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Abstract

Dynamic mode decomposition (DMD) and its extensions are
data-driven methods that have substantially contributed to
our understanding of dynamical systems. However, because
DMD and most of its extensions are deterministic, it is diffi-
cult to treat probabilistic representations of parameters and
predictions. In this work, we propose a novel formulation
of a Bayesian DMD model. Our Bayesian DMD model is
consistent with the procedure of standard DMD, which is to
first determine the subspace of observations, and then com-
pute the modes on that subspace. Variational matrix factor-
ization makes it possible to realize a fully-Bayesian scheme
of DMD. Moreover, we derive a Bayesian DMD model for
incomplete data, which demonstrates the advantage of prob-
abilistic modeling. Finally, both of nonlinear simulated and
real-world datasets are used to illustrate the potential of the
proposed method.

1 Introduction
Understanding dynamics of multivariate sequential data is
an essential task in many scientific fields, including biol-
ogy (Aihara and Suzuki 2010), atmospheric science (Cot-
ton and Anthes 1992; Vallis 2017), fluid dynamics (Dow-
ell, Hall, and Romanowski 1997), and control engineer-
ing (Levin and Narendra 1993). Such data are often complex
and high-dimensional, and hence, data-driven approaches
rather than complicated models are required in many cases.
In fact, in recent years, several machine learning methods for
analyzing dynamical systems have been proposed includ-
ing dynamic-inner partial least squares (DiPLS) (Dong and
Qin 2015) and dynamic-inner principal component analy-
sis (DiPCA) (Dong and Qin 2018), neural ordinary differ-
ential equations (Chen et al. 2018), the second-order ad-
joint method (Ito et al. 2016), and sparse identification of
nonlinear dynamics (SINDy) (Brunton, Proctor, and Kutz
2016). Proper orthogonal decomposition (POD) (Kosambi
1943; Chatterjee 2000; Jolliffe 2002) has become a com-
monly used method in computational fluid dynamics since
it was employed for analyzing turbulent flow in (Lumley
1967). POD is essentially equivalent to principal compo-
nent analysis (PCA), singular value decomposition (SVD),
and the Karhunen–Loéve decomposition. Although POD is
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a powerful method, it cannot capture the dynamics because
it does not assume any relationships among the samples.

Dynamic mode decomposition (DMD) (Schmid 2010;
Kutz et al. 2016) was proposed to overcome this limita-
tion. In short, DMD is an efficient method for approx-
imating the eigenvalues and eigenfunctions of a Koop-
man operator governing multivariate sequential data. Be-
cause of the advantages of DMD, its variations have
also been developed, such as sparsity-promoting DMD
(spDMD) (Jovanović, Schmid, and Nichols 2014), higher-
order DMD (HODMD) (Le Clainche and Vega 2017),
and graph DMD (Fujii and Kawahara 2019); extended
DMD (Williams, Kevrekidis, and Rowley 2015) and ker-
nel DMD (Williams, Rowley, and Kevrekidis 2015; Kawa-
hara 2016) are representatives of nonlinearized DMD. How-
ever, almost all extensions of DMD are deterministic. Be-
cause probabilistic perspectives provide a flexible repre-
sentation in general, considering a probabilistic version of
DMD would offer many benefits, including missing data im-
putation and estimation from incomplete data.

In this paper, we propose a novel variational matrix factor-
ization (VMF)-based Bayesian formulation of DMD (Lim
and Teh 2007; Nakajima and Sugiyama 2011; Seeger
and Bouchard 2012). We refer to our proposed model as
Bayesian DMD with VMF (BDMD-VMF). The learning
procedure of the BDMD-VMF model is consistent with
that of a standard DMD model; first determining a lower-
dimensional representation of the data and then estimating
the dynamics on the latent space. The likelihood function of
BDMD-VMF has a projection matrix whose size depends
on the input dimensions. However, we can marginalize out
this projection matrix with the variational posterior of VMF.
After marginalization, the number of parameters to be es-
timated by BDMD-VMF solely depends on the dimension-
ality of the latent space, which corresponds to the number
of dominant modes. Moreover we derive the BDMD-VMF
model for cases with missing data values.

