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Abstract

We propose a deep generative framework for multi-view learn-
ing based on a probabilistic interpretation of canonical correla-
tion analysis (CCA). The model combines a linear multi-view
layer in the latent space with deep generative networks as
observation models, to decompose the variability in multiple
views into a shared latent representation that describes the
common underlying sources of variation and a set of view-
specific components. To approximate the posterior distribution
of the latent multi-view layer, an efficient variational inference
procedure is developed based on the solution of probabilistic
CCA. The model is then generalized to an arbitrary number of
views. An empirical analysis confirms that the proposed deep
multi-view model can discover subtle relationships between
multiple views and recover rich representations.

Introduction
When a dataset consists of multiple co-occurring groups of
observations, views or modalities from the same underly-
ing source of variation, a learning algorithm should leverage
the complementary information to alleviate learning diffi-
culty (Chaudhuri et al. 2009) and improve accuracy. A well-
established method for two-view analysis is given by canon-
ical correlation analysis (CCA) (Hotelling 1992), a classi-
cal subspace learning technique that extracts the common
information between two multivariate random variables by
projecting them onto a subspace. Due to its ease of interpre-
tation and closed-form solution, CCA has become a standard
model for unsupervised two-view learning (Klami, Virtanen,
and Kaski 2013) which has been used in a broad range of
tasks such as dimensionality reduction, visualization and time
series analysis (Xia et al. 2014).

The goal of representation learning is to capture the under-
lying essence of data and extract natural features; for example,
to reveal implicit categories or cluster memberships. In multi-
view data the relationship between different views should
also be leveraged to enhance feature extraction. Additionally,
given that representation learning in real-world applications
poses significant challenges, where data is typically high-
dimensional with complex structure, it is necessary to exploit
expressive yet scalable models such as deep generative neural
networks.
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It has been shown in (Chaudhuri et al. 2009) that project-
ing multi-view data onto low-dimensional subspaces using
CCA allows cluster memberships to be more easily recov-
ered under a weak separation condition. Nevertheless, CCA
exhibits poor generalization when trained on small training
sets, hence (Klami and Kaski 2007; Klami, Virtanen, and
Kaski 2013; Mukuta et al. 2014) adopt a Bayesian approach
to solve a probabilistic interpretation of CCA. However, real
applications involve nonlinear subspaces where more than
two views are available. Recently, deep learning has received
renewed interest as an effective approach for recovering ex-
pressive models of complex datasets. For multi-view learning,
several deep learning based approaches have been success-
fully extended (Ngiam et al. 2011; Andrew et al. 2013; Wang,
Livescu, and Bilmes 2015). Subsequently (Wang et al. 2016;
Tang, Wang, and Livescu 2017) have proposed VCCA and
VCCA-private, which are deep two-view autoencoders that
integrate a generative two-view model over a shared repre-
sentation with a generative model that combines shared plus
view-specific factors. However, these methods adopt a black
box variational inference approach that does not exploit the
probabilistic CCA formulation established in (Bach and Jor-
dan 2005). These methods are also primarily targeted to the
two-view setting, and do not provide a simple extension to
the generic multi-modal setting (with an arbitrary number of
views) where all modalities are available at test time.

In this work, we first develop a modified formulation of
probabilistic CCA, then show how such a linear probabilis-
tic layer can be extended to a deep generative multi-view
network. The proposed model captures data variation by a
shared latent representation that isolates the common under-
lying sources of variation (i.e. the essence of multi-view data)
while combining this with a set of view-specific latent factors
to obtain an interpretable latent representation. Importantly,
the model can be naturally extended to an arbitrary number of
views. We design the learning algorithm using a variational
inference method, which is known to be a powerful tool for
scaling probabilistic models to complex problems and large
datasets (Rezende, Mohamed, and Wierstra 2014). In con-
trast to VCCA and VCCA-private (Wang et al. 2016; Tang,
Wang, and Livescu 2017), the proposed variational inference
is grounded in the probabilistic CCA formulation, yielding
a more principled and expressive multi-view approach. Fur-
thermore, the learning algorithm offers a flexible data fusion
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method in the latent space, which makes it appropriate for
modeling general multi-modal datasets. Empirical studies
confirm that the proposed deep generative multi-view model
can efficiently integrate multiple views to alleviate learning
difficulty in different downstream tasks.

