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Abstract

This paper studies the challenging problem of reinforcement
learning (RL) in hard exploration tasks with sparse rewards.
It focuses on the exploration stage before the agent gets the
first positive reward, in which case, traditional RL algorithms
with simple exploration strategies often work poorly. Unlike
previous methods using some attribute of a single state as the
intrinsic reward to encourage exploration, this work leverages
the social influence between different states to permit more
efficient exploration. It introduces a general intrinsic reward
construction method to evaluate the social influence of states
dynamically. Three kinds of social influence are introduced
for a state: conformity, power, and authority. By measuring
the state influence, agents quickly find the focus state during
the exploration process. The proposed RL framework with
state influence evaluation works well in hard exploration task.
Extensive experimental analyses and comparisons in Grid
Maze and many hard exploration Atari 2600 games demon-
strate its high exploration efficiency.

Introduction
Reinforcement learning (RL) in hard exploration tasks with
sparse rewards is an essential problem in artificial intelli-
gence. Unlike typical RL problems, hard exploration tasks
with sparse rewards often consist of two stages. First, there
is a long period of exploration before the agent obtains a new
reward, which we term the no-reward exploration stage. Sec-
ond, after the agent obtains some local rewards, it follows a
process of experience utilization and continuing to explore,
which we term the local-reward exploitation stage. In this
paper, we focus on the first and more difficult no-reward ex-
ploration stage.

During the no-reward exploration stage, traditional RL
algorithms based on value function (Mnih et al. 2015;
Van Hasselt, Guez, and Silver 2016) or policy gradi-
ent (Schulman et al. 2015, 2017) often get trapped in some
confusing states because the state value they used is only
evaluated by the reward. Since only a few states contain re-
wards, the agent cannot distinguish between those no-reward
states, even if it have experienced them many times.
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Figure 1: (a) The social influence of one person in a social
network. Three characteristics are often used to represent a
person’s social influence: 1) the size of the node indicates
his conformity, 2) the blue dotted line indicates his power
which is usually related to the number of connections within
his group, and 3) the solid orange line indicates the authority,
that is, how many followers a person has. The most influen-
tial person in a social network is called the focus. Similarly,
we regard the states in (b) the traditional MDP model in RL
as the nodes in (c) social network and obtain the focus state
by measuring the states’ social influence. The focus state
will be related to more states, and the exploration of it can
accelerate the agent’s cognition of the environment.

To deal with the hard exploration tasks with sparse re-
wards, many previous works try to imitate expert demon-
strations (DQFD) (Hester et al. 2018) or their own suc-
cessful experience (SIL) (Oh et al. 2018). In practice, how-
ever, expert demonstrations are often unavailable, and SIL
focuses on the second stage, where the agent has already
received local rewards. In the no-reward exploration stage,
HER (Andrychowicz et al. 2017) randomly sets virtual goals
from the experience replay buffer, regardless of which expe-
rience might be the most valuable. So it suffers from low
sampling efficiency. To explore more meaningful directions,
some researchers design intrinsic rewards based on the cu-
riosity of states, where curiosity is measured by prediction
errors (Pathak et al. 2017), reachability (Savinov et al. 2019)
or pseudo-count (Bellemare et al. 2016). Although have
achieved some success, they only consider the attributes of
the state itself but ignore the relationships between states.
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“But the human essence is no abstraction inherent in each
single individual. In its reality it is the ensemble of the social
relation” (Marx and Engels 1969). Social influence refers to
the change of a person’s behavior after an interaction with
other people or organizations. It consists of the process by
which the individual opinions can be changed by the in-
fluence of another individual or other individuals (Friedkin
2006). Based on these considerations, when estimating the
value of a state in RL, it’s better to consider the relationship
with other states besides its own attributes.