It is remarkable that Bayesian formulation of DMD was
pioneered by Takeishi et al. (2017). We refer to their model
as conventional Bayesian DMD. The conventional Bayesian
DMD model cannot capture the input dynamics appropri-
ately because the degrees of freedom increases with the in-
crease of data. We experimentally demonstrate the instabil-
ity of conventional Bayesian DMD, which occurs with a
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Symbol Description Symbol Description
|z| absolute value of z conj(A) complex conjugate ofA
Aij (i, j)-th element ofA tr{A} trace ofA
Ai: i-th row ofA (row vector) diag({Ai}) block diagonal matrix with {Ai}
A:j j-th column ofA (column vector) ‖A‖F Frobenius norm ofA
A−1 inverse ofA A⊗B Kronecker product ofA andB
A− pseudo-inverse ofA vec(A) vectorization ofA
A> transpose ofA 〈A〉p(A) expectation ofA with distribution p(A)

A−> inverse ofA> 0N N -dimensional zero vector
A∗ Hermitian conjugate ofA ON1N2

N1 ×N2 zero matrix
Re{A} real part ofA IN N ×N identity matrix
det(A) determinant ofA #S number of elements in set S

Table 1: Notation list

small sample size in Section 5.
Our main contributions can be summarized as follows:

• We propose a novel Bayesian DMD model, called
BDMD-VMF, which is governed by a small number of
parameters and can be employed even with missing data
values.

• We derive the complex extension of VMF by extending
the definition of a normal distribution to complex-valued
random matrices to establish the BDMD-VMF model.

• We apply BDMD-VMF to nonlinear simulated and real-
world incomplete gyroscopic data and experimentally
demonstrate that the BDMD-VMF model can capture in-
put dynamics more stably than conventional Bayesian
DMD.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the algorithm of DMD and the relationship
between Koopman operator theory and DMD; we also re-
view the formulation of conventional Bayesian DMD. In
Section 3, complex distributions are defined as a basic con-
cept for the proposed model. Novel Bayesian DMD mod-
els (for cases of both the complete and incomplete data),
BDMD-VMF models, are derived in Section 4. Section 5
shows illustrative examples of our models. Finally, Section 6
presents the concluding remarks.

Table 1 lists the symbols used in this paper.

2 Background
Koopman Spectral Analysis
Consider latent variables xt ∈ X , which are evolved using
the following nonlinear function f : X → X :

xt+1 = f(xt),

where X is a finite-dimensional state space. Suppose that
data are obtained through the action of an observable G 3 g :
X → C. Here, G is an appropriate space for scalar-valued
observables. The Koopman operator K : G → G mapping
an observation g(xt) to g(xt+1) is defined as follows:

(Kg)(xt) = g(xt+1) = g ◦ f(xt).

Because K is a linear operator regardless of the nonlinearity
of f , the Koopman operator K allows the eigendecomposi-
tion

Kφk = λkφk,

where λk ∈ C and φk : X → C are the k-th eigenvalue and
corresponding eigenfunction respectively. We consider a D-
dimensional signal being observed, which is denoted as aD-
dimensional observable vector g = (g1, . . . , gD)> : X →
CD . Assuming that g is expanded in Koopman eigenfunc-
tions φk, we can denote observations g(xt) using Koopman
modes wk ∈ CD as

g(xt) =

∞∑
k=1

φk(xt)wk. (1)

Then, we can transform (1) into

g(xt) = (Kg)(xt−1) =

∞∑
k=1

(Kφk)(xt−1)wk

=

∞∑
k=1

λkφk(xt−1)wk

= · · · =
∞∑
k=1

λt−1
k φk(x0)wk. (2)

DMD is one of the methods for finding eigenvalues {λk}
and Koopman modes {wk} from the given data.

Dynamic Mode Decomposition
Let Y ∈ CD×T be a data matrix with D-dimensional ob-
servations at time points t = 1, . . . , T . We define Y 0,Y 1 ∈
CD×(T−1) as

Y 0 =

 Y :1 Y :2 · · · Y :T−1

 ,

Y 1 =

 Y :2 Y :3 · · · Y :T

 .

Then, a discrete linear time-invariant system

Y :t = AY :t+1, t = 1, . . . , T − 1
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can also be expressed as
Y 1 = AY 0.

DMD is an efficient method for finding the K(≤ D)
largest eigenvalues and the corresponding eigenvectors of

Ā := arg min
A

‖Y 1 −AY 0‖2F = Y 1Y
−
0 ∈ CD×D.

The DMD algorithm is as follows:
1. Compute the K-th truncated SVD of Y 0

Y 0 ≈ UKLKV
∗
K ,

where UK ∈ CD×K and V K ∈ CT−1×K are composed
of left and right singular vectors, respectively. The matrix
LK ∈ CK×K is a diagonal matrix consisting of the K
largest singular values. Now, Ā can be approximated by

Ā ≈ Y 1V KL
−1
K U

∗
K .

2. Map Ā ∈ CD×D to Ã ∈ CK×K using theK left singular
vectors UK of Y 0:

Ã = U∗KĀUK = U∗KY 1V KL
−1
K ∈ CK×K .

3. Compute the eigendecomposition of Ã

Ãw̃k = λkw̃k, k = 1, . . . ,K.

