
A Recipe for Global Convergence Guarantee in Deep Neural Networks

Kenji Kawaguchi,1* Qingyun Sun,2*

1 Harvard University
2 Stanford University

kkawaguchi@fas.harvard.edu, qysun@stanford.edu

Abstract
Existing global convergence guarantees of (stochastic) gra-
dient descent do not apply to practical deep networks in
the practical regime of deep learning beyond the neural tan-
gent kernel (NTK) regime. This paper proposes an algorithm,
which is ensured to have global convergence guarantees in
the practical regime beyond the NTK regime, under a ver-
ifiable condition called the expressivity condition. The ex-
pressivity condition is defined to be both data-dependent and
architecture-dependent, which is the key property that makes
our results applicable for practical settings beyond the NTK
regime. On the one hand, the expressivity condition is theoret-
ically proven to hold data-independently for fully-connected
deep neural networks with narrow hidden layers and a single
wide layer. On the other hand, the expressivity condition is
numerically shown to hold data-dependently for deep (convo-
lutional) ResNet with batch normalization with various stan-
dard image datasets. We also show that the the proposed algo-
rithm has generalization performances comparable with those
of the heuristic algorithm, with the same hyper-parameters
and total number of iterations. Therefore, the proposed algo-
rithm can be viewed as a step towards providing theoretical
guarantees for deep learning in the practical regime.

1 Introduction
The pursuit of global convergence guarantee has been one
of the important aspects of optimization theory. However,
ensuring global convergence is notoriously hard for first-
order optimization algorithms used to train deep neural net-
works (Goodfellow, Bengio, and Courville 2016). Recently,
some progress has been made on understanding the opti-
mization aspect of overparametrized neural networks. Over-
parametrized neural networks can be trained to have zero
training errors, interpolating all the training data points, and
are recently shown to have global convergence guarantees
in theoretical regimes (Li and Liang 2018; Soltanolkotabi,
Javanmard, and Lee 2018; Kawaguchi and Huang 2019;
Daniely 2019; Bresler and Nagaraj 2020; Montanari and
Zhong 2020; Bubeck et al. 2020). These studies open up
an insightful direction leading to the understanding of the
optimization aspect of deep learning.

However, there is still a significant gap between theory
and practice. In applications such as computer vision, speech
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and natural language, a major reason for the success of deep
learning in practice is its ability to learn representations with
multiple levels of abstraction during training, as explained
by LeCun, Bengio, and Hinton (2015). In contrast, special
types of neural networks studied in previous theories with
global convergence guarantees are not allowed to learn rep-
resentation during training, as the neural tangent kernels are
approximately unchanged during training. Indeed, such spe-
cial neural networks without the capability to learn repre-
sentation are considered to have limitations compared to
those with the capability (Wei et al. 2019; Chizat, Oyallon,
and Bach 2019; Yehudai and Shamir 2019). Furthermore,
the set of neural networks studied by previous theories have
not yet practical deep neural networks used in practice with
good generalization performances (Kawaguchi, Kaelbling,
and Bengio 2017; Poggio et al. 2017).

In this work, we propose a two-phase method to modify
a base algorithm such that the modified algorithm enables
practical deep neural networks to learn representation while
having global convergence guarantees of all layers under
verifiable conditions. Our global convergence guarantees are
applicable to a wide range of practical deep neural networks,
including deep convolutional networks with skip connection
and batch normalization. For example, the verifiable con-
ditions for global convergence guarantees are shown to be
satisfied by both fully connected deep neural networks and
deep residual neural networks (ResNets) with convolutional
layers. Our main contributions can be summarized as:

• We propose a novel algorithm that turns any given first-
order training algorithm into a two-phase training algo-
rithm.

• We prove that the resulting two-phase training algorithms
find global minima for all layers of deep neural networks,
under the expressivity condition.

• The condition for global convergence is verified theoreti-
cally for fully connected networks with last hidden layer
being wide (as the number of training data points) and all
other hidden layers being narrow (as the input dimension).

• The condition for global convergence is verified numer-
ically for the deep (convolutional) ResNet with bath-
normalization on various standard datasets.

*Equal contribution
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• We compare the standard training algorithm (SGD with
momentum) and the two-phase version of it with the same
hyperparameters and total iterations. The two-phase ver-
sion is shown to preserve the practical generalization per-
formances of the standard training while providing global
convergence guarantees.

2 Related Work
In this section, we discuss related studies and their relation-
ships with the contributions of this paper.