Inspired by the concept of social influence in the social
networks analysis community (Friedkin 2006), we regard
each state as an individual, the relationship between states
as a link in social networks, and the exploration process as
a series of accesses to the opinion leader states (Figure 1).
A general intrinsic reward construction method is thus intro-
duced to measure the social influence of states dynamically,
which is termed as Social Influence (SI) based intrinsic re-
ward function. It comprises three kinds of social attributes:
conformity, power, and authority. In particular, the confor-
mity measures how often a state is visited, the power mea-
sures the relations with its former states in the MDP pro-
cess, and the authority measures the relations it might have
with its followers. By evaluating these social attributes of
states, the agent can find the focus state and exploit this in-
formation to accelerate the exploration process. We form
a general RL framework using this SI-based intrinsic re-
ward function. The new RL framework applies to both value
based RL algorithms like DQN (Mnih et al. 2015), Dueling
DQN (Wang et al. 2016), policy gradient based RL algo-
rithms like PPO (Schulman et al. 2017), TRPO (Schulman
et al. 2015), and the hybrid one like A3C (Mnih et al. 2016).

For a series of hard exploration tasks like Grid Maze and
Montezuma’s Revenge, we develop corresponding learning
algorithms based on the proposed RL framework. The re-
sults demonstrate that, with the introduction of social in-
fluence, all the evaluated algorithms significantly improve
their learning efficiency and quickly accomplish the goal of
each task. In specific, on the Grid Maze game, the proposed
method distinctly reduces the total exploration steps com-
pared with the classical Q-learning based method. On the
Montezuma’s Revenge, compared with existing algorithms,
the proposed method converges faster and obtains higher
scores.

To summarize, the main contributions of this work are
listed as follows in threefold:

• We point out that in the no-reward exploration stage, it
is not enough to define intrinsic rewards based on the at-
tributes of the state alone. The relationship between differ-
ent states is introduced as a new part of intrinsic rewards.

• According to the measurement of individual social influ-
ence in social network analysis, a generalized intrinsic re-
ward function is defined for each state, including the at-
tributes of the state itself and the relationships between
the state and others.

• A new RL framework of SI-based intrinsic reward func-
tion is proposed and applied to Q-learning and A2C to im-
prove the performance in some hard exploration games.

The source code, trained models, and all the experimental
results will be released to facilitate further studies on rein-
forcement learning in hard exploration tasks.

Background
To expatiate the proposed intrinsic motivation model, we
first introduce some background knowledge on basic rein-
forcement learning, intrinsic reward, and social influence.

Basic RL. The standard RL formulation involves an agent
interacting with an environment. An MDP is a tuple M =
〈S,A,R, T, γ〉, consisting of a set of states S, a set of ac-
tions A, a reward function R : S ×A → R, a transition
probability model T (st+1, rt+1|st, at), and a discount fac-
tor γ ∈ [0, 1]. A policy π maps a state to an action, π :S→A.
An episode starts with an initial state s0, and at each times-
tamp t, the agent chooses an action at=π(a|st) based on the
current state st. The environment produces a reward rt+1 to
the agent, which reaches to next state st+1 sampled from the
distribution T (st+1, rt+1|st, at). The reward might be dis-
counted by a factor γ at each timestamp, and the goal of the
agent is to maximize the accumulated reward,

Gt=

∞∑
k=0

γkRt+k+1. (1)

Intrinsic reward. Intrinsic rewards become critical when
extrinsic rewards are sparse (Pathak et al. 2017). They guide
the agent based on the change in prediction error or learn-
ing progress (Bellemare et al. 2016; Schmidhuber 1991;
Oudeyer, Kaplan, and Hafner 2007). If en(A) is the error
made by the agent at time n over some eventA, and en+1(A)
the same one after observing a new piece of information,
then the learning progress is en(A) − en+1(A). To further
quantify the learning process, researchers provide an infor-
mation gain related method to explain the intrinsic reward
(Bellemare et al. 2016). At each timestamp, the agent is
trained with the reward rt = et+βit, where et is the extrin-
sic reward provided by the environment, it is the intrinsic
reward generated by the agent, and β > 0 is a scalar balanc-
ing between the intrinsic and extrinsic rewards (Taiga et al.
2020). The overall optimization problem solves the follow-
ing Bellman equation,