This yields the K largest eigenvalues of Ā as {λk} and
the corresponding eigenvectors, which are called DMD
modes, as {UKw̃k}.
The above algorithm is called projected DMD. An alter-

native to projected DMD is exact DMD, in which each DMD
mode is computed as Y 1V KL

−1
K w̃k (Tu et al. 2014). Be-

cause exact DMD considers not only Y 0 but also Y 1, ex-
act DMD is more widely used than projected DMD. On
the other hand, projected DMD-based likelihood modeling
is more tractable for further marginalization, as described in
Section 4; thus, projected DMD has been mainly considered
in this paper.

Conventional Bayesian DMD
Takeishi et al. (2017) proposed the first Bayesian DMD
model. The likelihood function of Bayesian DMD proposed
in (Takeishi et al. 2017) at the t-th timepoint is defined as
the product of the following two likelihoods of Y 0 and Y 1

p(Y 0,:t|{λk}, {φk,t}, {wk}, σ2)

= CN

(
Y 0,:t

∣∣∣∣∣
K∑
k=1

φk,twk, σ
2ID

)
, (3)

p(Y 1,:t|{λk}, {φk,t}, {wk}, σ2)

= CN

(
Y 1,:t

∣∣∣∣∣
K∑
k=1

λkφk,twk, σ
2ID

)
, (4)

where CN indicates the complex normal distribution which
is introduced in Section 3. The priors of the parameters in
(3) and (4) are

p(λk) = CN (λk|0, 1),

p(φk,t) = CN (φk,t|0, 1),

p(wk|Cw) = CN (wk|0D,Cw),

p(σ2) = InvGamma(σ2|ασ2 , βσ2),

whereCw is aD×D real diagonal matrix and the hyperprior
is

p(Cw,dd) = InvGamma(Cw,dd|αc, βc).

The parameter φk,t in (3) and (4) corresponds to the output
of the k-th Koopman eigenfunction φk(xt) in (2). However,
the Koopman eigenfunction φk does not have any degrees of
freedom with respect to timepoint t because Koopman spec-
tral analysis assumes a time-invariant system. For instance,
assume that the latent variable xt evolves linearly and let ob-
servation g be an identity function. In this case, the Koop-
man eigenfunction φk(·) is specified as the inner product
with the k-th left eigenvector of the transition matrix of xt

(Rowley et al. 2009). Thus, the conventional Bayesian DMD
model considers the K Koopman eigenfunctions {φk} as
independent K × T random variables, while it has D − 1
free parameters. This parameter redundancy causes estima-
tion instability, especially when D > T . Furthermore, from
the probabilistic viewpoint, the likelihoods (3) and (4) as-
sume conditional independence between Y 0,:t+1 and Y 1,:t

although Y 0,:t+1 = Y 1,:t is satisfied due to their definition.
Time lags between Y 0 and Y 1 could be increased to cap-
ture long-range dynamics, but such generalization still lacks
an interpretation of (probabilistic) low-rank approximations.
We corroborate the shortcomings of conventional Bayesian
DMD through a numerical experiment reported in Section 5.

3 Preliminaries
Complex Variate Distributions
In the context of DMD, parameters are commonly defined
in a complex space. Hence, we define complex normal dis-
tributions as a generalization of real distributions.

Multivariate Complex Normal Distribution The multi-
variate complex normal distribution of the random vector
z ∈ CN is defined as

CN (z|µ,Σ) = π−N |Σ|−1 exp(−(z − µ)∗Σ−1(z − µ)),

where µ ∈ CN is a mean vector, and Σ ∈ CN×N is a Her-
mitian positive definite covariance matrix (Wooding 1956).
The first and second moments of the multivariate complex
normal distribution are

〈z〉CN (z|µ,Σ) = µ,

〈zz∗〉CN (z|µ,Σ) = µµ∗ + Σ.

Matrix Variate Complex Normal Distribution We de-
fine the complex generalization of the matrix variate normal
distribution (Waal 2006) of the random matrixZ ∈ CN1×N2

as follows:

MCN (Z|M ,U ,V )

= π−N1N2 |V |−N1 |U |−N2

× exp (−tr{V −1(Z −M)∗(U−>)(Z −M)}), (5)

where M ∈ CN1×N2 is a mean parameter and U ∈
CN1×N1 and V ∈ CN2×N2 are the row-wise and column-
wise Hermitian positive definite covariance matrices, re-
spectively.
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We note that (5) can be represented by the following
equivalent complex normal distribution:

MCN (Z|M ,U ,V ) ≡ CN (vec(Z)|vec(M),U ⊗ V ). (6)

The lower-order moments of the matrix variate complex nor-
mal distribution in (5) are

〈Z〉MCN (Z|M ,U ,V ) = M ,

〈Z∗Z〉MCN (Z|M ,U ,V ) = M∗M + V tr{U}.

