
Learning Generalized Relational Heuristic Networks
for Model-Agnostic Planning

Rushang Karia, Siddharth Srivastava
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, AZ 85281, USA
{Rushang.Karia, siddharths}@asu.edu

Abstract

Computing goal-directed behavior is essential to designing
efficient AI systems. Due to the computational complexity of
planning, current approaches rely primarily upon hand-coded
symbolic action models and hand-coded heuristic function
generators for efficiency. Learned heuristics for such prob-
lems have been of limited utility as they are difficult to apply
to problems with objects and object quantities that are signif-
icantly different from those in the training data. This paper
develops a new approach for learning generalized heuristics
in the absence of symbolic action models using deep neural
networks that utilize an input predicate vocabulary but are
agnostic to object names and quantities. It uses an abstract
state representation to facilitate data-efficient, generalizable
learning. Empirical evaluation on a range of benchmark do-
mains shows that in contrast to prior approaches, generalized
heuristics computed by this method can be transferred easily
to problems with different objects and with object quantities
much larger than those in the training data.

1 Introduction
Given the computational complexity of automated plan-
ning (Bylander 1991, 1994), search-based planning algo-
rithms often employ heuristics for efficiency (Hoffmann and
Nebel 2001; Bonet and Geffner 2001; Helmert and Domsh-
lak 2009). Designing good domain-wide heuristics as well
as good domain-independent heuristic-generation principles
such as “delete-relaxation” (Hoffmann and Nebel 2001) of-
ten requires a careful study of the representation language
or the structure of the underlying problems; the resulting
heuristic generating functions (HGFs) are limited to plan-
ning problems where the agent’s action models can be ex-
pressed using the same representation language.

This paper addresses the problem of learning domain-
wide, generalizable heuristics without relying upon sym-
bolic action models. A key requirement of the problem is
that the learned heuristic be generalizable in the sense that
it can effectively transfer to problems with different object
names and/or object quantities. Recently, techniques that use
deep learning to learn domain-wide (Groshev et al. 2018)
and domain-independent (Shen, Trevizan, and Thiébaux
2020) heuristics have demonstrated that it is possible to learn

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristics for planning. However, the current landscape of
learning heuristics using deep learning has two major lim-
itations (see Sec. 6 for details). Firstly, most existing algo-
rithms require either handwritten, symbolic action models or
domain-specific network architectures. Approaches that uti-
lize Graph Neural Networks (GNNs) (e.g., Shen, Trevizan,
and Thiébaux (2020)) require action models to be expressed
in a representational language such as the Planning Domain
Definition Language (PDDL) (Fox and Long 2003). Gro-
shev et al. (2018) need domain-specific network architec-
tures and input representations. Second, most approaches re-
quire large amounts of training data as input, which in turn
requires good off-the-shelf planners, undermining the utility
of learning heuristics in order to solve planning problems.

Our approach to the problem uses abstraction with deep
learning to learn heuristic generating functions (HGFs) with-
out symbolic action models. We show that domain-wide
heuristics learned using this method can efficiently general-
ize to problems which contain object quantities much larger
than those in the training set. We also develop and evaluate
leapfrogging, a bootstrapping technique that was proposed
in recent work (Groshev et al. 2018) but has not been suffi-
ciently developed and tested for learning generalized heuris-
tics. We show that this technique facilitates handsfree few-
shot learning (Vanschoren 2018) for competitive generalized
relational heuristics without requiring external sources of
training data. Meta-learning techniques like few-shot learn-
ing have seen limited applications in relational settings in
prior work.

The rest of this paper is organized as follows. Sec. 2
presents the necessary formal framework. Sec. 3 defines the
learning problem and describes our approach for learning
followed by a description of using the learned heuristic for
planning (Sec. 4). Sec. 5 discusses obtained results. Sec. 6
summarizes related work followed by conclusions (Sec. 7).

2 Formal Framework
A planning problem is a tuple Γ = 〈O,P,A, sinit, g, δ〉
where O is a set of objects, P is a set of predicates and A
is a set of unit-cost actions. Object types can be expressed
as unary predicates. The state space S for a planning prob-
lem as defined above is the set of all possible assignments
of truth values to predicates in P instantiated with objects
from O. sinit ∈ S is the initial state and g is a goal condition

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8064

expressed as a conjunctive first-order logic formula over the
instantiated atoms. δ : S ×A→ S determines the transition
function. Different planning problems from an application
domain (e.g. Logistics) share the same P andA components
and these components together define a planning domain,
D. While a number of representations have been developed
to express domain-wide, “lifted” actions (Fikes and Nilsson
1971; Fox and Long 2003; Sanner 2010; Srivastava et al.
2014); such actions could also be implemented using arbi-
trary generative models or simulators. We assume w.l.o.g.,
that an action a ∈ A can be parameterized as a(o1, . . . , on)
where o1, . . . , on ∈ O; we do not place any representational
requirements on the specifications of A. This makes our al-
gorithms independent of action model representations.

A solution to Γ is a plan π = a0, . . . , an−1 which is a se-
quence of actions inducing a trajectory τ = s0, . . . , sn such
that s0 ≡ sinit, δ(si, ai) = si+1 and sn |= g. The plan length
|π|si from a state si is the number of states starting from si+1

in τ . We will use P k to refer to the set of predicates with ar-
ity k and P k+ for those with arity k or greater.

