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Abstract

Although fast adversarial training has demonstrated both ro-
bustness and efficiency, the problem of “catastrophic overfit-
ting” has been observed. This is a phenomenon in which, dur-
ing single-step adversarial training, robust accuracy against
projected gradient descent (PGD) suddenly decreases to 0%
after a few epochs, whereas robust accuracy against fast gra-
dient sign method (FGSM) increases to 100%. In this paper,
we demonstrate that catastrophic overfitting is very closely
related to the characteristic of single-step adversarial train-
ing which uses only adversarial examples with the maximum
perturbation, and not all adversarial examples in the adversar-
ial direction, which leads to decision boundary distortion and
a highly curved loss surface. Based on this observation, we
propose a simple method that not only prevents catastrophic
overfitting, but also overrides the belief that it is difficult to
prevent multi-step adversarial attacks with single-step adver-
sarial training.

1 Introduction
Adversarial examples are perturbed inputs that are designed
to deceive machine learning classifiers by adding adversar-
ial noises to the original data. Although such perturbations
are sufficiently subtle and undetectable by humans, they re-
sult in an incorrect classification. Since deep-learning mod-
els were found to be vulnerable to adversarial examples
(Szegedy et al. 2013), a line of work was proposed to mit-
igate the problem and improve robustness of the models.
Among the numerous defensive methods, projected gradient
descent (PGD) adversarial training (Madry et al. 2017) is
one of the most successful approaches for achieving robust-
ness against adversarial attacks. Although PGD adversarial
training serves as a strong defensive algorithm, because it re-
lies on a multi-step adversarial attack, a high computational
cost is required for multiple forward and back propagation
during batch training.

To overcome this issue, other studies (Shafahi et al. 2019;
Wong, Rice, and Kolter 2020) on reducing the computa-
tional burden of adversarial training using single-step ad-
versarial attacks (Goodfellow, Shlens, and Szegedy 2014)
∗Equal contribution.
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Figure 1: Visualization of distorted decision boundary. The
origin indicates the original image x, the label of which is
“dog”. In addition, v1 is the direction of a single-step adver-
sarial perturbation and v2 is a random direction. The adver-
sarial image x+v1 is classified as the correct label, although
there is distorted interval where x + k · v1 is misclassified
even when k is less than 1. Due to this decision boundary
distortion, single-step adversarial training becomes vulnera-
ble to multi-step adversarial attacks.

have been proposed. Among them, inspired by Shafahi et al.
(2019), Wong, Rice, and Kolter (2020) suggested fast adver-
sarial training, which is a modified version of fast gradient
sign method (FGSM) adversarial training designed to be as
effective as PGD adversarial training.

Fast adversarial training has demonstrated both robust-
ness and efficiency; however, it suffers from the problem of
“catastrophic overfitting,” which is a phenomenon that ro-
bustness against PGD suddenly decreases to 0%, whereas
robustness against FGSM rapidly increases. Wong, Rice,
and Kolter (2020) first discovered this issue and suggested
the use of early stopping to prevent it. Later, it was found
that catastrophic overfitting also occurs in different single-
step adversarial training methods such as free adversarial
training (Andriushchenko and Flammarion 2020).
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In this regard, few attempts have been made to discover
the underlying reason for catastrophic overfitting and meth-
ods proposed to prevent this failure (Andriushchenko and
Flammarion 2020; Vivek and Babu 2020; Li et al. 2020).
However, these approaches were computationally inefficient
or did not provide a fundamental reason for the problem.

In this study, we first analyze the differences before and
after catastrophic overfitting. We then identify the relation-
ship between distortion of the decision boundary and catas-
trophic overfitting. Unlike the previous notion in which a
larger perturbation implies a stronger attack, we discover
that sometimes a smaller perturbation is sufficient to fool
the model, whereas the model is robust against larger pertur-
bations during single-step adversarial training. We call this
phenomenon “decision boundary distortion.”

Figure 1 shows an example of decision boundary distor-
tion by visualizing the loss surface. The model is robust to
perturbations when the magnitude of the attack is equal to
the maximum perturbation ε, but not to other smaller per-
turbations. When decision boundary distortion occurs, the
model becomes more robust against a single-step adversarial
attack but reveals fatal weaknesses to multi-step adversarial
attacks and leads to catastrophic overfitting.