4 Methodologies
Likelihood of Bayesian DMD
DMD can be interpreted as a procedure that determines
{λk} and {wk} which approximate

Y :t ≈
K∑
k=1

λt−1
k wkbk,

where bk is a scaling factor for the normalized vector wk.
In fact, we only require a low-dimensional representation
of wk, as described in Section 2. Therefore, we design the
likelihood function of Y :t as follows:

p(Y :t|{w̃k}, {λk},UK , σ
2)

= CN

(
Y :t

∣∣∣∣∣UK

K∑
k=1

λt−1
k w̃k, σ

2ID

)
. (7)

Here, UK ∈ CD×K corresponds to the left singular vectors
of Y and w̃k ∈ CK denotes the k-th eigenvector of the
latent dynamics multiplied by a constant such thatUKw̃k =
wkbk. The joint likelihood function is

p(Y |{w̃k}, {λk},UK , σ
2) =

T∏
t=1

p(Y :t|{w̃k}, {λk},UK , σ
2)

=MCN (Y |UKG, ID, σ
2IT ), (8)

whereG ∈ CK×T is defined as

G =

K∑
k=1

 w̃k λw̃k · · · λT−1w̃k

 .

Variational Matrix Factorization
We can directly evaluate the posterior of the parameters
of (7) with appropriate priors (e.g., a probability distribution
on a Stiefel manifold for UK). However, the degree of free-
dom depends on the dimension D, which is generally large.
Fortunately, using a Gaussian-type conjugate prior, UK can
be marginalized out from (7).

To obtain a reasonable prior of UK , we apply VMF (Lim
and Teh 2007; Nakajima and Sugiyama 2011; Seeger and
Bouchard 2012), which is a variational Bayesian treatment
of SVD, to Y . If the elements of the data matrix Y are fully
observed, the complex version of the VMF model is

p(Y |UK ,V K) =MCN (Y |UKV
∗
K , ID, s

2IT ), (9)
UK ∼MCN (UK |ODK , ID,CU ),

V K ∼MCN (V K |OTK , IT ,CV ).

whereCU ,CV ∈ RK×K are positive-definite diagonal ma-
trices. Variational Bayesian methods assume that the param-
eters of the joint posterior are independent, i.e.,

p(UK ,V K |Y ) ≈ r(UK)r(V K).

Then, we solve functional optimizations of r(UK) and
r(V K) alternately to minimize the free energy of a given
model. We refer to the decomposed functions r as varia-
tional posteriors. In the fully observed VMF model, the free
energy F is

F =

〈
log

r(UK)r(V K)

p(Y |UK ,V K)p(UK)p(V K)

〉
r(UK)r(V K)

,

and the stationary conditions of r are
r(UK) ∝ p(UK) exp{〈log p(Y |UK ,V K)〉r(V K)},
r(V K) ∝ p(V K) exp{〈log p(Y |UK ,V K)〉r(UK)}.

Here, we treat the variance s2 as a nuisance parameter.
We also update s2 by applying the empirical variational
Bayesian (EVB) algorithm (Nakajima and Sugiyama 2011;
Nakajima et al. 2013), which updates nuisance parameters
by solving first-order optimality conditions for F .

VMF with complete data If the data are fully observed,
the variational distributions of UK and V K can be simply
denoted by the matrix variate complex normal distributions

r(UK) =MCN (UK |ŪK , ID, Σ̄U ), (10)

r(V K) =MCN (V K |V̄ K , IT , Σ̄V ),

Σ̄
−1
U = C−1

U + s−2(T Σ̄V + V̄
∗
KV̄ K),

Σ̄
−1
V = C−1

V + s−2(DΣ̄U + Ū
∗
KŪK),

ŪK = s−2Y V̄ KΣ̄U , V̄ K = s−2Y ∗ŪKΣ̄V .

Moreover, the EVB update of s2 can be derived as

s2 =
1

TD
(‖Y ‖2F − 2tr{Re{V̄ KŪ

∗
KY }}

+ tr{(DΣU + Ū
∗
KŪK)(TΣV + V̄

∗
KV̄ K)}).

VMF with incomplete data Due to its probabilistic na-
ture, VMF can also deal with incomplete data. First, we de-
fine the following set of indices to represent the observa-
tions:
I = {(d, t)|Y dt is observed for d = 1, . . . , D, t = 1, . . . , T}.