Over-parameterization Over-parameterization has been
shown to help optimization of neural networks. More con-
cretely, over-parameterization can remove suboptimal local
minima (Soudry and Carmon 2016) and improve the quality
of random initialization (Safran and Shamir 2016). Further-
more, gradual over-parameterization (i.e., gradually increas-
ing the number of parameters) is recently shown to improve
steadily the quality of local minima (Kawaguchi, Huang, and
Kaelbling 2019). The extreme over-parameterization that re-
quires the number of neurons to approach infinity is used
to prove global convergence (Mei, Montanari, and Nguyen
2018; Mei, Misiakiewicz, and Montanari 2019; Chizat and
Bach 2018; Dou and Liang 2020; Wei et al. 2019; Fang et al.
2020). Polynomial degrees of over-parameterization are also
utilized for global convergence in the lazy training regime.

Neural tangent kernel and lazy training It was shown
that neural networks under lazy training regime (with a spe-
cific scaling and initialization) is nearly a linear model fit-
ted with random features induced by the neural tangent ker-
nel (NTK) at random initialization. Accordingly, in the lazy
training regime, which is also called the NTK regime, neural
networks provably achieve globally minimum training er-
rors. The lazy training regime is studied for both shallow
(with one hidden layer) and deep neural networks and con-
volutional networks in previous studies (Zou et al. 2020; Li
and Liang 2018; Jacot, Gabriel, and Hongler 2018; Du et al.
2019, 2018; Chizat, Oyallon, and Bach 2019; Arora et al.
2019b; Allen-Zhu, Li, and Liang 2019; Fang et al. 2020;
Montanari and Zhong 2020).

Lazy training and degree of overparametrization The
global convergence guarantee in the lazy training regime
was first proven by using the significant overparametriza-
tion that requires the number of neurons per layer to be
large polynomials in the number of data points (Li and Liang
2018; Soltanolkotabi, Javanmard, and Lee 2018). Later, the
requirement on the degree of over-parametrization has been
improved to a small polynomial dependency (Kawaguchi
and Huang 2019; Bresler and Nagaraj 2020). Furthermore,
for two-layer networks with random i.i.d. weights and i.i.d.
input data, the requirement was reduced to the number of
training data points divided by the input dimension up to log
factors, which is the optimal order in theory (Daniely 2019;
Montanari and Zhong 2020; Bubeck et al. 2020).

Beyond lazy training regime However, it has been noted
that neural networks in many real-world applications has
weight parameters trained beyond the lazy training regime,

so that the learned features have better expressive power than
random features (Yehudai and Shamir 2019; Ghorbani et al.
2019; Arora et al. 2019b,a). Accordingly, a series of stud-
ies have demonstrated that the lazy training perspective of
neural networks is not enough for understanding the suc-
cess of deep learning (Wei et al. 2019; Chizat, Oyallon, and
Bach 2019; Yehudai and Shamir 2019). Indeed, there are
also previous works for the regime beyond the lazy train-
ing (Kawaguchi 2016; Kawaguchi and Bengio 2019; Jag-
tap, Kawaguchi, and Karniadakis 2020; Jagtap, Kawaguchi,
and Em Karniadakis 2020). To overcome the weakness of
lazy training, in this work, we present a novel method to use
learned representation with a learned neural tangent kernel,
instead of standard lazy training that use almost the random
initialized neural tangent kernel. Our experiments on multi-
ple ML benchmark datasets show empirically that our two-
phase training method achieves comparable generalization
performances with standard SGD training.

Relation to this paper Unlike previous work on the lazy
training regime that use the NTK at random initialization,
we allow the NTK to change significantly during training,
to learn features and representation. In terms of the degree
of overparametrization, the results in this paper achieve the
linear order (in the number of training data points) without
the assumptions of the i.i.d. weights and i.i.d random input.
Our results are also applicable for deep neural networks in
practical settings without degrading the generalization per-
formances. On the other hand, this paper further shows that
the study of lazy training regime is also useful to understand
the new two-phase training algorithm. Thus, we hope that
the proposed two-phase training algorithm becomes a bridge
between practice and theory of neural tangent kernel.

3 Model
In this paper, we consider the empirical risk minimization
problem. Let ((xi, yi))

n
i=1 be a training dataset of n sam-

ples where Sx = {xi}ni=1 and Sy = {yi}ni=1 are the set
of training inputs and target outputs, with xi ∈ X ⊆ Rmx
and yi ∈ Y ⊆ Rmy . Let ` : Rmy × Y → R≥0 be the
loss of each sample that measures the difference between
the prediction f(xi, w) and the target yi. The goal of em-
pirical risk minimization is to find a prediction function
f( · ;w) : Rmx → R1×my , by minimizing

L(w) =
1

n

n∑
i=1

`(f(xi, w)>, yi)

where w ∈ Rd is the parameter vector that contains all the
trainable parameters, including the weights and bias terms
of all layers of deep neural networks. We define w(l) ∈ Rdl
to be the vector of all the trainable parameters at l-th layer.
For any pair (r, q) such that 1 ≤ r ≤ q ≤ H+1, letw(r:q) =

[w>(r), . . . , w
>
(q)]
> ∈ Rdr:q where w(r:q) = w(r) when r = q.