Through extensive experiments, we empirically discov-
ered the relationship between single-step adversarial train-
ing and decision boundary distortion, and found that the
problem of single-step adversarial training is a fixed mag-
nitude of the perturbation, not the direction of the attack.
Based on this observation, we present a simple algorithm
that determines the appropriate magnitude of the perturba-
tion for each image and prevents catastrophic overfitting.

Contributions.

• We discovered a “decision boundary distortion” phe-
nomenon that occurs during single-step adversarial train-
ing and the underlying connection between decision
boundary distortion and catastrophic overfitting.

• We suggest a simple method that prevents decision
boundary distortion by searching the appropriate step size
for each image. This method not only prevents catas-
trophic overfitting, but also achieves near 100% accuracy
for the training examples against PGD.

• We evaluate robustness of the proposed method against
various adversarial attacks (FGSM, PGD, and AutoAttack
(Croce and Hein 2020)) and demonstrate the proposed
method can provide sufficient robustness without catas-
trophic overfitting.

2 Background and Related Work
2.1 Adversarial Robustness
There are two major movements for building a robust model:
provable defenses and adversarial training.

A considerable number of studies related to provable de-
fenses of deep-learning models have been published. Prov-
able defenses attempt to provide provable guarantees for
robust performance, such as linear relaxations (Wong and

Kolter 2018; Zhang et al. 2019a), interval bound propaga-
tion (Gowal et al. 2018; Lee, Lee, and Park 2020), and ran-
domized smoothing (Cohen, Rosenfeld, and Kolter 2019;
Salman et al. 2019). However, provable defenses are compu-
tationally inefficient and show unsatisfied performance com-
pared to adversarial training.

Adversarial training is an approach that augments adver-
sarial examples generated by adversarial attacks (Goodfel-
low, Shlens, and Szegedy 2014; Madry et al. 2017; Tramèr
et al. 2017). Because this approach is simple and achieves
high empirical robustness for various attacks, it has been
widely used and developed along with other deep learning
methods such as mix-up (Zhang et al. 2017; Lamb et al.
2019; Pang, Xu, and Zhu 2019) and unsupervised training
(Alayrac et al. 2019; Najafi et al. 2019; Carmon et al. 2019).

In this study, we focus on adversarial training. Given an
example (x, y) ∼ D, let `(x, y; θ) = `(fθ(x), y) denote the
loss function of a deep learning model f with parameters θ.
Then, adversarial training with a maximum perturbation ε
can be formalized as follows:

min
θ

E(x,y)∼D[ max
δ∈B(x,ε)

`(x+ δ, y; θ)] (1)

A perturbation δ is in B(x, ε) that denotes the ε-ball around
an example x with a specific distance measure. The most
used distance measures are L0, L2, and L∞. In this study,
we use L∞ for such a measure.

However, the above optimization is considered as NP-
hard because it contains a non-convex min-max problem.
Thus, instead of the inner maximization problem, adversar-
ial attacks are used to find the perturbation δ.

Fast gradient sign method (FGSM) (Goodfellow,
Shlens, and Szegedy 2014) is the simplest adversarial at-
tack, which uses a sign of a gradient to find an adversarial
image x′. Because FGSM requires only one gradient, it is
considered the least expensive adversarial attack (Goodfel-
low, Shlens, and Szegedy 2014; Madry et al. 2017).

x′ = x+ ε · sgn(∇x`(x, y; θ)) (2)

Projected gradient descent (PGD) (Madry et al. 2017)
uses multiple gradients to generate more powerful adversar-
ial examples. With a step size α, PGD can be formalized as
follows:

xt+1 = ΠB(x,ε)(x
t + α · sgn(∇x`(x, y; θ))) (3)

where ΠB(x,ε) refers the projection to the ε-ball B(x, ε).
Here, xt is an adversarial example after t-steps. A large
number of steps allows us to explore more areas in B(x, ε).
Note that PGDn corresponds to PGD with n steps (or itera-
tions). For instance, PGD7 indicates that the number of PGD
steps is 7.