In this case, the likelihood of the VMF model (9) is replaced
with

p(PI(Y )|UK ,V K)

=MCN (PI(Y )|PI(UKV
∗
K), ID, s

2IT ),

where PI : CD×T → CD×T is a map defined by

(PI(Y ))dt =

{
Y dt if (d, t) ∈ I
0 otherwise.

Then, the variational posteriors can be derived as
r(UK) ≡ CN (vec(UK)|vec(ŪK),ΓU )

≡ CN (vec(U>K)|vec(Ū
>
K),ΣU ), (11)

r(V K) ≡ CN (vec(V K)|vec(V̄ K),ΓV )

≡ CN (vec(V >K)|vec(V̄
>
K),ΣV ),
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where the parameters are explicitly written as

ΣU = diag({Σ(d)
U }), ΣV = diag({Σ(t)

V }), (12)

Σ
(d)−1
U = C−1

U + s−2
∑

t:(d,t)∈I

(
V̄
∗
K,t:V̄ K,t: + Σ

(t)
V

)
,

Σ
(t)−1
V = C−1

V + s−2
∑

d:(d,t)∈I

(
Ū
∗
K,d:ŪK,d: + Σ

(d)
U

)
, (13)

vec(Ū
>
K) =


Ū
>
K,1:

...
Ū
>
K,D:

 , vec(V̄
>
K) =


V̄
>
K,1:

...
V̄
>
K,T :

 ,(14)

ŪK,d: = s−2
∑

t:(d,t)∈I

Y dtV̄ K,t:Σ
(d)
U ,

V̄ K,t: = s−2
∑

d:(d,t)∈I

Y ∗dtŪK,d:Σ
(t)
V , (15)

and
Γ−1
U = C>DKΣ−>U CDK ,

Γ−1
V = C>TKΣ−>V CTK .

Note thatCDK ∈ {0, 1}DK×DK is the commutation matrix
(Magnus and Neudecker 1979), which satisfies

CDKvec(UK) = vec(U>K),

and CTK satisfies a similar equation. Here,
∑

t:(d,t)∈I in
(12) and (14) denotes the summation over t such that (d, t) ∈
I for a given d. The summations

∑
d:(d,t)∈I in (13) and (15)

are defined in the same manner. We note that if data matrix
Y has missing entries, r(UK) and r(V K) cannot be repre-
sented by complex matrix normal distributions because the
covariance matrices ΣU and ΣV are not decomposable into
a Kronecker product of two matrices. The EVB update of s2
is

s2 =
1

#I
∑

(d,t)∈I

[|Ydt|2 − 2Re{Y ∗dtŪK,d:V̄
∗
K,t:}

+ tr{(Σ(d)
U + Ū

∗
K,d:ŪK,d:)(Σ

(t)
V + V̄

∗
K,t:V̄ K,t:)}].

Marginalizing Out UK

Using the variational posterior of UK (i.e., (10) for com-
plete data or (11) for incomplete data) as the prior of (7),
we can marginalize out UK . Therefore, if the elements of a
given data matrix are fully observed, we consider the joint
probability

p(Y ,UK |{w̃k}, {λk}, σ2) =MCN (Y |UKG, ID, σ
2IT )

×MCN (UK |ŪK , ID, Σ̄U ) (16)

after convergence of the VMF algorithm and then integrate
UK from (16). Equation (7) has 2K(D + K + 1) + 1 de-
grees of freedom (without the orthogonality condition for
UK), but this is reduced to 2K(K + 1) + 1 owing to the
marginalization procedure. This number now only depends
on the number of modes K, and not on the data dimension
D. Note that the mean field approximation in VMF plays a
significant role in the BDMD-VMF scheme. Because VMF
assumes posterior independence from the outset, we can im-
mediately marginalize outUK analytically, as shown below.

Complete data case If there are no missing data, the con-
ditional probability of Y :t with the marginalization of UK

is
p(Y :t|{λk}, {w̃k}, σ2) = CN (Y :t|Ȳ :t, σ

2
t ID),

where

σ−2
t = σ−2(1−G∗:tΣ̃

(t)−1

U G:t),

Ȳ :t = σ−2σ2
t ŪKΣ̄

−1
U Σ̃

(t)

U Gt:,

Σ̃
(t)−1

U = σ−2G:tG
∗
:t + Σ̄U .