V (s) = max
a∈A

[et + βit + γEπ[V (s′)]]. (2)

Social influence. In social network analysis, social influ-
ence of a node is often characterized by three main fea-
tures (Friedkin 2006): 1) conformity, that occurs when an
individual expresses a particular opinion in order to meet
the expectations of a given other, though he/she does not
necessarily hold the belief that the opinion is appropriate;
2) power, that is the ability to force someone to behave in a
particular way by controlling his/her outcomes; and 3) au-
thority, that is the power that believed to be legitimated by
those who are subjected to it.

The Model
There are two main obstacles in the process of exploring a
sparse reward environment. The first obstacle comes from
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the vast state space. The other one comes from the uncer-
tainty across states. Too many non-reward states and un-
known transitions between states cause great confusion to
agents and slow down the exploration process. Figure 1(b)
is a simple example that regards state as the node and tran-
sition as the edge in a dynamic directed graph. When the
number of states increases with the exploration process, the
number of nodes in the graph increases and the number of
possible edges also increases. This brings great trouble to
the exploration task. Social networks can also be modeled
by dynamic graphs (Figure 1(a)). However, as the popula-
tion size increases, it can quickly find an effective way to
spread information without confusion from the uncertainty.
This benefits from the efficient utilization of the focus per-
son and the modeling of the relationship between persons.
Based on these observations, we introduce the concepts from
the social network into the process of exploring to narrow
the exploration space and reduce the uncertainty.

Intuitively, as the exploration task shown in Figure 1(c), if
you want to explore state S8, you must have a corresponding
state S6 appeared. Whether the arrival and re-exploration of
a state are instructive to the policy improvement not only
relates to the current state itself but also how to reach the
state and how much potential the state can get in the fu-
ture. The exploration process thus can not just be summa-
rized as “explore what surprises the agent” as most previous
methods did. It should take “exploit what influences the en-
vironment” into account. Just like the focus person in the
social network in Figure 1(a), his importance to information
broadcasting not only relates to his conformity (occurrence
frequency), but also his power and authority (connections
with other people). Therefore, we give a more reasonable
formulation of intrinsic reward according to the concepts in
social influence analysis, which consists of the state’s char-
acteristics and the relationship between states.

State Influence
Definition 1 (Conformity function) We define the confor-
mity function on the state space S, fC : S→R mapping the
state to a conformity level. ∀si, sj ∈ S, if fC(si) < fC(sj),
we say state sj is visited more often than state si.

In the study of social network, conformity indicates that
the opinion of an individual is the same as that of the ma-
jority of people, or whether the opinion of the individual is
expected by the public. In the exploration task of RL, we
regard each state encountered as an individual and its vis-
ited characteristics as opinions. The conformity function fC
measures how often a state is visited. In social networks, the
focus person will not blindly follow others, which means,
less conformity. Meanwhile, in our exploration problems,
we should avoid accessing the already familiar states.

In the episodic RL, we formalize the conformity as

fC(si) := p(si). (3)

Definition 2 (Power function) We define the power func-
tion fP on the state space S, fP : S→ R, and it maps the
state to a power level. ∀si, sj∈S, if fP (si)<fP (sj), we say
that there are more states which can lead the agent to state
sj than to si.

Powerful person influences society by controlling other
people’s labor or information output and the power is the
embodiment of compulsion. In this paper, we define the
power of a state as how many states must achieve the ul-
timate goal through information exchange with the current
state. The power function measures the relationship among
states, which can be regarded as a structure of the partially
explored environment. In episodic RL, we formalize the
power function as

fP (si) :=

∫
sk∈Sp

p(si|sk)dsk, (4)

where the Sp is the states’ set which appear before si.

Definition 3 (Authority function) We define the authority
function on the state space S, fA:S→R mapping the state
to an authority level. ∀si, sj ∈ S, if fA(si)<fA(sj), we
say that state sj can lead to a more diverse state space, i.e.,
having more states followed.