2.2 Single-step Adversarial Attack versus
Multi-step Adversarial Attack

Single-step adversarial training was previously believed to
be a non-robust method because it produces nearly 0% accu-
racy against PGD (Madry et al. 2017). Moreover, the model
trained using FGSM has been confirmed to have typical
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characteristics, such as gradient masking, which indicates
that a single-step gradient is insufficient to find a decent ad-
versarial examples (Tramèr et al. 2017). For the above rea-
sons, a number of studies have been conducted on multi-step
adversarial attacks.

Contrary to this perception, however, free adversarial
training (Shafahi et al. 2019) has achieved a remarkable
performance with a single-step gradient using redundant
batches and accumulative perturbations. Following Shafahi
et al. (2019), Wong, Rice, and Kolter (2020) proposed fast
adversarial training using FGSM with a uniform random ini-
tialization. Fast adversarial training shows an almost equiv-
alent performance to those of PGD (Madry et al. 2017) and
free adversarial training (Shafahi et al. 2019).

η = Uniform(−ε, ε)
δ = η + α · sgn(∇η`(x+ η, y; θ))

x′ = x+ δ

(4)

2.3 Catastrophic Overfitting
Although fast adversarial training performs well in a short
time, a previously undiscovered phenomenon has been iden-
tified. That is, after a few epochs with single-step adversar-
ial training, robustness of the model against PGD decreases
sharply. This phenomenon is called catastrophic overfitting.
Fast adversarial training (Wong, Rice, and Kolter 2020) uses
early stopping to temporally avoid catastrophic overfitting
by tracking robustness accuracy against PGD on the training
batches.

To apply early stopping, robustness against PGD must
be continuously confirmed. Furthermore, standard accuracy
does not yield the maximum potential (Andriushchenko and
Flammarion 2020). To resolve these shortcomings and gain
a deeper understanding of catastrophic overfitting, a line of
work has been proposed. Vivek and Babu (2020) identified
that catastrophic overfitting arises with early overfitting to
FGSM. To prevent this type of overfitting, the authors intro-
duced dropout scheduling and demonstrated stable adver-
sarial training for up to 100 epochs. In addition, Li et al.
(2020) trained a model with FGSM at first and then changed
it into PGD when there was a large decrease in the PGD ac-
curacy. Andriushchenko and Flammarion (2020) found that
an abnormal behavior of a single filter leads to a nonlin-
ear model with single-layer convolutional networks. Based
on this observation, they proposed a regularization method,
GradAlign, which maximizes cos(∇x`(x, y; θ),∇x`(x +
η, y; θ)) and prevents catastrophic overfitting by inducing a
gradient alignment.

However, even with an increased understanding of catas-
trophic overfitting and methods for its prevention, a key
question remains unanswered:

What characteristic of single-step adversarial attacks is
the cause of catastrophic overfitting?

In this paper, we discuss the cause of catastrophic over-
fitting in the context of single-step adversarial training. We
then propose a new simple method to facilitate stable single-
step adversarial training, wherein longer training can pro-
duce a higher standard accuracy with sufficient adversarial
robustness.

(a) Robust accuracy and distortion

(b) Mean of absolute value of PGD7 perturbations and
L2 norm of the gradients of the images

Figure 2: (CIFAR10) Analysis of catastrophic overfitting.
Plot (a) shows robust accuracy of fast adversarial training
against FGSM (red) and PGD7 (blue). Distortion (green) de-
notes the ratio of images in distorted interval in Equation (5).
Plot (b) shows the mean of absolute value of PGD7 pertur-
bation E[||δPGD7||1] (purple) and the L2 norm of the gradi-
ents of the images E[||∇x||2] (orange). Dashed black lines
correspond to the 240th batch, which is the start point of
catastrophic overfitting in both plots.

3 Revisiting Catastrophic Overfitting
First, to analyze catastrophic overfitting, we start by record-
ing robust accuracy of fast adversarial training on CIFAR-10
(Krizhevsky, Hinton et al. 2009). The maximum perturba-
tion ε is fixed to 8/255. We use FGSM and PGD7 to verify
robust accuracy with the same settings ε = 8/255 and a step
size α = 2/255.