Hence, the posterior of the BDMD-VMF model for com-
plete data is

p({λk}, {w̃k}, σ2|Y ) ∝ p(σ2)

T∏
t=1

CN (Y :t|Ȳ :t, σ
2
t ID)

×
K∏
k=1

p(λk)p(w̃k). (17)

Incomplete data case Now, we consider the case where
the data matrix Y has missing values. In this case, the vari-
ational posterior of VMF r(UK) cannot be expressed as a
matrix variate complex normal distribution. By vectorizing
(8) with the equivalent representation of the matrix variate
complex normal distribution (6), we obtain

p(vec(Y )|{w̃k}, {λk},UK , σ
2)

= CN (vec(Y )|vec(UKG), σ2ID ⊗ IT )

= CN (vec(Y )|(G> ⊗ ID)vec(UK), σ2ID ⊗ IT ). (18)

Therefore, the marginalized distribution of (18) is

p(vec(Y )|{w̃k}, {λk}, σ2) = CN (vec(Y )|vec(Ȳ ),ΣY ), (19)

where
Σ−1
Y = σ−2(IDT − σ−2(G> ⊗ ID)Σ̂U (conj(G)⊗ ID)),

vec(Ȳ ) = σ−2ΣY (G> ⊗ ID)Σ̂UΓ−1
U vec(ŪK),

Σ̂
−1

U = σ−2(GG∗)> ⊗ ID + Γ−1
U .

Now, we rearrange vec(Y ) into (vec(Y )>obs, vec(Y )>mis)
>,

where vec(Y )obs and vec(Y )mis are observed and missing
elements of vec(Y ) respectively. Then, (19) can be rewritten
as

CN
((

vec(Y )obs
vec(Y )mis

) ∣∣∣∣( vec(Ȳ 1)
vec(Ȳ 2)

)
,

(
ΣY,11 ΣY,12

ΣY,21 ΣY,22

))

without loss of generality. Using the marginalization prop-
erty of normal distributions, we obtain the following
marginalized likelihood function for incomplete data:

p(vec(Y )obs|{w̃k}, {λk}, σ2)

= CN (vec(Y )obs|vec(Ȳ 1),ΣY,11). (20)

Thus, if the data matrix Y has missing values, the poste-
rior of the BDMD-VMF model is written as
p({λk}, {w̃k}, σ2|vec(Y )obs)

∝ CN (vec(Y )obs|vec(Ȳ 1),ΣY,11)p(σ2)

K∏
k=1

p(λk)p(w̃k).

(21)
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(a) Original (b) DMD (c) Conventional Bayesian DMD (d) BDMD-VMF

Figure 1: Reconstruction results for the nonlinear Schrödinger equation with K = 4.

(a) Original (b) DMD (c) Conventional Bayesian DMD (d) BDMD-VMF

Figure 2: Reconstruction results for the Burgers’ equation with K = 7.

5 Illustrative Examples

In this section, we report the application of the proposed
BDMD-VMF method to both simulated and real data. By
using simulated data generated from nonlinear partial dif-
ferential equations (PDEs), we confirm that BDMD-VMF
yields almost the same results as DMD. In addition, un-
stable behavior of conventional Bayesian DMD is demon-
strated. Furthermore, we apply BDMD-VMF to incomplete
data through an experiment on a real-world dataset. We
adopted the Metropolis algorithm, which is a Markov chain
Monte Carlo (MCMC) method, to evaluate the posterior dis-
tributions (17) and (21) in all examples. Throughout the sim-
ulations reported below, we generated 7,500 MCMC sam-
ples and discarded the first 5,000 considering a burn-in pe-
riods. Unless otherwise specified, we employed appropri-
ate weakly informative priors for any parameters. We deter-
mined the number of modes K for which DMD can capture
input dynamics, through preliminary experiments.

Synthetic Data

As synthetic datasets, we used sequential datasets from
two nonlinear PDEs: the nonlinear Schrödinger equation
(NLSE) and Burgers’ equation. The NLSE is yielded by
replacing the potential of the time-dependent Schrödinger
equation with the absolute square of the wave function, and
the Burgers’ equation is equivalent to the incompressible
Navier-Stokes equation without an external force. These two
nonlinear PDEs are well-studied as the nonlinear applica-
tion examples of DMD (Kutz et al. 2016; Kutz, Proctor, and
Brunton 2018). For each dataset, we applied DMD, conven-
tional Bayesian DMD, and BDMD-VMF and then recon-
structed the original input with their estimates.

Nonlinear Schrödinger equation The NLSE is given by

i
∂ψ(ξ, τ)

∂τ
=

(
1

2

∂2ψ(ξ, τ)

∂ξ2
+ |ψ(ξ, τ)|2

)
ψ(ξ, τ),

where ξ and τ are continuous variables in space and time,
respectively. We configured the timepoints and gridpoints
as τ ∈ [0, 2π) with t = 1, . . . , 256 and ξ ∈ [−15, 15)
with d = 1, . . . , 256, respectively. The number of modes K
was set to 4 for this experiment. Figure 1 shows the recon-
struction results by DMD, conventional Bayesian DMD, and
BDMD-VMF. The reconstruction RMSEs are 0.083, 0.005,
and 0.057, respectively. The difference between DMD and
BDMD-VMF is mainly associated with the numerical error
of MCMC. Meanwhile, the conventional Bayesian DMD fits
better to the given observation than DMD and BDMD-VMF.
This is contributed to the fact that representation power
of the conventional Bayesian DMD model significantly ex-
ceeds the standard DMD’s one. As is seen from the next ex-
ample, the conventional Bayesian DMD has difficulty when
applied to high-dimensional and small sample data.