A planning heuristic is a function h : S → R+
0 ∪ {∞},

where h(s) estimates the cost of reaching the goal state
from a state s. A heuristic is admissible if it never over-
estimates the cost to reach the goal for any state. We de-
fine a heuristic generating function (HGF) as a function
that maps a planning problem to a heuristic. HGFs can
be domain-independent (e.g. delete-relaxation) or domain-
specific. Typically, search algorithms maintain a priority
queue of promising paths and use the heuristic function to
compute the keys in this queue (Russell and Norvig 2010).
For example, the priority key used in A* is f(n) = g(n) +
h(n) where g(n) is the length of the path to a search node
n and h(n) is the heuristic value of the state represented in
n; the node expanded is the one with the minimum value of
f(n) (Hart, Nilsson, and Raphael 1968).

We use canonical abstractions (Sagiv, Reps, and Wilhelm
2002) for representing a concrete state such that, information
about object names and numbers is lifted by grouping them
using abstraction predicates. Grouping together states can
lead to certain predicates becoming imprecise. As a result,
three-valued logic is used to represent truth values of predi-
cates in an abstract state. We introduce canonical abstraction
using the help of the following example.

Example 2.1. Consider the gripper domain, which consists
of two rooms and a robot equipped with a pair of grippers
that can pickup or drop balls (Long and Fox 2003).
Let seg = {free1(g1), at2(b1, ra), at2(b2, rb), robotAt1(ra)}
be a state in a gripper problem instance Γ expressed in typed
PDDL with O = {ra, rb, g1, b1, b2}, and g = at2(b1, rb) ∧
at2(b2, rb). Let type(gripper) = {g1}, type(room) =
{ra, rb} and type(ball) = {b1, b2} be the object types.

Definition 2.1. (Role) The role of an object o ∈ O in a
concrete state s is the set of unary predicates that it satisfies:
role(o) = {p1|p1 ∈ P 1, p1(o) ∈ s}.

For the state in Example 2.1, the role of the object ra is
role(ra) = {room, robotAt} whereas role(rb) = {room}.
We will use ψ(r) = {o|o ∈ O, role(o) = r} to denote the
set of objects having a particular role r. Thus, ψ({room}) =

{rb}, ψ({ball}) = {b1, b2}, ψ({room, robotAt}) = {ra}
and ψ({gripper, free}) = {g1}. The maximum number of
possible roles in a domain D with p unary predicates is 2p.

Definition 2.2. (Canonical Abstraction) The
canonical abstraction of a concrete state s =
{pk(o1, ..., ok)|pk ∈ P, o1, ..., ok ∈ O} is an abstract
state s = {pk(role(o1), ..., role(ok))|pk ≡ pk}. Let
O = ψ(role(o1)) × . . . × ψ(role(ok)) then pk is defined as
follows:

• pk(role(o1), . . . , role(ok)) = 0 ⇐⇒ ∀(o1, . . . , ok) ∈ O
pk(o1, . . . , ok) /∈ s.

• pk(role(o1), . . . , role(ok)) = 1 ⇐⇒ ∀(o1, . . . , ok) ∈ O
pk(o1, . . . , ok) ∈ s.

• pk(role(o1), . . . , role(ok)) = 1
2 ⇐⇒

(∃(o1, . . . , ok) ∈ O pk(o1, . . . , ok) ∈ s)∧
(∃(o1, . . . , ok) ∈ O pk(o1, . . . , ok) /∈ s).

Let r0 = {gripper, free}, r1 = {room, robotAt}, r2 =
{room} and r3 = {ball} be the roles in the state seg. The
canonical abstraction of the state seg is the abstract state
seg = {free1(r0), at2(r3, r1), at2(r3, r2), robotAt1(r1)}.
The truth values for predicates in seg are free1(r0) =

1, at2(r3, r1) = 1
2 , at2(r3, r2) = 1

2 and robotAt1(r1) = 1.
This formulation assumes that domains contain unary and

binary predicates. Domains with ternary or higher arity pred-
icates can be easily compiled into domains with binary pred-
icates. The framework presented in this paper can handle
higher arity predicates, however, we found that the results
were best in domains compiled as binary predicates. We
present a case study of Sokoban2 in the appendix (Karia and
Srivastava 2020) by compiling ternary predicates present in
the Sokoban domain into binary predicates.

Learning unary and binary features is an independent
problem and an active area of research (Bonet, Francès, and
Geffner 2019). These approaches could be used to learn such
predicates for better abstractions.

3 The Generalized Heuristic Learning
Problem

We define the problem of learning generalized heuristics
from training data as follows:

Definition 3.1. (Learning Generalized Heuristics) Given a
dataset of trajectories of the form Ξ = {〈π, τ, g,O〉} for
a domain D = 〈P,A〉 where O is a set of objects, g is a
goal formula, τ = s0, . . . , sn, π = a0, . . . , an−1 contain
states and parameterized actions from a planning problem
〈D,O, sinit, g, δ〉 such that s0 ≡ sinit, δ(si, ai) = si+1 and
sn |= g, learn a domain-wide generalized heuristic function
hD s.t. hD(s, g′, O′) estimates, for any planning problem
Γ′ = 〈D,O′, s′init, g

′, δ′〉 and any state s in the state space
of Γ′, the distance from s to a state s′ s.t. s′ |= g′.