With this notation, we can write w = w(1:H+1).
Here, f(x,w) represents the pre-activation output of

the last layer of a neural network for a given (x,w).
Then the output over all data points is fX(w) =
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[f(x1, w)>, . . . , f(xn, w)>]> ∈ Rn×my . The pre-
activation of the last layer is an affine map given by

fX(w) = h
(H)
X W (H+1) + b(H+1),

where W (H+1) ∈ RmH×my and b(H+1) ∈ R1×my are the
weight matrix and the bias term at the last layer. Here,

h
(H)
X = h

(H)
X (w(1:H)) ∈ Rn×mH

is the matrix that contains the outputs at the last hidden layer.
In order to consider layers with batch normalization, we al-
low h

(H)
X (w(1:H)) and f(xi, w) for each i ∈ {1, . . . , n} to

depend on all data points x1, . . . , xn. Here, w(1:H) repre-
sents the vector of the trainable parameters of all hidden lay-
ers, including the parameters of batch normalization.

4 Algorithm
We now describe the two-phase method as a modification of
any given first-order base algorithm. The modified algorithm
is proven to have global convergence guarantee under verifi-
able conditions as shown in the next two sections. The base
algorithm can be any given first-order algorithm, including
both batch and stochastic algorithms, such as gradient de-
scent and stochastic gradient descent with momentum and
adaptive step-size.

The description of the algorithm is presented in Algorithm
1, where ηt � gt represent the Hadamard product of ηt and
gt. Here, gt represents the rules of the parameter update that
correspond to different base algorithms. For example, if we
use the (mini-batch) stochastic gradient descent as the base
algorithm, gt represents the (mini-batch) stochastic gradient
of the loss function with respect to w at the time t.

The first phase of the training algorithm is the same as
the base algorithm. Then a random Gaussian perturbation is
added on all but last layer weights. After the random pertur-
bation, the second training phase starts. In the second train-
ing phase, the base algorithm is modified to preserve the
rank of the NTK at time τ after random perturbation, as:

rank
(
K(wk)

)
≥ rank (K(wτ )) , ∀k = τ, τ + 1, . . . , t

where the NTK matrix, K(w) ∈ Rnmy×nmy , is defined by

K(w) =
∂ vec(fX(w)>)

∂w

(
∂ vec(fX(w)>)

∂w

)>
.

As two examples, the rank can be preserved by lazy training
on all layer weights or by only training the parameters in the
last layer in the second phase. In the next section, we will
develop the global convergence theory for Algorithm 1.

5 Theoretical Analysis
In this section, we prove that the parameter wt in Algorithm
1 converges to a global minimum w∗ of all layers under
the expressivity condition. As a concrete example, we prove
that fully-connected neural networks with softplus nonlin-
ear activations and moderately wide last hidden layer sat-
isfy the expressivity condition for all distinguishable train-
ing datasets. All proofs in this paper are deferred to Ap-
pendix.

Algorithm 1 Two-phase modificationA of a base algorithm
with global convergence guarantees

1: Inputs: an initial parameter vector w0, a time τ and a
base algorithm with updates sequence (gt)t and learning
rate sequence (ηt)t.

2: � First training phase
3: for t = 0, 1, . . . , τ − 1 do
4: Update parameters: wt+1 = wt − ηt � gt
5: � Random perturbation

Add noise at time τ ,

wτ(1:H) ← wτ(1:H) + δ,

where the noise vector δ = (δ1. . . . , δH) ∈ Rd1:H is
sampled from a non-degenerate Gaussian distribution:
δh ∼ N(0, σ2

hIdh) for h = 1, . . . ,H .
6: � Second training phase
7: for t = τ, τ + 1, . . . do
8: Update parameters: wt+1 = wt − ηt � gt, where the

learning rate (ηt)t>τ is modified to satisfy the rank
preserving condition: for k = τ, τ + 1, . . . , t,

rank
(
K(wk)

)
≥ rank (K(wτ )) .

5.1 Expressivity Condition
Making the right assumption is often the most critical step in
theoretical analysis of deep learning. The assumption needs
to be both weak enough to be useful in practice and strong
enough for proving desired conclusions. It is often chal-
lenging to find the assumption with the right theory-practice
trade-off, as typical assumptions that lead to desired con-
clusions are not weak enough to hold in practice, which
contributes to the gap between theory and practice. We aim
to find the right trade-off by proposing a data-architecture-
dependent, time-independent, and verifiable condition called
the expressivity condition as a cornerstone for global con-
vergence results. The expressivity condition guarantees the
existence of parameters that can interpolate all the training
data.