A person should influence more communicators through
his “authority”. It is necessary for individuals to shape their
own information and then influence others. We define the
authority of state as the influence of the absence of one state
on other states The authority function measures another kind
of relationship among states, which indicates how many fu-
ture states can be reached from a specific state. In episodic
RL, we formalize the authority function as

fA(si) :=

∫
sk∈Sa

p(sk|si)dsk, (5)

where the set Sa contains states after state si in the currently
known trajectory.

Combined the three functions, the Social Influence (SI)
based intrinsic reward function can be represented as:

iSI(s) , Ψ(fC(s), fP (s), fA(s)), (6)

where Ψ can be a function with parameters or a task related
deterministic function.

With these characteristics to describe the social influence
of states, we combine the SI-based intrinsic reward func-
tion with the extrinsic reward et(s) to evaluate the reward,
rt = et + βiSIt , where β is a balancing factor between the
extrinsic environment value et and the proposed instinct re-
ward iSI(s). In all the evaluations conducted in experiment
part, β is experimentally set to 1. And then, in substitution
of traditional formulation Gt in Equation 1, we evaluate the
SI-based accumulated reward by

GSI(St)=

∞∑
k=0

γk(β ∗ iSI(St+k+1)+ e(St+k+1)), (7)

where 0 < γ < 1 is the discount factor.
According to GSI(St), we propose SI-based value func-

tion, which evaluates the expectation of the total value of a
state St following current policy π.

V SIπ (St)=Eπ[GSI(St)|St = s]

=Eπ[
∞∑
k=0

γk(β ∗ iSI(St+k+1)+e(St+k+1))].
(8)
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Algorithm 1 SI-based RL framework

1: Initialize policy π0, exploration steps k0, and expansion interval δ.
2: while not done do
3: Generate M trajectories in local environment by πi.
4: Evaluate iSI(s) of the known state by iSI(s) = Ψ(fC(s), fP (s), fA(s)).
5: while πi not convergence do
6: Update πi using reward rt = et + βi

(SI)
t with an RL algorithm, e.g., Eqn. (9) or Eqn. (10).

7: end while
8: Expand the scope of exploration by increasing ki+1 = ki + δ.
9: if Agent get local rewards then

10: Any local-reward exploitation stage algorithms will be used.
11: end if
12: end while

Compared with the definition of the traditional V (s) in
Section , V SI(s) preserves extrinsic reward e(s) and intro-
duces intrinsic rewards iSI(s). This form of V (s) can give
general guidance without arriving at the reward state, which
makes it an effective attempt to overcome the hard situation
with no reward. Moreover, it inherits the characteristics of
iSI(s), measures the structural information of the environ-
ment through the relationships between states, and its eval-
uation of state value is more instructive to the exploitation
in the exploration process. It provides a generalized intrinsic
rewarding mechanism for hard-exploration tasks in sparse
reward environments and can be integrated with different
RL algorithms. We will describe its iterative nature in the
following and incorporate it into the traditional Q-learning
and A2C frameworks.

SI-based RL Framework

The social influence based value function can be embedded
into any RL algorithm that involves value iteration. The key
idea of the SI-based RL framework is that an agent utilizes
the current iSI(s) and π to explore a desired part of the en-
vironment, progressively broaden the exploration scope, and
update the social influence of states in turn with newly ac-
quired information about the environment. This process is it-
eratively advanced until the agent finds the target or receives
extrinsic reward signals. Algorithm 1 shows the detail of SI-
based RL framework.

The main advantages are in twofold: 1) RL framework
with iSI(s) expands the agent’s horizon incrementally,
shown in Step 8 in Algorithm 1; and 2) the evaluation func-
tion V SI(s) contains not only the reward but also the struc-
ture information among states, shown in Eqn. (8). With the
first advantage, agents can gradually explore the unknown
environment and get sub-optimal solutions in each local con-
text. With the second one, the agent can exploit the intrinsic
state relationships even though there are no reward signals.
In this way, the agent obtains a reasonable explore direction
before getting a reward in the hard exploration environment.
We incorporate it into the traditional RL algorithms to con-
struct different SI-based RL algorithms, such as SI-based Q-
learning and A2C.