Probabilistic CCA
Canonical correlation analysis (CCA) (Hotelling 1992) is
a classical subspace learning method that extracts informa-
tion from the cross-correlation between two variables.1 Let
z1 ∈ Rd1 and z2 ∈ Rd2 be a pair of random vectors cor-
responding to two different views with their mean and co-
variance matrices denoted as (µ1,Σ11) and (µ2,Σ22), re-
spectively, and their cross-covariance denoted Σ12. CCA
linearly projects these onto the subspace Rd0 as r1 = U>1 z1
and r2 = U>2 z2, where matrices U1 ∈ Rd1×d0 and U2 ∈
Rd2×d0 are composed of first d0 canonical pairs of directions
vectors, (u1i,u2i), and 0 < d0 ≤ min{d1, d2}. This projec-
tion is such that each pair of components (r1(i), r2(j)) are
maximally correlated if i = j, with correlation coefficient
pi, and uncorrelated otherwise, hence forming a diagonal
matrix of canonical correlations Pd0 = diag([p0, ..., pd0 ]).
The optimal solution for {U1,U2,Pd0} can be computed
using singular value decomposition of the correlation ma-
trix Σ

−1/2
11 Σ12Σ

−1/2
22 . Refer to Appendix A for a detailed

formulation of the CCA problem and its solution.
Bach and Jordan (2005) and Browne (1979) proposed a

probabilistic generative interpretation of the classical CCA
problem that reveals the shared latent representation explic-
itly. An extension of their results to a more flexible model
can be expressed as follows.

Theorem 1 Assume the probabilistic generative model for
the graphical model in Figure 1 as:

φ ∼ N (µ0, Id0), 0 < d0 ≤ min{d1, d2} (1)
zm|φ ∼ N (Wmφ+ µεm ,Ψm),

Wm ∈ Rdm×d0 ,Ψm < 0 ∀m ∈ {1, 2}

where φ is the shared latent representation. The maximum
likelihood estimate of the parameters of this model for view
m ∈ {1, 2} can be expressed in terms of the canonical corre-
lation directions as

Ŵm = ΣmmUmP
1/2
d0
R (2)

Ψ̂m = Σmm − ŴmŴ
>
m

µ̂εm = µm − Ŵmµ0

where R is an arbitrary rotation matrix and the residual
errors terms can be defined as εm := zm − Wmφ ∼

1Notation and Definitions: Throughout the paper, bold low-
ercase variables denote vectors (e.g. x) or vector-valued random
variables (e.g. x), bold uppercase are used for matrices (e.g. X) or
matrix-valued random variables (e.g. X) and unbold lowercase are
scalars (e.g. x) or random variables (e.g. x). There are M views
in total and subscripts are intended to identify the view-specific
variable, (e.g. xm,Σmm), which is different from an element of
a vector that is specified by subscript (e.g. xmi). The difference
should be clear from context.

Z2

X2

Z1

X1

X1 , X2

Figure 1: Graphical representation of the deep probabilis-
tic CCA model, where the blue edges belong to latent lin-
ear probabilistic CCA model and the black edges repre-
sent the deep nonlinear observation networks (decoders)
pθm(xm|zm) = gm(zm; θm). Shaded nodes denotes ob-
served views and dashed line represent the stochastic samples
drawn from the approximate posteriors.

N (µεm ,Ψm), m ∈ {1, 2}. This probabilistic graphical
model induces conditional independence between z1 and z2
given φ. The parameter µ0 is not identifiable by maximum
likelihood.

Proof: See Appendix A for the proof. �
In contrast to the results in (Bach and Jordan 2005) where

µ0 = 0, here we assume µ0 as an extra model parameter.
Besides adding an extra degree of freedom in optimizing the
objective function of the deep generative model,µ0 is used as
an estimate of the shared representation for the downstream
learning tasks in our experiments. We will also derive an
analytical form to identify it based on the other parameters
of the probabilistic multi-view layer.

Generalization to Arbitrary Number of Views
As an extension to an arbitrary number of views for prob-
abilistic CCA, (Archambeau and Bach 2009) proposed a
general probabilistic model as follows:

zm =Wmφ0 + Tmφm + µm + νm, (3)

νm ∼ N (0, τ−1m Idm),

Wm ∈ Rdm×d0 ,Tm ∈ Rdm×qm , ∀m ∈ {1, ...,M}

where {µm}Mm=1 and {νm}Mm=1 are the view specific off-
sets and residual errors, respectively. This model can also
be viewed as a multibattery factor analysis (MBFA) (Klami
et al. 2014; Browne 1980) in the statistics literature, which
describes the statistical dependence between all the views
by a single shared latent vector, φ0, and the factor loading
matricesWm, and also explains away the view-specific vari-
ations by factors that are private to each view, φm with factor
loading Tm. Restricting to a single view, this model includes
the probabilistic factor analysis as a special case if the prior
on the view-specific factor is multivariate independent Gaus-
sian, and reduces to probabilistic PCA if the prior is also
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isotropic. Archambeau and Bach (2009) followed a Bayesian
approach to the linear generative model (3) and proposed a
variational Expectation-Maximization algorithm to estimate
the model parameters. A reformulation for the parameters
of this general model inspired by the maximum likelihood
solutions of probabilistic CCA in Theorem 1 is presented in
Appendix B.

Although constraining the observation models to a classi-
cal linear model (1) offers closed form inference for the latent
variable(s), as well as efficient training algorithms, the result-
ing expressiveness is very limited for modeling complex data
distributions. On the other hand, the generative descriptions
of the probabilistic multi-view models (1) and (3) can be
extended naturally as the building blocks of more complex
hierarchical models (Klami, Virtanen, and Kaski 2013).