Assumption 1. (Expressivity condition) There existsw(1:H)

such that ϕ(w(1:H)) 6= 0, where ϕ(w(1:H)) := det(

[h
(H)
X (w(1:H)),1n][h

(H)
X (w(1:H)),1n]>).

In the expressivity condition, the map h(H)
X depends on

both architecture and dataset. Such dependency is essential
for the theory-practice trade-off; i.e., we obtain a desired
conclusion yet only for a certain class of paris of dataset
and architecture. We verify the expressivity condition in our
experiments. The expressivity condition is also verifiable as
demonstrated below.

5.2 Real Analyticity
To prove the global convergence, we also require the func-
tion h

(H)
X to be real analytic. Since a composition of real

analytic functions is real analytic, we only need to check
whether each operation satisfies the real analyticity. The
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convolution, affine map, average pooling, shortcut skip con-
nection are all real analytic functions. Therefore, the com-
position of these layers preserve real analyticity.

We now prove that the batch normalization function is
also real analytic. The batch normalization that is applied
to an output z of an arbitrary coordinate can be written by

BNγ,β(z) = γ
z − µ√
σ2 + ε

+ β.

Here, µ and σ2 depend also on other samples as µ =
1
|S|
∑
i∈S zi and σ2 = 1

|S|
∑
i∈S(zi − µ)2, where S is an

arbitrary subset of {1, 2, . . . , n} such that z ∈ {zi : i ∈ S}.
Then, the following statement holds:

Proposition 1. Batch normalization function (z, β, γ) 7→
BNγ,β(z) is real analytic.

We also require the activation function to be analytic. For
example, sigmoid, hyperbolic tangents and softplus activa-
tions σ(z) = ln(1 + exp(ςz))/ς are all real analytic func-
tions, with any hyperparameter ς > 0. The softplus activa-
tion can approximate the ReLU activation for any desired
accuracy as

σ(x)→ relu(x) as ς →∞.

Therefore, the function h(H)
X is real analytic for a large class

of neural networks (with batch normalization) such as the
standard deep residual networks (He et al. 2016) with real
analytic approximation of ReLU activation via softplus.

5.3 Global Convergence
In the following, we assume that the loss function satisfies
assumption 2.

Assumption 2. (Use of common loss criteria) For any
i ∈ {1, . . . , n}, the function `i : q 7→ `(q, yi) ∈ R≥0

is differentiable and convex, and ∇`i is L`-Lipschitz: i.e.,
‖∇`i(q)−∇`i(q′)‖ ≤ L`‖q − q′‖ for all q, q′ ∈ R.

Assumption 2 is satisfied by standard loss functions such
as the squared loss `(q, y) = ‖q−y‖22 and cross entropy loss
`(q, y) = −

∑dy
k=1 yk log exp(qk)∑

k′ exp(qk′ )
. Although the objec-

tive function L : w 7→ L(w) used to train a neural network
is non-convex in w, the loss criterion `i : q 7→ `(q, yi) is
often convex in q.

Before we state the main theorem, we define the fol-
lowing notation. Let w∗ ∈ Rd be a global minimum
of all layers; i.e., w∗ is a global minimum of L. De-
fine ν = [0>d1:H ,1

>
dH+1

]> where 0d1:H ∈ Rd1:H is the
column vector of all entries being zeros and 1dH+1

∈
RdH+1 is the column vector of all entries being ones. Let
R2 = minw̄∗

(H+1)
∈Q E[‖w̄∗(H+1) − wτ(H+1)‖

2] where Q =

argminw(H+1)
L([(wτ(1:H))

>, (w(H+1))
>]>). Now we are

ready to state one of our main theorems.

Theorem 1. Suppose H ≥ 2, assumptions 1 and 2 hold.
Assume that the function h(H)

X is real analytic. Then, with
probability one over a randomly sampled δ, the following
two statements hold:

(i) (Gradient descent) if gt = ∇wt
(H+1)

L(wt)

and ηt = 1
LH

ν for t ≥ τ with LH =
L`
n

∑n
i=1 ‖[h(H)(xi, w

τ
(1:H)), 1]‖22, then for any t > τ ,

L(wt)− L(w∗) ≤ R2LH
2(t− τ)

.