In the self-training variant of the problem, we replace
the trajectory dataset with a generator for the domain that

8065

Figure 1: The network architecture used in this paper. Activations for NNA, (NN1, . . . ,NNAmax) and NNlen are SoftMax, Sigmoid
and ReLU respectively. Each Dense-32 block contains two ReLU activated, fully-connected hidden layers with 32 tensors each.
Absolute and Binned Inputs comprise vectors v,m2

p1 , . . . ,m
2
pn and v′,m′2p1 , . . . ,m

′2
pn respectively (described in Sec. 3.1).

can create problem instances with a given range of ob-
jects. Our overall approach for model-agnostic planning in-
volves solving these learning problems by training a Gen-
eralized Heuristic Network (GHN) (Sec. 3) and using the
learned GHN for planning (Sec. 4). This gives us a domain-
independent method for learning domain-specific heuris-
tic generating functions (HGFs) using either training data
or problem generators. In the standard planning paradigm,
GHNs would play a role similar to that of HGFs, which are
currently hand-coded. Our algorithms for learning GHNs are
model-agnostic in that they use only the action names and
parameters, the true atoms of a state, the goal formula, and
the objects in the problem, which could be provided by a
blackbox simulator.

Vanilla learning for generalized heuristics To gather
the training data T , we first generate a set of problem in-
stances and use an off-the-shelf solver to compute a plan
for each problem to form a library of trajectories Ξ =
{〈π, τ, g,O〉}. Next, for each trajectory ξ ∈ Ξ, we en-
code goal hints to every state s ∈ τξ using the approach
in Sec. 3.2 to form tuples (s, a, |π|s) that are then converted
to (s, s, a, |π|s) using canonical abstraction (Definition 2.2)
and added to T . As a part of the data generation process, we
maintain a set of roles R, actions A, the maximum number
of action parameters Amax, and predicates P that occurred
in the training data. Together, they define the input-output
dimensions of the network. Once T has been generated, we
use standard optimization techniques to minimize the loss.

Self-training generalized heuristics using leapfrogging
The training data generation method discussed above as-
sumes access to a planner that can already solve training
problems from the domain. In the absence of such a planner,
we utilize leapfrogging (Groshev et al. 2018) with a prob-
lem generator to interleave the learning of successively more
general GHNs with the computation of training data using
the GHNs being learned. Initially, problem instances with
very few objects Γ′0 are solved to generate training data T0.
These instances are small enough that blind search (with-
out any heuristics) can be used to find solutions. We then

use T0 to learn a GHN leap0. Next, leap0 is used to solve
larger planning problems, thereby creating training data T1
for the next iteration, and so on. We use the problem gen-
erator to generate problem instances in batches Γ′0, . . . ,Γ

′
i

where problems in Γ′i have more objects than those in Γ′i−1
and generate Ti by using leapi−1 to solve Γ′0, . . . ,Γ

′
i. We

then learn a new GHN leapi using Ti. Since GHNs learn
knowledge independent of the number of objects, this itera-
tive approach allows GHNs to effectively scale even in the
absence of training datasets.

3.1 Network Architecture
The neural network used for the experiments conducted in
this paper is illustrated in Fig. 1. We use two networks; one
to predict the action and its parameters and the other to pre-
dict the plan length. We found this architecture to be the
most promising in our experiments. We refer the reader to
the appendix for our ablation study.

The output of the network is a vector NNA of length
|A| representing the action probability, a set of vectors
NN1, ...,NNAmax each of length |P1| that represents the pre-
dicted role of the corresponding parameter in the action (re-
call that a role is a set of unary predicates), and a real-valued
number NNlen that represents the predicted plan length.

The input to the neural network is an abstract state that is
represented as a set of vectors and matrices which capture
the abstraction of object properties as well as their relation-
ships. We compute inputs of two different types: (a) Abso-
lute Inputs, and (b) Binned Inputs.

Absolute inputs encode the actual counts of the roles in
a concrete state and also capture the role count of the k-
ary atoms that are true in the state. For a concrete state
s and the corresponding abstract state s we represent all
roles occurring in s as a vector υ of length |R|. Each k-
ary predicate pk ∈ P2+ is encoded as a matrix mk

p of di-
mensions |R|k = |R|1 × . . . × |R|k. To encode absolute
inputs, (a) v[r] is set to the role count |ψ(r)| for every role
r ∈ R, and (b) mk

p[ri, . . . , rj] is set to the number of tuples
in ψ(ri)× · · · × ψ(rj) such that p(oi, . . . , oj) is true in s.

8066

Absolute inputs help in predicting the plan length since
they capture information about the number of objects that
belong to a particular role. However, for predicting actions,
this low level of granularity is unnecessary and we found
that this can lead to poor accuracy in predicting the actions.
Instead, we compute binned inputs υ′ and m′kp by catego-
rizing the absolute inputs υ and mk

p into levels – which
is a configurable hyperparameter – that can express infor-
mation about the structure of the state at a higher level of
granularity. To encode binned inputs, in our experiments,
we (a) encoded v′[i] as min(v[i], 2) to categorize ψ(r) as
containing zero, one or more than one objects, and (b) en-
coded m′kp[ri, . . . , rj] as one of the three truth values of the
predicate pk(ri, . . . , rj) (as defined in Definition 2.2) in s.
We also experimented with other strategies for encoding the
binned inputs but did not observe any significant impact on
the results.

3.2 Encoding Goal Hints
Inclusion of goal-relevant information has been shown to
facilitate learning goal-dependent concepts (Winner and
Veloso 2003; Groshev et al. 2018). We propose a simple
process for encoding goal hints in concrete states just before
applying state abstraction as defined in Sec. 2. This process
adds new unary predicates to concrete states without using
action models and takes time linear in the number of atoms
in the concrete state and goal.