Deep Probabilistic CCA
Deep generative networks are known to be powerful tech-
niques for increasing modeling capacity and improving its ex-
pressiveness. Therefore, we append deep generative networks
as observation models on top of the linear probabilistic model
to obtain a combined model, which we denote as deep proba-
bilistic CCA or a deep probabilistic multi-view network. A
graphical representation of this model is depicted in Figure 1.
Let x := {xm ∈ Rd′m}Mm=1 denote the collection of observa-
tions of all views and z := {φ ∈ Rd0} ∪ {zm ∈ Rdm}Mm=1
be the collection of the shared latent representation and la-
tent variables corresponding to each view. The nonlinear
observation models, also called the decoders in the context
of variational auto-encoders, are described by deep neural
networks pθm(xm|zm) = gm(zm; θm) with the set of model
parameters θ = {θm}Mm=1.

In this deep probabilistic model, the latent linear proba-
bilistic CCA layer of the form presented in (1) models the
linear cross-correlation between all variables {zm}Mm=1 in
the latent space, while the nonlinear generative observation
networks are responsible for expressing the complex vari-
ations of each view. In the following, an approximate vari-
ational inference approach is presented for training of this
deep generative multi-view model.

Variational Inference
To obtain the maximum likelihood estimate of the model
parameters, it is desirable to maximize the marginal
data log-likelihood averaged on the dataset D =
{x(i)}, i = 1, .., N , which can be expressed as log pθ(X) =
1
N

∑N
i=1 log pθ(x

(i)) ' Ex∼P̂data [log pθ(x)].

This objective requires marginalization over all latent vari-
ables which entails computing the expectation of the likeli-
hood function pθ(x|z) over the prior distribution on the set
of latent variables, p(z). The marginalization is typically in-
tractable for complex models. One work around is to follow
the variational inference principle (Jordan et al. 1999), by
introducing an approximate posterior distribution qη(z|x) —
also known as variational inference network in the context of
amortized variational inference and is often modeled by deep
NNs with model parameters η — then maximize the resulting

variational lower bound on the marginal log-likelihood

log pθ(x) ≥ Eqη [log pθ(x|z)]−DKL[qη(z|x)‖p(z)] (4)

This approach has recently attained renewed interest and, due
to its success in training deep generative models, is consid-
ered a default, flexible statistical inference method (Rezende,
Mohamed, and Wierstra 2014; Kingma and Welling 2013).
This bound, also known as the evidence lower bound (ELBO),
can be decomposed into two main terms: the first, the expec-
tation of the log-likelihood function log pθ(x|z), is known
as the negative reconstruction error. The conditional inde-
pendence structure of the deep generative multimodal model
implies that the likelihood function can be factored, allowing
the negative reconstruction error to be expressed as

Eqη [log pθ(x|z)] =
M∑
m=1

Eqη [log pθm(xm|zm)].

Although the expectations above do not typically provide
a closed analytical form, they can be approximated using
Monte Carlo estimation by drawing L random samples from
the approximate posterior qη(z|x) for each data point x =

x(i). 2

The second term in the ELBO is the KL divergence be-
tween the approximate posterior and the prior distribution
of the latent variables, which acts as a regularizer that in-
jects prior knowledge about the latent variable into the learn-
ing algorithm. Considering the conditional independence
of the latent variables {zm|φ} induced by the probabilistic
graphical model of latent linear layer (1), the approximate
posterior of the set of latent variables can be factorized as
qη(z|x) = qη(φ|x)

∏M
m=1 qη(zm|φ,x) therefore, the KL di-

vergence term can be decomposed into (refer to Appendix C
for the derivation)

DKL[qη(z|x)‖p(z)] =DKL[qη(φ|x)‖p(φ)]+
M∑
m=1

DKL[qη(εm|x)‖p(εm)] (5)

We model the variational approximate posteriors by joint
multivariate Gaussian distributions with marginal densities
qη(zm|xm) = N (zm;µm(xm),Σmm(xm)), which are as-
sumed for simplicity to be elementwise independent per
each view, so having diagonal covariance matrices Σmm =
diag(σ2

m(xm)), σm ∈ Rdm . The cross correlation specified
by canonical correlation matrix Pd0 = diag(p(x)),p ∈ Rd0 .
The parameters of these variational posteriors are specified by
separate deep neural networks, also called encoders. In this
model, a set of encoders are used to output the view-specific
moments {(µm,σ2

m) = fm(xm; ηm)}Mm=1, and an encoder
network describes the cross correlation p = f0(x

∗; η0). De-
pending on the application, x∗ can be either one (or a subset)
of the views, when only one (or a subset) of the views are
available at the test time (e.g. in the multi-view setting where

2This, indeed, leads to the Monte Carlo approximation of the gra-
dient of the expected log-likelihood, required for stochastic gradient
descent training (Rezende, Mohamed, and Wierstra 2014)
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x∗ = x1), or a concatenation of all the views (e.g. in the
multi-modal setting).