(ii) (SGD) if E[gt|wt] = ∇wt
(H+1)

L(wt) (almost surely),

E[‖gt‖2] ≤ G2 and ηt = η̄tν for t ≥ τ with η̄t ∈ R sat-
isfying that η̄t ≥ 0,

∑∞
t=τ η̄

2
t < ∞ and

∑∞
t=τ η̄t = ∞,

then for any t > τ ,

E[L(wt
∗
)]− L(w∗) ≤

R2 +G2
∑t
k=τ η̄

2
k

2
∑t
k=τ η̄k

,

where t∗ ∈ argmink∈{τ,τ+1,...,t} L(wk).

In particular, Theorem 1 part (ii) shows that if we choose
η̄t ∼ O(1/

√
t), we have limt→∞

∑t
k=τ η̄

2
k∑t

k=τ η̄k
= 0 and the opti-

mality gap becomes

E[L(wt
∗
)]− L(w∗) = Õ(1/

√
t).

5.4 Example
As a concrete example that satisfies all the conditions in
theorem 1, we consider full-connected deep networks using
softplus activation with a wide last hidden layer. In the case
of fully-connected networks, the output of the last hidden
layer can be simplified to

h
(H)
X (w(1:H))ij = h(H)(xi, w(1:H)))j ∈ R, (1)

where h(l)(xi, w(1:l)) ∈ R1×ml is defined by

h(l)(xi, w(1:l)) = σ(h(l−1)(xi, w(1:l−1))W
(l) + b(l)) (2)

for l = 1, 2, . . . ,H with h(0)(xi, w(1:0)) := x>i ∈ R1×mx .
Here, W (l) ∈ Rml−1×ml and b(l) ∈ R1×ml are the weight
matrix and the bias term of the l-th hidden layer. Also, ml

represents the number of neurons at the l-th hidden layer.
Since h(H)

X is the composition of affine functions and real
analytic activation functions (i.e., softplus activation σ), the
function h(H)

X is real analytic.
In theorem 2, we show that the expressivity condition

is also satisfied for fully-connected networks, for training
datasets that satisfy the following input distinguishability as-
sumption.
Assumption 3. (Input distinguishability) ‖xi‖2−x>i xj > 0
for any xi, xj ∈ Sx with i 6= j.

Theorem 2. Suppose assumption 3 hold. Assume that h(H)
X

is defined by equations (1)-(2) with softplus activation σ and
H ≥ 2 such that min(m1, . . . ,mH−1) ≥ min(mx, n), and
mH ≥ n. Then, assumption 1 hold true.

In Theorem 2, the case of min(m1, . . . ,mH−1) = mx is
allowed. That is, all of the 1, 2, . . . ,H − 1-th hidden layers
are allowed to be narrow (instead of wide) with the num-
ber of neurons to be mx, which is typically smaller than
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n. A previous paper recently proved that gradient descent
finds a global minimum in a lazy training regime (i.e., the
regime where NTK approximately remains unchanged dur-
ing training) with d = Ω̃(myn+mxH

2 +H5) (Kawaguchi
and Huang 2019). In contrast, Theorem 2 only requires
d ≥ (my + mx)n + m2

xH and allows NTK to change sig-
nificantly during training.

Assumption 3 used in Theorem 2 can be easily satis-
fied, for example, by normalizing the input features for
x1, . . . , xn so that ‖xi‖2 = ‖xj‖2. With the normalization,
the condition is satisfied as long as ‖xi−xj‖2 > 0 for i 6= j
since 1

2‖xi − xj‖
2 = ‖xi‖2 − x>i xj . In general, normaliza-

tion is not necessary, for example, orthogonality on xi and
xj along with xi 6= 0 satisfies the condition.

5.5 Global Convergence with Lazy Training in
the Second Phase

In the previous section, we did not assume the rank preser-
vation condition. Instead, we considered the special learning
rate ηt in the second phase to keep submatrices of the kernel
matrix K(w) unchanged during the second phase (t ≥ τ ).
In this section, we show that algorithm 1 can still ensure
the global convergence with a standard uniform learning rate
ηt = 2η̄

L 1d, as long as the rank preservation condition is sat-
isfied.

Theorem 3. Let ηt = 2η̄
L 1d with η̄ ∈ R for t ≥ τ . Suppose

that H ≥ 2 and the following three assumptions hold:

• Assumption 1 (expressivity condition)
• Assumption 2, along with ‖∇L(w) − ∇L(w′)‖ ≤
L‖w − w′‖ for all w,w′ in the domain of L.

• (rank preserving condition) rank
(
K(wk)

)
≥

rank (K(wτ )) for for all k ∈ {τ + 1, τ + 2, . . . , t}.
Then, the following statement hold for any t > τ :

L(wt
∗
)−L(w∗) ≤ 1√

(t− τ) + 1

√
LR̄2(L(wτ )− L(w∗))

2η̄(1− η̄)
.

where t∗ ∈ argmink∈{τ,τ+1,...,t} L(wk) and R̄ =

maxτ≤k≤t minω̂k∈Q̄k ‖(ν � wk) − ω̂k‖ with Q̄k =

argminω̂∈Rd
1
n

∑n
i=1 `

(∑d
j=1 ω̂j

∂f(xi,w
k)>

∂wj
, yi

)
.