We first describe goal hints using an example. Consider
the state seg in Example 2.1 where g = at2(b1, rb) ∧
at2(b2, rb). We add atoms goal2at(b1, rb) and goal2at(b2, rb)
to seg. This allows the network to identify goal predicates.
Since at2(b2, rb) ∈ seg we also add done2at(b2, rb) to seg
which further allows the network to better identify rela-
tional structures of a state. For at2(b1, rb) we add two unary
atoms goal1at1(b1) and goal1at2(rb). We similarly add two
other unary atoms for at2(b2, rb). Doing so changes role(rb)
from {room} to {room, goalat2} and role(b1) from {ball} to
{ball, goalat1}. These changes in object roles allow a richer
representation of the abstract state since new roles demar-
cating objects which are part of goals have been introduced.
Finally, since at2(b2, rb) ∈ seg and there is no other atom
at appearing in the goal where b2 is the first parameter,
done1at1(b2) is added to seg indicating that all atoms named
at in g where b2 appears as the first parameter are satisfied
in the current state.

In general, let G refer to atoms in g for a problem Γ and
let s be a concrete state. For every atom pk(o1, . . . , ok) ∈ G
we add a new atom goalkp(o1, . . . , ok) to s. This captures
goal-related relational information in the state s. We also
add a set of atoms ∪ki=1{goal1pi(oi)} to s so that objects
appearing only in G2+ will get a defined role in s̄. In ad-
dition, whenever a goal atom pk(o1, . . . , ok) ∈ s, we add
donekp(o1, . . . , ok) to s. Finally, if an object o appears at
index i for a predicate p in s and all goal atoms named p
where the object appears at index i are satisfied in s, we add
done1pi(o) to s.

4 Planning Using Generalized Heuristic
Networks

Hybrid heuristic function We found that using the pre-
dicted path length, NNlen as the heuristic value in Greedy
Best First Search (GBFS) can lead to poor performance
since the predicted value is often approximate. To mitigate
this, we combine outputs of both the networks to form a
hybrid heuristic that helps bias the search algorithm to ex-
pand promising states in the state space while adhering to
the policy predicted by the network. We do so by evaluat-
ing a state s based on both, (1) the path from the initial state
to s, and (2) the expected steps to reach the goal from s.
We define the artificial path cost g′(node) to be the sum of
the action probabilities along the path from the initial state
to node.state. Effectively, this allows us to increase the path
cost of low confidence paths, which, in our experiments, en-
abled the search algorithm to explore promising states so
that fewer nodes were expanded while computing a solution.
We compute g′(node) and h(node) as follows:

Vo+(i, o) =

∑
uj∈P1∩role(o)

f(NNi[uj], ε)

|P1|
(1)

Vo−(i, o) =

∑
uj∈P1\role(o)

f(1− NNi[uj], ε)

|P1|
(2)

Vp(i, o) = Vo+(i, o) + Vo−(i, o) (3)

Va(a(o1, ..., on)) = 1− NNA[a]×
∑n
i=1 Vp(i, oi)

n
(4)

g′(node) = g′(node.parent) + Va(node.action)
(5)

hGHN(node) = g′(node) + NNlen (6)
where role(o) is the role of the object o in node.state, ε ∈

[0, 1] is a threshold and f is a filter: f(x, ε) = 1 if x ≥ ε
and 0 otherwise. Vo+(i, o) and Vo−(i, o) compute the score
of the parameterized object’s role relative to the predicted
role. The score of the instantiated parameter oi, Vp ∈ [0, 1]
is a ratio of the total number of unary predicates that were
correctly predicted for role(oi). Va ∈ [0, 1] is the score of
the instantiated action and can help penalize actions.

Searching using the learned heuristic network GHNs
can be used in standard graph-based search algorithms like
A* or GBFS using a blackbox simulator for action applica-
tion and retrieving the atoms of a state. Given a node in the
search tree, we use the hybrid heuristic, hGHN as described
above, to determine which node to expand next.

Using hGHN to compute the key in the priority queue in a
search algorithm like A* or GBFS only changes the order in
which the algorithm expands nodes. The actual (or real) path
cost, g(node) is used to determine if a visited state has been
reached by a cheaper path under standard operation of the
algorithm. The following result follows from the properties
of such algorithms when used with a closed list (Russell and
Norvig 2010).
Theorem 4.1. Planning with A* or GBFS using hGHN is
sound and complete on finite state spaces.

8067

Domain Training Problem Parameters Test Problem Parameters
Blocksworld blocks ∈ [2, 8] blocks ∈ [2, 48]

Childsnack children, trays ∈ [1, 3],
gluten ratio=0, sandwich ratio = 1

children, trays ∈ [1, 12],
gluten ratio=0, sandwich ratio = 1

Visitall grid dimension ∈ [2, 4], holes ∈ [0, 25]%,
goals ∈ [80, 100]%

grid dimension ∈ [2, 12], holes ∈ [0, 25]%,
goals ∈ [80, 100]%

Spanner spanners ∈ [1, 7], nuts ∈ [1, 7]
locations ∈ [1, 7]

spanners ∈ [1, 12], nuts ∈ [1, 12]
locations ∈ [1, 12]

Ferry locations ∈ [2, 4], cars ∈ [1, 6] locations ∈ [2, 8], cars ∈ [1, 24]
Goldminer rows ∈ [2, 4], columns ∈ [2, 4] rows ∈ [2, 8], columns ∈ [2, 8]

Logistics cities ∈ [1, 3], city size=2,
airplanes ∈ [1, 3], packages ∈ [1, 4]

cities ∈ [1, 4], city size=2,
airplanes ∈ [1, 5], packages ∈ [1, 8]

Grid x ∈ [2, 5], y ∈ [2, 5], key types=3,
keys ∈ [1, 4], locks ∈ [1, 4], probability=1

x ∈ [2, 8], y ∈ [2, 8], key types=3,
keys ∈ [1, 8], locks ∈ [1, 8], probability=1

Table 1: Problem generator parameters used in the generation of training and test problems.