Combined, the inference model is parameterized by η =
{η0} ∪ {ηm}Mm=1. Having obtained the moments of approxi-
mate posteriors, we can obtain the canonical directions and
subsequently the parameters of the probabilistic CCA model,
according to the results presented in Theorem 1.

It is worth noting that the diagonal choices for covari-
ance matrices {Σmm}Mm=1 simplify the algebraic operations
significantly, resulting in a trivial SVD computation and
matrix inversion required for CCA solution and its proba-
bilistic form in Theorem 1.3 Consequently, we can verify
that the canonical pairs of directions will be (u1i,u2i) =
(σ−11i e

(i), σ−12i e
(i))

where e(i) is the standard basis vector
[0, . . . , 0, 1, 0, . . . , 0]> with a 1 at ith position (refer
to Appendix A).

Assuming isotropic multivariate Gaussian priors on the
latent variables, φ ∼ N (0, λ−10 I) and εm ∼ N (0, λ−1m I),
results in closed form solutions for the KL divergence terms
(Kingma and Welling 2013). In the following, we provide
an analytical approach to optimally identify the mean of the
shared latent variable, µ0, that is not identifiable by likeli-
hood maximization in Theorem 1, from the parameters of the
model.

Lemma 1 Rewriting the KL divergences with respect to the
terms depending on the mean of latent factors gives rise to
the following optimization problem

min
µ0,{µεm}Mm=1

1

2
λ0‖µ0‖2 +

1

2

M∑
m=1

λm‖µεm‖2 +K (6)

s.t. µεm = µm −Wmµ0, ∀m ∈ {1, ...,M}

where K is sum of the terms not depending on the means.
Solving this optimization problem results in the unique

minimizer

µ∗0 = (λ0I +
M∑
m=1

λmW
>
mWm)−1(

M∑
m=1

λmW
>
mµm). (7)

Having obtained the optimal µ∗0, one can subsequently com-
pute the means of the view-specific factors, {µεm}Mm=1.

Proof: See Appendix C for the proof. �
According to the inference network, the optimal µ0 ob-

tained via (7) is a function of all the views, which can be
viewed as a type of data fusion in the latent space customized
for the variational inference learning of our model. This
makes it an appropriate choice for the multi-modal setting.
On the other hand, in the multi-view setting we are interested
in a solution that depends only on the primary view available

3These types of simplifying assumption on the approximate
posteriors have also been used in various deep variational infer-
ence models (Rezende, Mohamed, and Wierstra 2014; Kingma and
Welling 2013). Although the representation power of such linear
latent model is limited but using flexible enough deep generative
models, that can explain away the complex nonlinear structures
among the data, can justify these choices.

at test time. To deal with this, we can solve a revised version
of the optimization problem (6) by ignoring the terms that
depend on the non-primary views, leading to the minimizer

µ̂0 = (λ0I + λ1W
>
1 W1)

−1λ1W
>
1 µ1. (8)

We further assume that the rotation matrix R is identity
in the solution to the probabilistic linear models (2), while
leaving it to the deep generative network to approximate the
rotation. Specifically, in our neural network architecture, we
select a fully connected first layer of the decoder to exactly
mimic the rotation matrix.

In summary, the encoders, together with the pa-
rameterization of the latent probabilistic CCA layer
in (2), provide a variational inference network to
estimate the parameters of latent linear model,
{Pd0(x1),µ0,Wm(xm),Ψm(xm),µεm}Mm=1 as non-
linear functions of the observations.

A detailed discussion of alternative methods for recovering
µ0, processes for drawing samples from the latent variables,
and techniques for obtaining more expressive approximate
posteriors using normalizing flow (Rezende and Mohamed
2015) are presented in Appendix D.

Related Work
To capture nonlinearity in multi-view data, several kernel-
based methods have been proposed (Hardoon, Szedmak, and
Shawe-taylor 2004; Bach and Jordan 2003). Such methods,
in general, require a large memory to store a massive amount
of training data for the test phase. Kernel-CCA in particu-
lar requires an N × N eigenvalue decomposition which is
computationally expensive for large datasets. To overcome
this issue, some kernel approximation techniques based on
random sampling of training data are proposed in (Williams
and Seeger 2001) and (Lopez-Paz et al. 2014).

Probabilistic non-linear multi-view learning has been con-
sidered in (Shon et al. 2006; Damianou et al. 2012). As an
alternative, deep neural networks (DNNs) offer powerful
parametric models that can be trained for large pools of data
using the recent advances in stochastic optimization algo-
rithms. In the multi-view setting, a deep auto-encoder model,
called (SplitAE), was proposed in (Ngiam et al. 2011) in
which an encoder maps the primary view to a latent represen-
tation and two decoders are trained so that the reconstruction
error of both views is minimized.