Theorem 3 shows that using the lazy training that pre-
serves the rank of the NTK matrix during the second phase
can ensure the global convergence for Algorithm 1. There-
fore, the proposed two-phase training algorithm provides a
new perspective for the lazy training regime. That is, NTK
in Algorithm 1 is allowed to change significantly during the
first phase training t < τ to learn the features or repre-
sentation beyond the random features induced by the data-
independent NTK at initialization. Our two-phase method
allows the lazy training with the learned data-dependent
NTK at time τ , which is often a better representation of prac-
tical dataset than the NTK at random initialization.

The property of the lazy training now depends on the
quantities at time τ instead of time t = 0. For example,
if we conduct the lazy training with over-parameterization,

then the number of neurons required per layer depends on
the residual error and the minimum eigenvalue of NTK at
time τ , instead of time t = 0. This could potential lead to
global convergence theory with weaker assumptions. Thus,
the two-phase algorithm opens up a new direction of future
research for applying the lazy training theory to the data-
dependent NTK obtained at the end of first phase training.
We can define the domain of L to be a sublevel set around
an initial point to satisfy the Lipschitz continuity.

6 Proof Idea and Key Challenges
For global convergence for optimization of deep neural net-
works, recent results rely on different assumptions, such as
over-parameterization and initial conditions on gradient dy-
namics. Those different assumptions are essentially used in
proofs to enforce the full rankness of the NTK matrix and
the corresponding feature matrix during training. If the fea-
ture matrix is of full rank, then the global convergence is
ensured (and the convergence rate depends on the minimum
eigenvalue of the NTK matrix).

In order to apply our theory for practical settings, we want
data-dependency in two key aspects. First, we want the fea-
ture matrix to be data-dependent and to change significantly
during training, in order to learn data-dependent features.
In contrast, the various assumptions in previous works es-
sentially make the feature matrix to be approximately data-
independent. Second, we want the global convergence re-
sults to hold data-dependently for a certain class of prac-
tical datasets. Instead, previous global convergence results
need to hold data-independently, or for linearly-separable
datasets or synthetic datasets generated by simple mod-
els (e.g., Gaussian mixtures). Because of these differences,
there needs to be new proof strategies instead of adopting
previous assumptions and their proof ideas.

6.1 Proof for General Networks
The first step in our proof is to show that the feature matrix
is of full rank with probability one over random entries of
the parameter vector. The global convergence then follows
from the full rankness (as shown in the complete proof in
Appendix).

A challenge in the proof for the general case is to make the
right assumption as discussed above. If we assume signif-
icant over-parameterization, then proving the full rankness
is relatively easy, but it limits the applicability. Indeed, we
want to allow deep networks to have narrow layers.

Although the entries of the parameter vector after random
perturbation have independent components, the entries of
the feature matrix are dependent on each other. Indeed, the
entries of the feature matrix are the outputs of nonlinear and
non-convex functions of the entries of the parameter vector.
Therefore, we cannot use elementary facts from linear alge-
bra and random matrix theory with i.i.d. entries to prove the
full rankness of the feature matrix.

Instead, we take advantage of the fact on the zero set of
a real analytic function: if a function is real analytic and not
identically zero, then the Lebesgue measure of its zero set is
zero (Mityagin 2015). To utilize this fact, we define a func-
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tion ϕ(w(1:H)) = det(h
(H)
X (w(1:H))h

(H)
X (w(1:H))

>). We
then observe that ϕ is real analytic since h(H)

X is assumed to
be real analytic and a composition of real analytic functions
is real analytic. Furthermore, since the rank of h(H)

X (w(1:H))
and the rank of the Gram matrix are equal, we have that
{w(1:H) ∈ Rd1:H : rank(h

(H)
X (w(1:H))) 6= n} = {w(1:H) ∈

Rd1:H : ϕ(w(1:H)) = 0}. Since ϕ is analytic, if ϕ is not
identically zero (ϕ 6= 0), the Lebesgue measure of its zero
set {w(1:H) ∈ Rd1:H : ϕ(w(1:H)) = 0} is zero. Therefore,
if ϕ(w(1:H)) 6= 0 for some w(1:H) ∈ Rd1:H , the Lebesgue
measure of the set

{w(1:H) ∈ Rd1:H : rank(h
(H)
X (w(1:H))) 6= n}

is zero. Then, from the full rankness of the feature
(sub)matrix h(H)

X (w(1:H)), we can ensure the global conver-
gence, as in the previous papers with over-parameterization
and neural tangent kernel.