5 Empirical Evaluation
We implemented GHN learning and tested the learned
GHNs with various search algorithms (referred to as GH-
N/algorithm in the remainder of this section). Our im-
plementation1 uses Pyperplan, a popular Python-based
platform for implementing and evaluating planning algo-
rithms (Alkhazraji et al. 2020).

Summary of observations Our results indicate that even
though they do not use action models, (a) GHNs are com-
petitive when compared against hand-coded HGFs, (b) in
the absence of externally generated training data, leapfrog-
ging is an effective self-training technique, and (c) GHNs
successfully transfer to problems with more objects than
those in the training data. We discuss the configuration and
methods used for evaluating these hypotheses below. An ex-
tensive analysis of our results including additional problem
domains is available in the appendix (Karia and Srivastava
2020).

5.1 Empiricial Setup
We ran our experiments on Agave compute instances pro-
vided by Arizona State University. Each compute node is
configured with an Intel Xeon E5-2680 v4 CPU composed
of 28 cores and 128GB of RAM.

Baselines We could not find any existing domain-
independent systems capable of learning HGFs without us-
ing symbolic action models. Due to the absence of suit-
able baselines, we compared our approach with planners
and algorithms that utilize significant hand-coded, domain-
specific information in the form of action models with hand-
coded, domain-independent HGFs. Since such planners re-
quire domain models, we conducted an extensive evaluation
using benchmarks from the International Planning Compe-
tition (IPC) (Long and Fox 2003) that are used to evalu-
ate such planners. While IPC winners use optimized C/C++
implementations, our approach is implemented in Python—
an interpreted language that would result in slower perfor-
mance than compiled languages for identical algorithms.

1Code available at https://github.com/AAIR-lab/GHN

Despite these differences in inputs and the slower perfor-
mance profile of the underlying language, we found that our
implementation was competitive with IPC planners.

We used 6 action-model based baselines: hand-coded
HGFs {hff, lmcut} combined with search algorithms {A*,
GBFS}; FF, a well-known competition winner implemented
in C (Hoffmann and Nebel 2001); and FD LAMA, the
lama-first (Richter and Westphal 2010) configuration of Fast
Downward (Helmert 2006), also a state-of-art competition
planner written in C++. hff and lmcut are implementations
of the hFF (Hoffmann and Nebel 2001) and lmcut (Helmert
and Domshlak 2009) heuristics in Pyperplan. We denote
these baselines as hff/A*, hff/GBFS, lmcut/A*, lmcut/G-
BFS, FF, and FD respectively. The first four baselines are
implemented on the same platform (Pyperplan) as our algo-
rithm (GHN/GBFS) and thus are particularly well-suited for
comparative assessment of the strengths and weaknesses of
our approach.

Test domains and problems Our evaluation consists of
13 benchmark domains from the IPC: Blocksworld, Child-
snack, Ferry, Goldminer, Grid, Gripper♣, Grippers♣, Lo-
gistics, Miconic♣, Sokoban♣, Sokoban2♣, Spanner, and Vis-
itall. We generated problems randomly from problem gen-
erators used by organizers of the IPC (Fawcett et al. 2011).
Problem sizes were scaled by increasing the number of ob-
jects along multiple dimensions in the generator parameters.
This does not necessarily increase the problem difficulty but
does increase the size of the state space. Due to space con-
straints, analysis for domains labeled ♣ is included in the
appendix. Table 1 shows the range of generator parameters
that were used for generating the training and test problems
for our experiments.

Setup for self-training GHNs using leapfrogging We
categorized sets of problems with increasing sizes into
“bins” to showcase how leapfrogging can learn heuristics
with just a problem generator in the absence of input train-
ing data. The bins were indexed as B0, B1, and B2 with the
number of objects monotonically increasing across several
dimensions. B+ denotes problems containing more objects
than all problems in the training data. The ith leapfrog it-

8068

Figure 2: Performance of our approach (blue, solid), the closest baseline implemented in an interpreted language (red, dashes)
and the IPC-winning planner FD (gray, dotted). Y-axis represents the percentage of problems solved among 500 problems.

eration, GHN-leapi, was trained on problem sizes ranging
in B0, . . . , Bi using GHN-leapi−1 to generate the training
plans. Training data for GHN-leap0 was generated using FF,
however, even blind search could be used.

Training configuration We used the common network
architecture paradigm illustrated in Fig. 1 to create and train
all the domain-specific GHNs. Our optimization algorithm
was the Keras (Chollet et al. 2015) implementation of RM-
SProp (Hinton, Srivastava, and Swersky 2012) configured
with a learning rate, η = 0.001 and ε̂ = 1e − 3. GHNs
were trained for 100 epochs using a batch size of 32. cate-
gorical cross entropy, binary cross entropy and mean abso-
lute error were the loss minimization functions for the NNA,
NN1,...,Amax , and NNlen layers respectively. The total train-
ing problems generated for GHN-leap0, GHN-leap1, GHN-
leap2 consisted of 100, 200, and 400 problems.