Applying iSI(s) to traditional value based methods, such

as Q-learning, we get the update formula:

QSIπ =Eπ[GSI(St)|St = s,At = a]

=
∑
s′,r

T (s′, r|s, a)[βiSI(s′)+e(s′)+γV SIπ (s′)]. (9)

State influence can also accelerate the exploration process of
policy gradient based methods, such as AC. When apply to
the One-step Actor-Critic, the parameters update rule is as
follows:

θt+1= θt+α(GSIt:t+1(St)−V̂ SI(St, η))
∇π(At|St, θt)
π(At|St, θt)

= θt+αδt
∇π(At|St, θt)
π(At|St, θt)

,

(10)

where V̂ SI(St, η) is the evaluation of SI-based value func-
tion and

δt=G
SI
t:t+1(St)−V̂ SI(St, η)

=βiSI(St+1)+e(St+1)+γV SIπ (St+1)−V̂ SI(St, η).
(11)

Connections to Other Intrinsic Motivation
Methods
The state influence modeling is a generalization of the exist-
ing intrinsic reward construction methods. For example, the
N̂t in pseudo-count (PSC) (Bellemare et al. 2016) is a kind
of conformity, and the core idea of the curiosity algorithm
is to avoid large conformity. They formalize the intrinsic re-
ward as iPSC(st) , (N̂t(st))

−1/2. If we ignore power and
authority, assume that all states are independent, and define
our conformity as fC(si) , (N̂t(st))

−1/2, iSI(s) will de-
generate to pseudo-count in (Bellemare et al. 2016).

Similarly, both iICM (s) (Pathak et al. 2017) and iRND(s)
(Burda et al. 2019) are constructing curiosity by model-
ing the relationship between the current state si and the
next state si+1, where they formulize the intrinsic reward
as iICM (st) , ||Φ̂(st+1) − Φ(st+1)||22 and iRND(st) ,
||f̂(st; θ) − f(st)||22 (the Φ̂(·) and f̂(·) are estimation of
states by a trained model). Comparing with Definition 6,
ICM or RND is just the special case of the State Influence.

In general, to achieve the sparse goal, agents should fight
against the uncertainty of both environment and policy.
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(a)MiniMaze (b) Conformity (c) Power (d) Authority (e) State influence

⒂ ⒄

Figure 2: (a) MiniMaze. Visiting the focus states 15 and 17 can accelerate the agent’s awareness of the environment because they
contain more structure information. From the results calculated by 1, 000 random explorations with 20 steps at each episode,
only the conformity in (b) might not well represent the structure of the environment. Combining with the power (c) and the
authority (d), the focus state found in (e) is more consistent with the actual situation.

Since each exploration of a state will reduce its uncertainty,
almost all intrinsic motivation methods are committed to im-
proving the information gain of each encountered state. Only
in this way can the uncertainty space be reduced faster and
the goal be achieved. Most of the previous methods (Belle-
mare et al. 2016; Burda et al. 2019; Pathak et al. 2017) only
pay attention to the novelty of a single state, while our state
influence modeling reduces the uncertainty through both the
state’s attributes and the relationships between states. We
will show the significant performance improvement of our
methods in the following.

Experiments
To verify the efficiency of SI-based intrinsic reward iSI(s)
and the proposed SI-based RL algorithms, we conduct three
sets of experiments with corresponding analyses.

• State influence in the Mini Grid Maze: shows the neces-
sity and the different roles of the various intrinsic potential
signals of iSI(s)

• SI-based Q-learning in Grid Maze: applies the SI-based
Q-learning algorithm directly to solve the hard explo-
ration problem in the Grid Maze.