Based on the above proof idea, as long as there exists a
w(1:H) ∈ Rd1:H such that ϕ(w(1:H)) 6= 0, then we can con-
clude the desired global convergence. The key observation is
that this condition is a time-independent and easily verifiable
condition in practice. This condition is defined as assump-
tion 1. We verify that assumption 1 holds in experiments nu-
merically for deep ResNets and in theory for fully-connected
networks. We complete the proof in Appendix.

6.2 Proof for Fully-Connected Networks
Without our result on the general case, a challenge to prove
the global convergence of fully-connected networks lies in
the task of dealing with narrow hidden layers; i.e., in the
case of min(m1, . . . ,mH−1) = mx < n. In the case of
min(m1, . . . ,mH−1) ≥ n, it is easy to see that k-th layer
with mk ≥ n can preserve rank n for the corresponding
matrices. In the case of min(m1, . . . ,mH−1) = mx < n,
however, it cannot preserve rank n, and deriving the global
convergence is non-trivial.

With our result for the general case, however, our only re-
maining task is to show the existence of a w(1:H) ∈ Rd1:H
such that ϕ(w(1:H)) 6= 0. Accordingly, we complete the
proof in appendix by constructing such a w(1:H) ∈ Rd1:H
for the fully-connected networks with narrow layers.

7 Experiments
In this section, we study the empirical aspect of our method.
The network model we work with is the standard (convolu-
tional) pre-activation ResNet with 18 layers (He et al. 2016).

-1.0 1

.

0

1.0ReLU 

Softplus 100
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Figure 1: ReLU versus Softplus with ς = 100.

To satisfy all the assumptions in our theory, we added a
fully-connected last hidden layer of cn neurons with a small
constat c = 1.1 and set the nonlinear activation functions
of all layers to be softplus σ(z) = ln(1 + exp(ςz))/ς with
ς = 100, as a real analytic function that approximates the
ReLU activation. This approximation is of high accuracy as
shown in Figure 1. As discussed above, Proposition 1 im-
plies that the function h(H)

X for the ResNet is real analytic.
The loss function we work with is cross-entropy loss, which
satisfies assumption 2. Therefore, the only assumption in
theorem 1 that is left to verify is assumption 1. In the fol-
lowing subsection, we numerically verify assumption 1.

7.1 Verification of Expressivity Condition
Assumption 1 assumes that the network satisfy expressivity
condition, which only requires an existence of a w(1:H) such
that ϕ(w(1:H)) 6= 0. Here, ϕ(w(1:H)) 6= 0 is implied by
rank([h

(H)
X (w(1:H)),1n]) = n. In other words, if we find

one w(1:H) with rank([h
(H)
X (w(1:H)),1n]) = n, then as-

sumption 1 is ensured to hold true. A simple way to find
such a w(1:H) is to randomly sample a single w(1:H) and
check the condition of rank([h

(H)
X (w(1:H)),1n]) = n.

Table 1 column 3 summarizes the results of the verifica-
tion of assumption 1 for various datasets. Here, we used a
randomly sampled w(1:H) returned from the default initial-
ization of the ResNet with version 1.4.0. of PyTorch (Paszke
et al. 2019) by setting random seed to be 1. This initialization
is based on the implementation of (He et al. 2015). The con-
dition of rank([h

(H)
X (w(1:H)),1n]) = n was checked by us-

ing numpy.linalg.matrix rank in NumPy version 1.18.1 with
the default option (i.e., without any arguments except the
matrix [h

(H)
X (w(1:H)),1n]), which uses the standard method

from (Press et al. 2007).

7.2 Performance
In the following, we compare the generalization perfor-
mances of the two-phase training algorithm over different
hyper-parameters’ choices and with the baseline algorithm.

Experimental setting We fixed all hyper-parameters of
the base algorithm a priori across all different datasets by
using a standard hyper-parameter setting of SGD (following
the setting of Kawaguchi and Lu 2020), instead of aiming
for state-of-the-art test errors with a possible issue of over-
fitting to test and validation datasets (Dwork et al. 2015;
Rao, Fung, and Rosales 2008). Concretely, we fixed the
mini-batch size to be 64, the weight decay rate to be 10−5,
the momentum coefficient to be 0.9, the first phase learning
rate to be ηt = 0.01 and the second phase learning rate to
be ηt = 0.01 × [0>d1:H ,1

>
dH+1

]> to only train the last layer.
The last epoch T was fixed a priori as T = 100 without data
augmentation and T = 400 with data augmentation.