For our setup of vanilla GHN learning, GHN-vanilla used
the same training problems as GHN-leap2 but was trained
directly by using FF to solve the problems and generate the
training data.

Test configuration To demonstrate iterative improve-
ments in learned GHNs using leapfrogging, we used a test
set of 400 problems (100 per bin) which are generated non-
uniformly according to the ranges representing each bin. For
example, in the Visitall domain we divided the problems
based on the size n of the square grid; B0: n = 2, B1:
n = 3, B2: n = 4, B+: n ∈ {5, . . . , 12}. Bin setups for
other domains can be found in the appendix.

The final leapfrog iteration, GHN-leap2 and the baselines
were run on a different test set of 500 uniformly generated
problems using the parameters described in Table 1.

Evaluation metrics We focus on satisficing planning
and evaluate our approach as well as the baselines on the
total number of problems solved, the time taken, and the
number of nodes expanded during computation.

5.2 Results and Analysis
All the baselines and GHN/GBFS (GHN-leap2) were allo-
cated a time limit of 600s per problem. There were no re-

8069

Figure 3: Performance of leapfrogging as a method for self-training. X-axis represents the bins for each domain. Each bin is
composed of 100 test problems.

strictions on memory usage. Since no single baseline outper-
forms the others in every domain, we compare GHN/GBFS
against the baseline configurations that outperformed their
counterparts in a majority of the domains that we consid-
ered. For Pyperplan baselines this was hff/GBFS; between
FD and FF, FD outperformed FF in most of the domains.
Complete results for all baseline configurations are available
in the appendix.

Fig. 2 summarizes the key results. GHN/GBFS solves
more problems than hff/GBFS(FD) in 6(1) of 13 domains,
equal problems in 6(9) domains, and fewer problems in 1(3).
When the problems solved were the same, GHN/GBFS out-
performed hff/GBFS(FD) in 2(4), and underperformed on
4(5) of the domains in terms of the nodes expanded. Our
analysis of the length of computed plans using GHNs indi-
cates that GHNs are competitive with both hff/GBFS and FD
and often produce cheaper plans than the baselines. Repre-
sentatives of all of these categories are included in the anal-
ysis below. Our main observations are as follows:

(a) GHNs are competitive when compared against hand-
coded HGFs It is clear from Fig. 2 that despite not hav-
ing access to symbolic action models and hand-coded HGFs,
GHNs are comparable against approaches using action mod-

els and hand-coded HGFs. Compared to Pyperplan base-
lines, GHNs often solve more problems and usually expend
lesser effort when the number of solved problems are simi-
lar. The number of nodes expanded by GHNs is often orders
of magnitude lower than the number expanded by hff/GBFS.
This difference is small enough in smaller problems that the
average time to solve a problem is slightly higher for GHNs
due to overheads like loading the network. However, the
advantages of GHNs become apparent in larger problems
where GHNs can solve more problems, often requiring less
time per problem despite using neural network inference to
compute the heuristic value.

GHNs are also competitive when compared with FD, of-
ten expanding significantly fewer nodes and solving the
same number of problems. However, despite expanding
fewer nodes, GHNs are unable to compete with compiled,
optimized competition planners in terms of the time taken
to solve a problem. A notable exception is the Spanner do-
main, where FD was unable to solve many problems in B+

and required more time to solve the problems than GHNs.
The Spanner domain was specifically designed to not work
well with “delete-relaxation” heuristics like those used in
FD. This indicates that GHNs are able to learn knowledge of

8070

the problem structure that is orthogonal to existing heuristic
generating concepts used in generating the training data.

(b) In the absence of externally generated training data,
leapfrogging is an effective self-training technique Fig.
3 shows that leapfrogging is data-efficient and can learn
heuristics that are comparable to, and sometimes outper-
form, GHN-vanilla which used externally generated train-
ing data. We analyze leapfrogging by considering the Grid
domain where GHN-vanilla, whose training data was gen-
erated using FF, is able to solve all problems in B+. GHN-
leap0, which was the first iteration of leapfrogging was un-
able to solve any problems in B+. Additionally, the perfor-
mance was increasingly worse than GHN-vanilla on binsB1

andB2 indicating that the generalization capability of this it-
eration was limited. As the leapfrog iterations increased, the
performance of the leapfrog GHNs steadily increased and
the final leapfrog iteration, GHN-leap2 was able to solve all
problems inB+, expending similar effort as GHN-vanilla in
terms of the nodes expanded. Similar trends can be observed
in other domains. This showcases leapfrogging as an effec-
tive few-shot learning technique for generating training data
in a handsfree fashion.

(c) GHNs successfully transfer to problems with more ob-
jects than those in the training data As can be seen in Fig.
3, even though GHNs do not have access to action models,
GHN-leap2 (GHN/GBFS) and GHN-vanilla easily transfer
to problems in B+ which consist of a greater number of ob-
jects than those in the training data. This highlights the ad-
vantages of abstraction techniques that can be used to learn
HGFs that easily transfer to problems with more objects, and
can be used even in the absence of action models.