The classical CCA was extended to deep CCA (DCCA) in
(Andrew et al. 2013) by replacing the linear transformations
of both views with two deep nonlinear NNs, then learning
the model parameters by maximizing the cross correlation
between the nonlinear projections. DCCA is then extended
to deep CCA autoencoder (DCCAE) in (Wang, Livescu, and
Bilmes 2015) where autoencoders are leveraged to addition-
ally reconstruct the inputs, hence introducing extra recon-
struction error terms to the objective function. While DC-
CAE can improve representation learning over DCCA, em-
pirical studies have shown that it tends to ignore the added
reconstruction error terms, which results in poorly recon-
structed views (Wang, Livescu, and Bilmes 2015). Training
algorithms for these classical CCA-based methods require
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sufficiently large training batches to approximate the covari-
ance matrices and the gradients. Moreover, they do not nat-
urally provide an inference model to estimate the shared
latent factor, nor do they enable generative sampling from the
model in the input space, while also being restricted to the
two-view setting. In contrast, the reconstruction error terms
appear naturally in the objective for variational inference,
the ELBO, and therefore play a fundamental role in training
of the decoder. Furthermore, the stochastic backpropagation
method with small mini-batches has proven to be a standard
and scalable technique for training deep variational autoen-
coders (Rezende, Mohamed, and Wierstra 2014). Finally,
the probabilistic multi-view model enables enforcing desired
structures such as sparsity (Archambeau and Bach 2009) by
adopting a broader range of exponential family distributions
for priors and approximate posteriors on the latent factors to
capture while this property is not immediately apparent in
the classical CCA-based variants.

It is worth noting that, although our proposed deep gener-
ative model is built upon a single shared latent factor (and
also a single correlation matrix to specify the relationship be-
tween all the views), it can be seen that the contribution of the
shared factor in mth view is controlled by the factor loading
Wm that is, in turn, a function of Pd0 and the view-specific
parameter Σmm. Thus, the shared factor does not equally
influence the views but instead its effect on each view varies
by the strength of its projection,Wmφ, which results in dis-
similar cross-covariances Σml for each pair m 6= l. This
property, in fact, offers flexibility to model uneven depen-
dencies between different subsets of views which is crucial
for expressive multi-view modeling when M > 2. On the
other hand, in the variational two-view autoencoders in (Tang,
Wang, and Livescu 2017; Wang et al. 2016), the shared latent
representation equally contributes in both views,

so these variational two-view methods can be viewed as
special cases of the more generic model proposed here when
the posterior factor loading {Wm}2m=1 are substituted with
identity matrix, hence, they are expected to offer lower flexi-
bility. This can explain why they offer less expressive repre-
sentation than DCCAE in some experimental studies.

More recently, different VAE based multi-modal deep gen-
erative models has been proposed that model the variational
posterior of the shared latent variable given all modalities
as the product of unimodal posteriors, namely product of
experts (PoE) (Wu and Goodman 2018) or as a weighted
summation of unimodal posteriors, namely mixture of ex-
perts (MoE) (Shi et al. 2019). On the other hand, the linear
probabilistic CCA layer describes set of cross-correlated mul-
tivariate Gaussian posteriors for random variables {zm}Mm=1.
As a potential future direction one can use this form of mul-
tivariate Gaussian distribution to specify the base unimodal
approximate posteriors, i.e. {q(z1...zM |xm)}Mm=1, for such
combination of expert methods (PoE or MoE) to obtain a
more expressive multi-view modeling.

Experiments
We empirically evaluate the representation learning perfor-
mance of the proposed method and compare against well
established baselines in two scenarios: I) when several views

are available at training time but only a single view (the pri-
mary view) is available at test time, namely the multi-view
setting, and II) all views are available at training and testing
time, namely the multi-modal setting.

Multi-View Experiments
For the experimental study, we used the two-view noisy
MNIST datasets of (Wang, Livescu, and Bilmes 2015) and
(Wang et al. 2016), where the first view of the dataset was
synthesized by randomly rotating each image while the im-
age of the second view was randomly sampled from the same
class as the first view, but not necessary the same image, then
was corrupted by random uniform noise. As a result of this
procedure, both views share only the same digit identity (la-
bel) but not the handwriting style. Details of data generation
process and samples are available in appendix F.

Experimental design: To provide a fair comparison, we
used neural network architectures with the same capacity as
those used in (Wang, Livescu, and Bilmes 2015) and (Wang
et al. 2016). Accordingly, for the deep network models, all
inference and decoding networks were composed of 3 fully
connected nonlinear hidden layers of 1024 units, with ReLU
gates used as the nonlinearity for all hidden units. The first
and the second encoder specify (µ1, diag(σ2

1)) = f1(x1; θ1),
(µ2, diag(σ2

2)) = f2(x2; θ2) with the variances specified by
a softplus function, and an extra encoder modeling the
canonical correlations diag(pi) using the sigmoid function
as the output gate. Independent Bernoulli distributions and
independent Gaussian distributions were selected to specify
the likelihood functions of the first and the second view, re-
spectively, with the parameters of each view being specified
by its own decoder network; sigmoid functions were ap-
plied on outputs used to estimate the means of both views
while the variances of the Gaussian variables were specified
by softplus functions. To prevent over-fitting, stochastic
drop-out (Srivastava et al. 2014) was applied to all the layers
as a regularization technique. The details of the experimental
setup and training procedure can be found in Appendix F.