• SI-based A2C in Atari games: extends iSI(s) and SI-
based A2C to the Atari games, and shows the efficiency of
proposed framework compared with baseline algorithms.

State Influence in Mini Grid Maze
We use a toy example shown in Figure 2 to illustrate the
motivation for introducing social influence into the intrinsic
rewards. The MiniMaze environment is a small maze with
6× 6 states, encoded as 1 to 36 from left to right, top to bot-
tom. The structure of the environment is constructed by sev-
eral impassable black holes. Assuming that all states in the
environment have no reward, its state space be regarded as a
limited discrete one without reward. An agent starts from the
beginning state in the top left corner shown in the Figure 2a.
The action space is {“left”, “right”, “up”, “down”}, and the
transition limited by the walls and holes.

The set of trajectories is noted as T , and the i-th tra-
jectory as Ti = {(sij , aij)}, where the sij ∈ S, aij ∈
A, i ∈ {1, 2, · · · ,M}. In frequency statistics, the ith tra-
jectory have Wi states, the first visit of state Si is noted
as uiwit , the wit is the order of state in this trajectory,

wit ∈ N+, 0 < wit < Wi. The sort of states that first
visit in this trajectory is Ui = {ui1, · · · , uiwit

, · · · , uiWi
},

where uiwit
∈ S. Meanwhile, the number of times each state

appears in Ti is Ci = {ci1, · · · , ciwit
, · · · , ciWi

}, where,
ciwit ∈ N+. The appearing order of state Sk in trajectory Ti
is wik, and we denotes the number of all the states currently
known as N .

According to each component of social influence men-
tioned before, we use the total number of visits to states
to indicate the conformity function (3) of discrete states
fC(Sk) ,

∑M
i=1 ciwik

/N . And we use the number of states
appear before Sk in each trajectory to define the power func-
tion (4), fP (Sk) ,

∑M
i=1

∑wik−1
j=1 cij/N . In terms of the

expressions of social influence from and to other states, this
definition can be more complicated. Though this is the sim-
plest, it will be helpful to the conduction of the following
work. Similarly, we define the number of visited states Sk
in each trajectory after Sk as the measurement of authority
function (5) of state, fA(Sk) ,

∑M
i=1

∑Wi

j=wik+1 cij/N .
Heatmaps of conformity, power, authority, and their com-

bination are shown respectively in Figure 2. The blue
heatmap (b) is the number of states that occur, as the counts
in the count-based method, which is the simplest form of
conformity. It is obviously not enough to evaluate the prop-
erties of states. We can see that the green (c) and orange (d)
implementation in the figure can bring us more information.
From the perspective of statistical information in Figure 2c,
state 15 has strong power, and more information on state
must be transmitted through it, which can be used as the
focus state in the local area. To illustrate the effectiveness
of social influence, we also combine the three attributes in
the form (fP (s) + fA(s))/

√
fC(s). The results are shown

in Figure 2 (e), from which we can say that state 17 is the
most influential state. It can also be seen from Figure 2 (a)
that node 15 and 17 are the focus state of the environment,
which could improve exploration efficiency. This is an en-
vironment without any reward. Now we apply iIS(s) to the
sparse reward environment.

SI-based Q-learning in Grid Maze
In Grid Maze, a frequency-based form is detailed to show
the feasibility of the Social Influence based intrinsic reward
function iSI(s). We define the iSI(s) used in this discrete
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(a) Grid Maze (b) SI Q-learning (c) Q-learning

Figure 3: (a) Grid Maze is a 20× 20 maze with random holes and a reward in the bottom right corner. Examples of some focus
states during the local exploration process are represented by the numbers within the circles. (b) Steps in each episode and total
steps by SI Q-learning. The enlarged gray area shows the process of gradual exploration. (c) Steps in each episode and total
steps by Q-learning.

environment as:

s∗ = argmaxs
fP (s) + fA(s)√

fC(s)
, (12)

iSI(s) =

{
1 , if s = s∗,
0 , else.