GHNs appear to perform best in domains whose problems
have structured solutions. We now discuss results on se-
lect domains where GHNs did not outperform the baselines.
GHNs could not generalize well on the Logistics domain
and were outperformed by every baseline. We investigated
the reasons for the poor performance and found that one of
the reasons was the nature of training data produced. The
plans for Logistics are quite diverse leading to a large net-
work loss and consequently poor search performance. One
reason for this diversity could be due to the tighter coupling
of objects in Logistics as is mentioned in Rivlin, Hazan, and
Karpas (2020).

Our goal encoding scheme is quite simple and cannot en-
code hints effectively if the goals are structured in a way
that a single “goal” action provides all the goal predicates.
For example, Goldminer has a very simple strategy where
one needs to reach the correct y location in a grid with the
right tools, and then simply move their x location to reach
the goal. The goal predicate holds-gold is only provided in
the goal state and as such the goal hints provided by our ap-
proach are not informative. Landmarks can be used to solve
problems in this domain relatively easily. This information
is missing in our goal encoding scheme and could be used
to improve performance by learning landmarks as well. An-
other possible improvement would be to use first-order logic
with transitive closure FO(TC) when encoding the relations
so that “location” related goal information can be captured
in states that are “far-away” but logically related.

We observed that GHNs have a higher network loss when
actions change only binary predicates. These actions affect
only the relational inputs and not the vector role counts. As
a result, predictions usually have a larger error which can
become quite sensitive when the number of objects is small.
For example, for problems in the Spanner domain with 8
spanners but only 1 nut to tighten, GHNs had a larger test
error for the predicted plan length and hence expanded more
nodes. However, as the number of nuts increases, this error
reduces, enabling GHNs to outperform all other baselines
including FD and FF.

Our results show that in a similar search setting, once
the problem state spaces grow large enough, and despite
using lesser information (no action models), GHNs outper-
form Pyperplan-based implementations, and in some cases,
competition planners in the time required to solve a prob-
lem. While the computational costs of heuristic estimates
using hand-coded HGFs for these problems remains fixed,
the computational cost of GHNs has plenty of room for im-
provements. One such improvement in our implementation
would be to eliminate the data structure conversion overhead
that was added as a result of using FastDownward’s PDDL
parser instead of Pyperplan’s for our internal state represen-
tation. Other optimizations such as reducing network infer-
ence costs will naturally reduce the time required to solve
a problem and will bridge the gap in differences with opti-
mized competition planners.

6 Related Work
Our work builds upon the broad literature on learning for
planning (Celorrio et al. 2012; Celorrio, Aguas, and Jons-
son 2019). Our approach relates the most closely with other
methods for learning for planning that utilize deep learning.

Value iteration networks (Tamar et al. 2016) embed the
standard value iteration computation within the network.
While this method demonstrates successful learning, it en-
codes the input as an image, limiting its effectiveness in
solving problems whose states do not have a natural repre-
sentation as images. Groshev et al. (2018) learn generalized
reactive policies and heuristics using a convolutional neu-
ral network (CNN). One drawback of their approach is that
their network architecture and input feature vector represen-
tation are domain-dependent and require a domain expert to
provide them.

ASNets (Toyer et al. 2018) learn generalized policies by
a network composed of alternating action and proposition
layers. ASNets have a fixed receptive field that can po-
tentially limit generalizability. STRIPS-HGNs (Shen, Tre-
vizan, and Thiébaux 2020) learn domain-independent HGFs
by approximating the shortest path over the delete-relaxed
hypergraph of a STRIPS (Fikes and Nilsson 1971) prob-
lem. To do this, they define a Hypergraph Network Block,
utilizing message passing to increase the receptive field of
the network. The generalizability of their network depends
on the number of message passing steps which can be a
limiting factor as problem sizes scale up to much larger
than the training data. GBFS-GNNs (Rivlin, Hazan, and
Karpas 2020) learn policies using network blocks similar

8071

to STRIPS-HGNs but do not use the delete-relaxed ver-
sion of the problem. Since they do not learn heuristics, they
use rollout during search. A common limitation of ASNets,
STRIPS-HGNs, and GBFS-GNNs is that they require access
to symbolic action models expressed in a language such as
PDDL (Fox and Long 2003).

Curriculum learning (Bengio et al. 2009) shows that ef-
fective learning is possible by organizing the training data
in the form of a schedule. However, unlike leapfrogging,
this method assumes that training data is available. Boot-
strap learning (Arfaee, Zilles, and Holte 2010) incremen-
tally learns a heuristic for solving a class of problems by
using the heuristic learned in the current iteration to gener-
ate training data for the next iteration. However, the learned
heuristic cannot generalize to problem instances with a dif-
ferent number of objects.

Techniques for generalized planning (Winner and Veloso
2007; Srivastava, Immerman, and Zilberstein 2008; Bonet,
Palacios, and Geffner 2009; Srivastava, Immerman, and Zil-
berstein 2011) primarily focus on computing algorithm-like
plans that can be used to solve a broad class of problems.
These approaches do not generate heuristics, instead, the
plan itself is computed for an arbitrary number of objects.

7 Conclusions
Our approach for synthesizing domain-independent HGFs
differs from these prior efforts along multiple dimensions.
Instead of relying on specialized network blocks, we use
a rich input representation that is model-agnostic i.e. in-
dependent of action models. Using canonical abstractions,
we abstract away problem-dependent information like ob-
ject names but retain the ability to capture the state struc-
ture, allowing the learned domain-wide heuristic to transfer
to problems with a greater number of objects. Our empirical
evaluation shows that GHNs are competitive and efficiently
transfer to problems with object counts larger than those in
the training data. Finally, in the absence of training data, we
introduce leapfrogging as a few-shot learning technique that
can be used to incrementally generate new training data and
gradually improve the quality of the learned heuristic in a
handsfree fashion.