Burgers’ equation As a second example of nonlinear
PDEs, we generated data from the Burgers’ equation:

∂ψ(ξ, τ)

∂τ
= −ψ(ξ, τ)

∂ψ(ξ, τ)

∂ξ
+ ν

∂2ψ(ξ, τ)

∂ξ2
, ν ≥ 0,

with ν = 0.1. The timepoints and gridpoints are τ ∈ [0, 30]
with t = 1, . . . , 31 and ξ ∈ [−15, 15) with d = 1, . . . , 256
respectively. The reconstruction results with K = 7 are
shown in Figure 2, and the RMSEs of DMD, conventional
Bayesian DMD, and BDMD-VMF are 0.009, 0.130, 0.013,
respectively. As opposed to the result of the NLSE, conven-
tional Bayesian DMD did not capture any structure of the
dynamics. This phenomenon can also be attributed to the re-
dundancy of conventional Bayesian DMD and tends to occur
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Figure 3: (a) Original and (b) masked gyroscope data. The
labels on the vertical-axis indicate the locations (l = left, r =
right, t = thigh, s = shin, and f = foot) and directions (x-, y-,
or z-axis) of the sensors.

particularly when the input dimension is much larger than
the sample size.

Gyroscope Data
Next, as a real-world example, we applied our method to gy-
roscope data obtained during cycling. The HuGaDB dataset
(Chereshnev and Kertész-Farkas 2018) contains signals col-
lected from six sensors placed on the right and left thighs,
shins, and feet of 18 participants. While each participant per-
formed 12 different everyday motions, the sensors logged
the accelerations and angular velocities about the x-, y-, and
z-axes. We extracted 150 timesteps related to the first par-
ticipant’s angular velocity while cycling. Thus, the size of
the data matrix was D = 18 and T = 150 1. Figure 3(a)
shows the true clipped data, normalized to the range [−1, 1].
We then evaluated the posterior predictive distributions of
the masked data shown in Figure 3(b) with the proposed
BDMD-VMF model with K = 2 and the Bayesian second-
order vector autoregressive (VAR(2)) model.

Figure 4 shows the posterior predictive distributions cal-
culated using the MCMC samples. Dotted lines denote the
true (un-masked) data and circular markers indicate the ob-
served data. In Figure 4, it can be seen that the credi-
ble intervals of the BDMD-VMF model (red-shaded area)
are considerably tighter than those of the VAR(2) model
(gray-shaded area). In addition, the credible intervals of the
BDMD-VMF model do not spread around missing data, in
contrast with the case of the VAR(2) model. As opposed to
most other Bayesian time-series models, our BDMD-VMF
model does not assume that the data at timepoint t are gen-
erated from the data obtained so far. More precisely, Y :t is
independent of Y :t′ for t 6= t′ when the time-invariant pa-
rameters {λk}, {wk}, and σ2 are given.

6 Concluding Remarks
In this paper, we proposed a novel Bayesian formulation of
DMD called BDMD-VMF. The proposed BDMD-VMF is
a probabilistic model, which allows to handle, incomplete
data with a DMD-like scheme have been enabled. The learn-
ing scheme of BDMD-VMF is similar to that of standard

1D = 18 corresponds to the six three-axis gyroscopes.

(a) x-axis of the left foot (b) y-axis of the left shin

(c) z-axis of the left thigh (d) y-axis of the right shin

Figure 4: Posterior predictive distributions of the gyroscope
signals about (a) x-axis of the left foot, (b) y-axis of the left
shin, (c) z-axis of the left thigh, and (d) y-axis of the right
shin. Dotted lines denote the true data and circular markers
indicate the input data. Gray- and red-shaded areas represent
the 95% credible intervals of the posterior predictive distri-
butions of the VAR(2) and proposed BDMD-VMF models,
respectively.

DMD; it first finds a lower-dimensional representation of
the data matrix by VMF, and then it infers latent dynam-
ics in the lower-dimensional space. However, in the likeli-
hood of the DMD model (7), there are still many param-
eters to be estimated and the number depends on the di-
mension of the input data matrix. To address this problem,
we marginalized out the large matrix with its VMF poste-
rior. Using both nonlinear simulated and real-world datasets,
we demonstrated reconstruction and interpolation with the
proposed BDMD-VMF. Because the BDMD-VMF model is
governed by a small number of parameters, it captures input
dynamics more robustly than conventional Bayesian DMD.