(13)

The basic principle of constructing SI value is propor-
tional to power and authority, and inversely proportional to
conformity. As for the dominator of Eq. (12), we follow the
count-based method (Bellemare et al. 2016; Pathak et al.
2017) for intrinsic reward construction. As for the numer-
ator, we set the two terms have equal importance. Although
much better results can be obtained by searching different
configurations of these three terms, we found Eq. (2) already
works well in the experiments. To verify the generality of
the algorithm in a direct and straightforward way, we do not
set the scaling factor in this experiment. By introducing the
generalized intrinsic reward signals iSI(s), we apply SI Q-
learning to a sparse reward Grid Maze. We also compare SI
Q-learning with the traditional Q-learning to illustrate the
feasibility and the efficiency of our framework.

To illustrate the progressive exploration, we show several
representative states in Figure 3(a). They are focus states of
local stabilization policy before the agent gets any extrin-
sic reward. And we can see the staged exploration in Fig-
ure 3(b). In Figure 3(b), we zoom in on the curve before we
get the reward, which is the gray part of the graph. In the
gray part, the steps of each episode grow up along with the
expanding of exploration scope in each state of Figure 3(a).
Combining Figure 3(a) with Figure 3(b), it can be seen that
since we integrate the social influence into intrinsic reward,
our SI-based Q-learning can give a reasonable exploration
direction before getting rewards. Therefore, we can also re-
duce the total exploration steps.

A comparison between Figure 3(b) and Figure 3(c) illus-
trates this advantage. Figure 3(b) and Figure 3(c) respec-
tively show the total training steps of SI Q-learning and Q-
learning in the orange curve. The SI Q-learning gradually
expands the scope of exploration and converges in about
75,000 steps, compared to the Q-learning, which converges
in about 90,000 steps. These results show that the introduc-
tion of the SI based intrinsic reward function iSI(s) can ef-
fectively deal with the hard exploration tasks.

SI-based RL in Atari Games
To verify the efficiency and generalization ability of the pro-
posed method, we apply iSI(s) to some hard exploration
Atari games like Montezuma’s Revenge, Gravitar, Freeway
and so on. These games are generally considered as a notori-
ously difficult games in Atari games (Van Hasselt, Guez, and
Silver 2016). For example, Montezuma’s Revenge has three
levels, each level has 24 different rooms, the agent navigate
through different rooms to collect treasures. Here, we treat
the coding of original frame as the state, and the state space
is gradually increased along with the exploration. The action
consists of 17 movements, such as up, down, jump, etc.

In the Atari experiments, we convert the 210 × 160 in-
put RGB frames to grayscale images and resize them to
42 × 42 images following the practice in (Tang et al. 2017;
Bellemare et al. 2016). The position of the agent is then dis-
cretized into a state in 42 × 42, and we set the iSI(s) with
the same settings in Eqn. (12) and Eqn. (13).

To compare the proposed SI-based A2C with the count-
based A2C (Bellemare et al. 2016) on the first no-reward
exploration stage of the sparse reward problem, we use the
first room of Montezuma’s Revenge as the experimental en-
vironment in Figure 4. We can see that the point with the
highest heat in each stage are the points that the agent must
explore to pass the first room. They can assist the agent to
“exploit what influences the environment”. According to the
results shown in Figure 5(a), SI-A2C converges to the lo-
cal goal in fewer training steps. This proves that the inte-
gration of relationship evaluation in social influence helps
find the focus states. It is more effective to explore the focus
states than only to explore the state with few visits, and SI-
based A2C can get the reward in the environment faster as
the green curve shown in Figure 5(a).