Acknowledgements
We thank Julia Nakhleh for help with a prototype implemen-
tation of the source code. We thank the Research Comput-
ing group at Arizona State University for providing compute
hours for our experiments. This research was supported in
part by the NSF under grants IIS 1942856 and IIS 1909370.

Ethics Statement
Automated planning is widely regarded as one of the long-
standing problems of AI. This research would enable au-
tonomous agents to carry out automated planning in the ab-
sence of domain experts. We believe that this would improve
the accessibility of AI systems, as it would allow non-expert
users to assign AI systems new tasks efficiently without hav-
ing to invest in an AI expert who could create a symbolic do-

main representation and also a heuristic generating function
for the task at hand.

Our approach for planning comes with guarantees of
soundness and completeness. This implies that it will find
a solution if there exists one, and the solution that it finds
will be correct as per the simulator’s action encodings. As in
any approach that uses simulators, this method is suscepti-
ble to errors in programming and in simulator design. This
can be addressed independently through research on formal
verification of simulators used in AI.

References
Alkhazraji, Y.; Frorath, M.; Grützner, M.; Helmert, M.;
Liebetraut, T.; Mattmüller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P.; and Wülfing, J. 2020. Pyperplan.
https://doi.org/10.5281/zenodo.3700819.

Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2010. Bootstrap
Learning of Heuristic Functions. In Proceedings of the 3rd
Annual Symposium on Combinatorial Search, SOCS.

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML.

Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning
Features and Abstract Actions for Computing Generalized
Plans. In Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence, AAAI.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2): 5–33.

Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-State Con-
trollers Using Classical Planners. In Proceedings of the
19th International Conference on Automated Planning and
Scheduling, ICAPS.

Bylander, T. 1991. Complexity Results for Planning. In
Proceedings of the 12th International Joint Conference on
Artificial Intelligence, IJCAI.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artif. Intell. 69(1-2): 165–
204.

Celorrio, S. J.; Aguas, J. S.; and Jonsson, A. 2019. A review
of generalized planning. Knowledge Eng. Review 34: e5.

Celorrio, S. J.; de la Rosa, T.; Fernández, S.; Fernández-
Rebollo, F.; and Borrajo, D. 2012. A review of machine
learning for automated planning. Knowledge Eng. Review
27(4): 433–467.

Chollet, F.; et al. 2015. Keras. https://keras.io.

Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Domain-Specific Con-
figuration using Fast Downward. In ICAPS workshop on
Planning and Learning.

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In Proceedings of the 2nd International Joint Con-
ference on Artificial Intelligence, IJCAI.

8072

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res. 20: 61–124.

Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Poli-
cies Using Deep Neural Networks. In Proceedings of the
28th International Conference on Automated Planning and
Scheduling, ICAPS.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Systems Science and Cybernetics 4(2):
100–107.

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res. 26: 191–246.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS.

Hinton, G.; Srivastava, N.; and Swersky, K. 2012. RM-
SProp. https://www.cs.toronto.edu/∼tijmen/csc321/slides/
lecture slides lec6.pdf.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. Artif. In-
tell. Res. 14: 253–302.

Karia, R.; and Srivastava, S. 2020. Learning Generalized
Relational Heuristic Networks for Model-Agnostic Planning
(Appendices). arXiv e-prints arXiv:2007.06702.

Long, D.; and Fox, M. 2003. The 3rd International Planning
Competition: Results and Analysis. J. Artif. Intell. Res. 20:
1–59.

Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res. 39: 127–177.

Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
Planning With Deep Reinforcement Learning. arXiv e-
prints arXiv:2005.02305.

Russell, S. J.; and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach, Third International Edition. Pearson
Education. ISBN 978-0-13-207148-2.

Sagiv, S.; Reps, T. W.; and Wilhelm, R. 2002. Parametric
shape analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst. 24(3): 217–298.

Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description. http://users.cecs.
anu.edu.au/∼ssanner/IPPC 2011/RDDL.pdf.

Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In Proceedings of the 30th International Confer-
ence on Automated Planning and Scheduling, ICAPS.

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning Generalized Plans Using Abstract Counting. In
Proceedings of the 23rd AAAI Conference on Artificial In-
telligence, AAAI.

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artif. Intell. 175(2): 615–647.
Srivastava, S.; Russell, S. J.; Ruan, P.; and Cheng, X. 2014.
First-Order Open-Universe POMDPs. In Proceedings of the
30th Conference on Uncertainty in Artificial Intelligence,
UAI.
Tamar, A.; Levine, S.; Abbeel, P.; Wu, Y.; and Thomas, G.
2016. Value Iteration Networks. In Annual Conference on
Neural Information Processing Systems.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, AAAI.
Vanschoren, J. 2018. Meta-Learning: A Survey. arXiv e-
prints arXiv:1810.03548.
Winner, E.; and Veloso, M. M. 2003. DISTILL: Learn-
ing Domain-Specific Planners by Example. In Proceedings
of the 20th International Conference on Machine Learning,
ICML.
Winner, E. Z.; and Veloso, M. 2007. Loopdistill: Learn-
ing domain-specific planners from example plans. In ICAPS
workshop on Planning and Scheduling.

8073