To evaluate the learned representation, the discriminative
and clustering tasks were examined on the shared latent vari-
able. For the discriminative goal, a one-versus-one linear
SVM classification algorithm was applied on the shared rep-
resentation φ. The parameters of the SVM algorithm were
tuned using the validation set and the classification error was
measured on the test set. We also performed spectral clus-
tering (Von Luxburg 2007) on the k-nearest-neighbor graph
constructed from the shared representation. To comply with
the experiments in (Wang, Livescu, and Bilmes 2015) the
degree (number of neighbors) of the nodes was tuned in the
set {5, 10, 20, 30, 50} using the validation set, and k-means
was used as the last step to construct a final partitioning
into 10 clusters in the embedding space. The proposed deep
probabilistic CCA is compared against available multi-view
methods in terms of performance at the downstream tasks,
reported in Table 1, where the results highlight that the pro-
posed variational model significantly improves representation
learning from multi-view datasets.
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Method Error (%) NMI (%) ACC (%)

Linear CCA 19.6 56.0 72.9
SpliAE 11.9 69.0 64.0
KCCA 5.1 87.3 94.7
DCCA 2.9 92.0 97.0
DCCAE 2.2 93.4 97.5
VCCA 3.0 - -
VCCA-private 2.4 - -
VPCCA 1.9 94.8 98.1

Table 1: Performance of the downstream tasks for differ-
ent multi-view learning algorithms on the noisy two-view
MNIST digit images. Performance measures are classifi-
cation error rate (the lower the better), normalized mutual
information (NMI) and accuracy (ACC) of clustering (the
higher the better) (Cai, He, and Han 2005). VPCCA: multi-
view setting, i.e. only primary view is available at the test
time so µ0 of equation (8) is used. The results of variational
PCCA method are averaged over 3 trials where the results of
the baseline methods are from (Wang, Livescu, and Bilmes
2015; Wang et al. 2016). The baseline methods are Linear
CCA: linear single layer CCA, DCCA: deep CCA (Andrew
et al. 2013), Randomized KCCA: randomized kernel CCA ap-
proximation with Gaussian RBF kernels and random Fourier
features (Lopez-Paz et al. 2014), DCCAE: deep CCA-Auto
encoder (Wang, Livescu, and Bilmes 2015), VCCA(-private):
(shared-private) multi-view variational auto-encoder (Wang
et al. 2016)

Repeating the experiments in the multi-modal setting (i.e.
both views available at test time, namely VPCCA-2) and
using (7) to recover the mean of the shared latent variable
significantly improves downstream task performance, result-
ing in classification error=0.4% and clustering NMI=98.3%
or ACC=99.4%. These findings support the merit of the pro-
posed algorithm for successfully integrating information from
different modalities.

Figures 2 depict the 2D t-SNE embeddings of the shared
latent representations and private factor of the 1st view for
multi-view setting (VPCCA), multi-modal setting (VPCCA-
2v when both views are available at test time) and VCCA-
private (Wang et al. 2016). They verify that the representation
of the images of different classes are well separated in the
shared latent space while VPCCA can separate the classes
better; among them, VPCCA-2v results in the cleanest 2D
embedding. For more qualitative experiments, refer to Ap-
pendix E.

Multi-Modal Clustering
An important and interesting application of the proposed
deep generative model is in clustering multi-modal datasets.
Recently, a deep multi-modal subspace clustering method
(Abavisani and Patel 2018b) has successfully extended the
idea of deep subspace clustering (DSC) (Ji et al. 2017) to
multiple modalities. A key component of such approaches
is applying a self-expressive layer on a non-linear mapping
of the data obtained by deep auto-encoders, which repre-
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Figure 2: 2D t-SNE embedding of samples of the shared
representation φ are from models (a) VPCCA when only
1st view is available at test time, i.e. φ ∼ qη(φ|x1), (b)
VPCCA-2v when both views are available at test time i.e.
φ ∼ qη(φ|x1,x2), (c) VCCA-private when only 1st view is
available at test time, i.e. φ ∼ qη(φ|x1).

sents the projection of data points as a linear combination
of other data point projections. Although offering significant
improvement in clustering performance for data lying in non-
linear subspaces, such methods require a self-representation
coefficient matrix of size N ×N where N is the number of
data points, making this approach prohibitively expensive for
large datasets. The clustering performance of the proposed
method is evaluated on the following standard datasets.