For the Montezuma’s Revenge is a game with many
rooms, it is a good example of multi-phase exploration. As
shown in the Figure 5(a), after completing the first stage of
exploration (about 2000 points average rewards have been
obtained), our SI-based method also experiences a period of
rest period (at about 20M to 28M steps). With the continu-
ous increase of exploration scope (the 8th step in the Algo-
rithm 1), our algorithm can quickly form the exploration ad-
vantage in the next stage. In contrast, the Count-based A2C
will stay in the rest period for a long time. This shows that
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(a) Montezuma's Revenge (b) 1st stage (c) 2nd stage (d) 3rd stage

0

1

Figure 4: Heatmap of state influence in Montezuma’s Revenge. The state influence changes with the expand of the horizon of
exploration. (b), (c) and (d) are heatmaps sampled from the first stage (max 500 steps per trajectory), the second stage (max
1000 steps per trajectory) and the third stage (max 1500 steps per trajectory) respectively.

(a) Montezuma’s Revenge (b) Venture (c) Private Eye (d) Gravitar
Figure 5: Learning steps are compared with baseline algorithms in Montezuma’s Revenge, Venture, Private Eye and Gravitar.
The x axis is the number of steps. For the convenience of comparison, we limit the exploration steps of all games to 50 million
steps. The y axis is the mean episodic rewards in each game. The results are averaged by 5 runs. These games are selected
because they are all sparse reward games. The green curve represents SI-based algorithm’s performance, in contrast to the red
curve that only uses the Count-based method, and the blue cure represents the basic A2C which cannot get much performance.

our algorithm can effectively guide the agent to complete
more valuable exploration without the extrinsic reward. In
the performance of the other games, such as Venture in the
Figure 5(b), Private Eye in the Figure 5(c) and Gravitar in
the Figure 5(d), it also proves that our algorithm can help
agents get better results faster than the baselines.

We further compare our proposed method with other
baseline algorithms: SimHash (Tang et al. 2017), Curios-
ity Driven Exploration (ICM) (Pathak et al. 2017), Explo-
ration with Mutual Information (EMI) (Kim et al. 2019),
Count-based method(A3C+) (Bellemare et al. 2016) and
A2C (Mnih et al. 2016) on four exploration games Mon-
tezuma’s Revenge(MR), Gravitar(Gvt), Freeway(Fw) and
Venture(Vt), and four games which are not sparse reward
environment, Berzerk(Bz), Jamesbond(Jb), Enduro(Ed), and
Zaxxon(Zx). Table 1 shows performance comparison of the
proposed SI-based A2C and baseline methods. Our method
achieves better results on most of the Atari games. The ex-
perimental results show that iSI(s) makes the learning pro-
cess faster, and enable agents to explore further in the hard
exploration tasks.

Conclusion and Future Work
In this work, we introduce a social influence based intrin-
sic reward function to reinforcement learning in hard explo-
ration tasks with sparse rewards. This definition effectively
complements existing essential reinforcement learning solu-
tions. We use iSI(s) on the value function-based and pol-

MR Gvt Fw Vt Bz Jb Ed Zx

SimHash 75 482 33 445 - - - -
ICM 1011 424 34 418 - - - -
EMI 387 558 34 646 - - - -
RND 3442 1348 34 1258 - - - -
A3C+ 2551 284 30 361 - - - -
A2C 6 329 0 0 1203 399 0 124

SI-A2C 5342 1451 34 783 1559 1996 60 8602

Table 1: Performance in Atari games of the SI-based A2C
and baseline methods from the original papers. − indicates
the non-reported corresponding data. The results are aver-
aged by 5 runs with diverse random seeds in 50M steps.

icy gradient based RL algorithms. In the Grid Maze with
many obstacles and only one reward signal, our experimen-
tal results show that owing to iSI(s), the agent has a rea-
sonable exploration direction before it gets a reward. Based
on the SI based RL framework we proposed, the experience
is collected in a gradually expanding way. Thus, the agent
can explore and recognize the environment incrementally.
Finally, by applying the proposed framework to some hard
exploration Atari games, the results show that the algorithms
combining with iSI(s) achieve the task objectives in fewer
exploration steps than the baseline algorithms. We just fo-
cus the no-reward exploration stage in this paper, the local-
reward exploitation stage will be considered in the future.
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