let p, p̃ ∈ Bkp . If |Xκ,ι| ≤ κ for all (κ, ι), then

|V (d)
1 (s1)− Ṽ (d)

1 (s1)| := ∆d ≤
Âd + B̂1

d + B̂2
d + min{Ĉd, Ĉ ′d + Ĉ ′′

√
∆2d+2},where

Âd =
εHd

4
, B̂1

d = 42CHd+1

( |K × I| ln 4
δ′

m

)
,

B̂2
d = 10CHd+5/4

( |K × I| ln 4
δ′

m

)3/4

,

Ĉ ′d =

√
16C|K × I|

m
ln

4

δ′
H2d+2, Ĉd = Ĉ ′d

√
H,

and Ĉ ′′ =

√
16C|K × I|

m
ln

4

δ′
.

This recurrence relation is simplified to show in Lemma 9
that, in phases with |Xk,κ,ι| ≤ κ for all κ, ι, the optimistic
total expected cost Ṽ π

k

1 (s1) is close to that of the true one,
V π

k

1 (s1). This lemma plays an important role in the final
theorem to show that the policy obtained after sufficiently
large number of episodes is ε-optimal with respect to the
objective and constraints.
Lemma 9 Let p, p̃ ∈ Bkp . If |Xk,κ,ι| ≤ κ for all κ, ι,
ε ∈ (0, 1], and

m ≥ 2304C2H2

ε2
(log2 log2H)2 log2

2

8H2|S|2|A|
ε

ln
4

δ′
,

then |V πk1 (s1)− Ṽ πk1 (s1)| ≤ ε holds.

Conclusions
We addressed the problem of finding approximately optimal
policies for finite-horizon MDPs with constraints and un-
known transition probability. We introduced the UC-CFH
algorithm that is based on the optimism-in-the-face-of-
uncertainty principle and offered, to the best of our knowl-
edge, the first result in terms of provable PAC guarantees for
both performance and constraint violations. Our PAC bound
exhibits quadratic dependence on the horizon length. In the
future, we plan to consider other types of constraints, e.g.,
chance or risk constraints, and extensions to the infinite-
horizon setting.
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