Handwritten Digits: A two-modal dataset is built by pair-
ing each image in the MNIST dataset with an arbitrary sample
of the same class from USPS dataset (Hull 1994) so that the
images of both modalities share only the same digit identity
but not the style of the handwriting

Multi-modal Facial Components: We also evaluated the
proposed method on the multi-modal facial dataset used in
(Abavisani and Patel 2018a), based on the Extended Yale-
B dataset (Lee, Ho, and Kriegman 2005), where 4 facial
components (eyes, nose and mouth) and the whole face image
formed 5 different modalities. For this multi-modal data, we
train the general deep probabilistic multi-view model (eqn.
(11) in apdx. B) that extends the deep probabilistic CCA to
an arbitrary number of views.

Please refer to Appendix F for more details and depicted
samples of the above multi-modal datasets.

Experimental design: To provide a fair comparison, the
encoders and decoders in this set of experiments were defined
by neural networks with similar architectures as those used in
(Abavisani and Patel 2018a), except that our model does not
require the self-expressive layer (i.e. a linear fully connected
layer with parameter matrix of sizeN×N coefficients where
N is the number data points). This is a key advantage of the
proposed model that significantly reduces the total number
of parameters, especially for large input sizes. Thus, the pro-
posed architecture is sufficiently scalable to take advantage
of all the training samples.

Accordingly, the encoders (inference networks) of all
modalities were composed of convolutional NN (CNN) lay-
ers while the decoders (observation networks) were built of
transposed convolution layers. ReLU gate was used as the
nonlinearity for all the hidden units of the deep networks.
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The encoders specified (µm, diag(σ2
m)) = fm(xm; θm),

where the variances were modeled by a softplus function.
An extra encoder network modeled the canonical correla-
tions, diag(pi), using the sigmoid function as the output
gate. The observation likelihood functions of all the views,
pθm(xm|zm), were modeled by independent Bernoulli distri-
butions with the mean parameter being specified by decoder
networks, gm(zm; θm); with sigmoid functions applied
to estimate valid means for the distributions. We observed
that an optimal choice of the ratio of prior noise precision,
λ0/λi, can significantly improve the learned representation
for the proposed model. This may be explained by the fact
that adjusting the priors of the latent linear probabilistic layer
can control the view specific factors to be flexible enough
to capture the variations private to each view but restricted
enough so as not to describe the relationships between the
views. A related idea was elaborated in the formulation of
group factor analysis (Klami et al. 2014). In contrast, VCCA-
private (Wang et al. 2016) did not exhibit such behavior in
our experiments and required less parameter tuning. Details
of the model architecture and experimental setup, together
with more empirical results are presented in Appendix F.

To estimate shared latent features, VPCCA used the opti-
mal data fusion of (6) in the latent space while, in VCCA-
private, we applied a dense linear layer on the outputs of the
encoders, {fm(xm; θm)}Mm=1, to estimate µ0. Clustering is,
then, performed on the shared latent factor φ using spectral
clustering (Von Luxburg 2007) on the k-nearest-neighbor
graph, with the number of neighbors set to k = 5. As the last
step, spectral clustering is used to discretize the real-valued
representation in the embedding space to extract the final
partitioning. The results summarized in Table 2 show that
the proposed deep generative model achieves state-of-the-art
results, which highlights the fact that the proposed method
can efficiently leverage the extra modalities and extract the
common underlying information, the cluster memberships,
among the modalities.

Extra experiments with multi-modal facial datasets when
subset of modalities are missing at test time are presented in
appendix E.

Conclusion

In this work, a deep generative multi-view problem was for-
mulated based on the probabilistic interpretation of CCA. A
variational inference is customized based on the linear proba-
bilistic CCA model, which resulted in a flexible data fusion
method in the latent space. The proposed model is flexible
enough to describe arbitrary number of views. Experimental
results have shown that the proposed model is able to effi-
ciently integrate the relationship between multiple views to
learn a rich common representation, achieving state-of-the-art
performance on several downstream tasks, including multi-
modal clustering, where the extra modalities were leveraged
to uncover the cluster memberships. These indeed suggest
that the proposed method is a proper way of extending vari-
ational inference to deep probabilistic canonical correlation
analysis.

Digits Extended Yale-B
ACC NMI ARI ACC NMI ARI

CMVFC 47.6 73.56 38.12 66.84 72.03 40
TM-MSC 80.65 83.44 75.67 63.12 67.06 38.37

MSSC 81.65 85.33 77.36 80.3 82.78 50.18
MLRR 80.6 84.13 76.53 67.62 73.36 40.85

KMSSC 84.4 89.45 79.61 87.65 81.5 63.83
KMLRR 86.85 80.34 82.76 82.45 85.43 59.71
DMSC 95.15 92.09 90.22 99.22 98.89 98.38

VCCA-private 90.02 92.43 85.09 97.52 98.09 96.07
VPCCA 98.78 96.72 97.35 99.72 99.56 99.22