Choice of τ and δ Now we discuss the choice of hyper-
parameters for the time of transition τ and for the size of the
noise δ. Instead of potentially overfitting hyper-parameters
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Dataset # of training data Expressivity Condition Augmentation Base A(base) with guarantee

MNIST 60000 Verified No 0.41 (0.02) 0.38 (0.04)
Yes 0.34 (0.03) 0.28 (0.04)

CIFAR-10 50000 Verified No 13.99 (0.17) 13.57 (0.32)
Yes 7.01 (0.18) 6.84 (0.16)

CIFAR-100 50000 Verified No 41.43 (0.43) 40.78 (0.22)
Yes 27.92 (0.36) 27.41 (0.58)

SVHN 73257 Verified No 4.51 (0.04) 4.50 (0.09)
Yes 4.32 (0.06) 4.16 (0.16)

Table 1: Test errors (%) of base andA(base) with guarantee where the operatorAmaps any given first-order training algorithm
to the two-phase version of the given algorithm with theoretical guarantees. The numbers indicate the mean test errors (and
standard deviations in parentheses) over five random trials. The column of ‘Augmentation’ shows ‘No’ for no data augmentation,
and ‘Yes’ for data augmentation. The expressivity condition (assumption 1) was numerically verified to all datasets.

PPPPPδ0
τ0 0.4 0.5 0.6 0.8

0.0001 2.10 (0.14) 2.06 (0.07) 2.02 (0.09) 2.01 (0.05)

0.001 2.06 (0.07) 2.11 (0.12) 1.92 (0.06) 2.01 (0.12)

0.01 2.25 (0.11) 2.25 (0.17) 2.25 (0.11) 2.09 (0.08)

Table 2: Test errors (%) of A(base) with guarantee for
Kuzushiji-MNIST with different hyperparameters τ = τ0T
and δ = δ0ε. The numbers indicate the mean test errors (and
standard deviations in parentheses) over three random trials.
The expressivity condition (Assumption 1) was numerically
verified to hold for Kuzushiji-MNIST as well.

to each dataset, we used a different dataset, Kuzushiji-
MNIST (Clanuwat et al. 2019), to fix all the hyper-
parameters of Algorithm 1 across all other datasets. That is,
we used Kuzushiji-MNIST with different hyperparameters’
values τ0 = 0.4, 0.5, 0.6, 0.8 and δ0 = 0.0001, 0.001, 0.01,
where τ = τ0T and δ = δ0ε. Here, ε ∼ N (0, Id) where
Id is the d × d identity matrix. Based on the results from
Kuzushiji-MNIST in Table 2, we fixed τ0 = 0.6 and δ0 =
0.001 for all datasets.

Generalization and optimization comparison We now
compare the performances between the base algorithm and
its two-phase modified version. For generalization aspect, as
shown in the last three columns of table 1, the modified al-
gorithm improved the test errors consistently over the four
datasets with and without data augmentation. This suggests
that the modified version of the base algorithm is competi-
tive with the base algorithm for generalization performance.

For optimization aspect, figure 2 shows that the two-phase
training algorithm indeed improves training loss values of
the base algorithm in the second phase without changing any
hyper-parameters (e.g., learning rate and momentum) of the
base algorithm, as expected from our theory. These results
suggest that the two-phase algorithm can provide global con-
vergence guarantees to a given base algorithm without hurt-
ing the generalization performance.
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Figure 2: Training loss of base and A(base) with guarantee:
the plots show the mean values over five random trials.

8 Conclusion
In this paper, we proposed a two-phase method that modifies
any given first-order optimization algorithm to have global
convergence guarantees without degrading practical perfor-
mances of the given algorithm. The conditions for global
convergence are mathematically proven to hold for fully-
connected deep networks with wide last hidden layer (while
all other layers are allowed to be narrow). The conditions are
also numerically verified for deep ResNet with batch nor-
malization under various standard classification datasets.

The two-phase training method opens up a new future re-
search direction to study the use of the novel NTK regime
with learned representation from data unlike the standard
NTK regime near random initialization. Extending our theo-
retical analysis on a larger class of NTK with learned repre-
sentation for global convergence and for generalization per-
formance would be an interesting future direction.

As the global optimal parameters can often achieve near
zero training loss, we could expect models trained by our
modified algorithm to have the benefits from terminal phase
of training (Papyan, Han, and Donoho 2020) potentially
for better generalization performance, robustness, and inter-
pretability. Verifying these benefits would be sensible direc-
tions for future work. An extension of our theory and al-
gorithm to implicit deep learning (Bai, Kolter, and Koltun
2019; El Ghaoui et al. 2019; Kawaguchi 2021) would be an-
other interesting future direction.
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