Finally, we note some limitations of and future directions
for of this work. Our BDMD-VMF model does not work ap-
propriately if the missing data mechanism is not missing at
random (NMAR), which means that whether data are miss-
ing depends on their own true values. In NMAR case, the ob-
served data likelihood (20) becomes biased. Next, improv-
ing the computational efficiency of the proposed approach
is a critical task. With the Metropolis sampling employed
in Section 5, we must evaluate the (unnormalized) poste-
rior (21) numerous times. Some variational methods that
do not require conjugacy, such as black box variational in-
ference (Ranganath, Gerrish, and Blei 2014) and automatic
differentiation variational inference (Kucukelbir et al. 2017)
can be used to overcome this issue. Moreover, it is worth
considering a Bayesian DMD model corresponding to kernel
DMD. Kernel DMD is a powerful method to handle nonlin-
ear dynamics; however, extremely sensitive to hyperparam-
eter selection. We conjecture that we can address this issue
by incorporating the Gaussian process into BDMD-VMF.

8089



Acknowledgments
Part of this work is supported by JSPS KAKENHI grant
numbers JP17H01793, JP19K12111, and JST CREST JP-
MJCR1761.

Ethics Statement
In this paper, a Bayesian identifying method for dynamical
systems is developed. Since dynamical systems modeling is
a common method to understand real phenomena in natural
sciences, our work potentially benefits a wide range of sci-
entific areas. Especially strong impacts to fields in which un-
certainty representation of predictions is significant will be
expected; such as oceanography, atmospheric science, and
mathematical epidemiology. The same is true to application
fields where missing data are often obtained. On the other
hand, our proposal just provides a new aspect of dynamic
mode decomposition, therefore, there is little concern that
this paper will affect society negatively.

References
Aihara, K.; and Suzuki, H. 2010. Theory of Hybrid Dynam-
ical Systems and Its Applications to Biological and Medi-
cal Systems. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences
368(1930): 4893–4914.

Brunton, S. L.; Proctor, J. L.; and Kutz, J. N. 2016. Discov-
ering Governing Equations from Data by Sparse Identifica-
tion of Nonlinear Dynamical Systems. Proceedings of the
National Academy of Sciences 113(15): 3932–3937. ISSN
0027-8424, 1091-6490.

Chatterjee, A. 2000. An Introduction to the Proper Orthogo-
nal Decomposition. Current Science 78(7): 808–817. ISSN
0011-3891.

Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duve-
naud, D. K. 2018. Neural Ordinary Differential Equations.
In Advances in Neural Information Processing Systems 31,
6571–6583. Curran Associates, Inc.

Chereshnev, R.; and Kertész-Farkas, A. 2018. HuGaDB:
Human Gait Database for Activity Recognition from Wear-
able Inertial Sensor Networks. In Analysis of Images, Social
Networks and Texts, Lecture Notes in Computer Science,
131–141. Cham: Springer International Publishing. ISBN
978-3-319-73013-4.

Cotton, W. R.; and Anthes, R. A. 1992. Storm and Cloud
Dynamics. Academic Press. ISBN 978-0-08-095983-2.

Dong, Y.; and Qin, S. J. 2015. Dynamic-Inner Partial Least
Squares for Dynamic Data Modeling. IFAC-PapersOnLine
48(8): 117–122. ISSN 2405-8963.

Dong, Y.; and Qin, S. J. 2018. A Novel Dynamic PCA Algo-
rithm for Dynamic Data Modeling and Process Monitoring.
Journal of Process Control 67: 1–11. ISSN 09591524.

Dowell, E. H.; Hall, K. C.; and Romanowski, M. C. 1997.
Eigenmode Analysis in Unsteady Aerodynamics: Reduced
Order Models. Applied Mechanics Reviews 50(6): 371–386.
ISSN 0003-6900.

Fujii, K.; and Kawahara, Y. 2019. Dynamic Mode De-
composition in Vector-Valued Reproducing Kernel Hilbert
Spaces for Extracting Dynamical Structure among Observ-
ables. Neural Networks 117: 94–103. ISSN 08936080.

Ito, S.; Nagao, H.; Yamanaka, A.; Tsukada, Y.; Koyama, T.;
Kano, M.; and Inoue, J. 2016. Data Assimilation for Mas-
sive Autonomous Systems Based on a Second-Order Ad-
joint Method. Physical Review E 94(4): 043307.

Jolliffe, I. T. 2002. Principal Component Analysis. Springer
Science & Business Media. ISBN 978-0-387-95442-4.
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