Table 2: Performance for different multi-modal clustering al-
gorithms on two-modal handwritten digits made from MNIST
and USPS and multi-modal facial components extracted from
Yale-B dataset. Performance metrics are clustering Accuracy
rate (ACC), Normalized Mutual Information (NMI) (Cai,
He, and Han 2005) and Adjusted Rand Index (ARI) (Rand
1971); all measures are in percent and the higher means the
better. Here, we assume that all modalities are available at
test time so VPCCA uses µ0 of equation (7). The results of
the variational PCCA method are averaged over 3 trials. The
clustering performance is compared against the well estab-
lished subspace clustering methods TM-MSC (Zhang et al.
2015), CMVFC (Cao et al. 2015), MSSC, MLRR , KMSSC,
KMLRR (Abavisani and Patel 2018b) and DMSC (Abavisani
and Patel 2018a). The results of the above baseline methods
are from (Abavisani and Patel 2018a).

Broader Impact
This work targets basic research at the heart of multi-view
and multi-modal learning. The goal of unsupervised learn-
ing in general is to extract representations from data that
reveal hidden regularity. If successful such a capability can
provide a powerful tool for enhancing the understanding of
complex sensory data, and support downstream tasks like
supervised classification or clustering. The goal of this re-
search is to improve the basic underlying learning principles
rather than advance the technology in any specific application
directions. However, because the techniques are fundamental
data analysis capabilities, including visual data analysis, it is
possible that abuse could perhaps occur, possibly in the form
of making it easier to de-identify data sources from multiple
measurements when the sources were not intended to be or
did not want to be identified.
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Klami, A.; Virtanen, S.; Leppäaho, E.; and Kaski, S. 2014.
Group factor analysis. IEEE transactions on neural networks
and learning systems 26(9): 2136–2147.

Lee, K.-C.; Ho, J.; and Kriegman, D. J. 2005. Acquiring
linear subspaces for face recognition under variable lighting.
IEEE Transactions on Pattern Analysis & Machine Intelli-
gence (5): 684–698.

Lopez-Paz, D.; Sra, S.; Smola, A.; Ghahramani, Z.; and
Schölkopf, B. 2014. Randomized nonlinear component anal-
ysis. In International Conference on Machine Learning,
1359–1367.

Mukuta, Y.; et al. 2014. Probabilistic partial canonical cor-
relation analysis. In International Conference on Machine
Learning, 1449–1457.

Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng,
A. Y. 2011. Multimodal deep learning. In Proceedings of the
28th international conference on machine learning (ICML-
11), 689–696.

Rand, W. M. 1971. Objective criteria for the evaluation
of clustering methods. Journal of the American Statistical
association 66(336): 846–850.

Rezende, D.; and Mohamed, S. 2015. Variational Inference
with Normalizing Flows. In Proceedings of The 32nd Inter-
national Conference on Machine Learning, 1530–1538.

Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochas-
tic backpropagation and approximate inference in deep gen-
erative models. arXiv preprint arXiv:1401.4082 .

Shi, Y.; Siddharth, N.; Paige, B.; and Torr, P. 2019. Vari-
ational Mixture-of-Experts Autoencoders for Multi-Modal
Deep Generative Models. In Advances in Neural Information
Processing Systems, 15692–15703.

Shon, A.; Grochow, K.; Hertzmann, A.; and Rao, R. P. 2006.
Learning shared latent structure for image synthesis and
robotic imitation. In Advances in neural information process-
ing systems, 1233–1240.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research 15(1): 1929–1958.

Tang, Q.; Wang, W.; and Livescu, K. 2017. Acoustic feature
learning via deep variational canonical correlation analysis.
arXiv preprint arXiv:1708.04673 .

Von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and computing 17(4): 395–416.

8062



Wang, W.; Livescu, K.; and Bilmes, J. 2015. On Deep Multi-
View Representation Learning. Icml 37.
Wang, W.; Yan, X.; Lee, H.; and Livescu, K. 2016. Deep
Variational Canonical Correlation Analysis. arXiv preprint
arXiv:1610.03454 .
Williams, C. K.; and Seeger, M. 2001. Using the Nyström
method to speed up kernel machines. In Advances in neural
information processing systems, 682–688.
Wu, M.; and Goodman, N. 2018. Multimodal generative
models for scalable weakly-supervised learning. In Advances
in Neural Information Processing Systems, 5575–5585.
Xia, R.; Pan, Y.; Du, L.; and Yin, J. 2014. Robust multi-view
spectral clustering via low-rank and sparse decomposition.
In Twenty-Eighth AAAI Conference on Artificial Intelligence.
Y. LeCun, C. C. 1998. The MNIST Database of Handwritten
Digit.
Zhang, C.; Fu, H.; Liu, S.; Liu, G.; and Cao, X. 2015. Low-
rank tensor constrained multiview subspace clustering. In
Proceedings of the IEEE international conference on com-
puter vision, 1582–1590.

8063