Figure 2 shows statistics on the training batch when catas-
trophic overfitting occurs (71st out of 200 epochs). In plot
(a), after 240 batches, robustness against PGD7 begins to
decrease rapidly; conversely, robustness against FGSM in-
creases. Plot (b) shows the mean of the absolute value of
PGD7 perturbation E[||δPGD7||1] and squared L2 norm of
the gradient of the images E[||∇x||2] of each batch. After
catastrophic overfitting, there is a trend of decreasing mean
perturbation. This is consistent with the phenomenon in
which the perturbations of the catastrophic overfitted model
are located away from the maximum perturbation, unlike the
model that is stopped early (Wong, Rice, and Kolter 2020).
Concurrently, a significant increase in the squared L2 norm
of the gradient is also observed. The highest point indicates
a large difference, approximately 35 times greater than that
before catastrophic overfitting.

These two observations, a low magnitude of perturbations
and a high gradient norm, make us wonder what would the
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Figure 3: Process of normal decision boundary turns into distorted decision boundary. (Left) The loss surface before catastrophic
overfitting with a FGSM adversarial direction v1 and a random direction v2. The red point denotes an adversarial example x+v1
generated from the original image x, the label of which is “dog.” (Middle) The changed loss surface after learning adversarial
example x + v1. Here, v1 is the same vector as that on the left. Distorted interval begins to occur for the first time. (Right) As
training continues, distorted decision boundary grows uncontrollably such that robustness against multi-step adversarial attacks
decreases.

loss surface looks like. Figure 3 illustrates the progress of
adversarial training in which catastrophic overfitting occurs.
The loss surface of the perturbed example is shown, where
the green spot denotes the original images and the red spot
denotes the adversarial example used for adversarial training
in the batch. The v1 axis indicates the direction of FGSM,
whereas the v2 axis is a random direction. The true label of
the original sample is “dog.” Hence, the purple area indicates
where the perturbed sample is correctly classified, whereas
the blue area indicates a misclassified area.

On the left side of Figure 3, we can easily observe that
the model is robust against FGSM. However, after train-
ing the batch, an interval vulnerable to a smaller perturba-
tion than the maximum perturbation ε appears, whereas the
model is still robust against FGSM. This distorted interval
implies that the adversarial example with a larger perturba-
tion is weaker than that with a smaller perturbation, which is
contrary to the conventional belief that a larger magnitude of
perturbation induces a stronger attack. As a result, the model
with distorted interval is vulnerable to multi-step adversarial
attacks that can search the vulnerable region further inside
B(x, ε). As the training continues, the area of distorted in-
terval increases as shown in the figure on the right. It is now
easier to see that the model is now perfectly overfitted for
FGSM, yet loses its robustness to the smaller perturbations.
We call this phenomenon “decision boundary distortion.”

The evidence of decision boundary distortion is also
shown in Figure 2 (b). When robustness against PGD7
sharply decreases to 0%, the mean of the absolute value
of PGD7 perturbation E[||δPGD7||1] decreases. It indicates
that, when catastrophic overfitting arises, a smaller per-
turbation is enough to fool the model than the maximum
perturbation ε, which implies that distorted interval ex-
ists. In addition, during the process of having distorted
decision boundary, as shown in the figure on the right,
the loss surface inevitably becomes highly curved, which
matches the observation of increasing the L2 norm of the

gradients of the images E[||∇x||2]. This is also consistent
with previous research (Andriushchenko and Flammarion
2020). Andriushchenko and Flammarion (2020) argued that
∇x`(x, y; θ) and ∇x`(x + η, y; θ) tend to be perpendic-
ular in catastrophic overfitted models where η is drawn
from a uniform distribution U(−ε, ε). Considering that a
highly curved loss surface implies (∇x`(x, y; θ))T (∇x`(x+
η, y; θ)) ≈ 0 in high dimensions, the reason why GradAlign
(Andriushchenko and Flammarion 2020) can avoid catas-
trophic overfitting might be because the gradient alignment
leads the model to learn a linear loss surface which reduces
the chance of having distorted decision boundary.

We next numerically measured the degree of decision
boundary distortion. To do so, we first define a new mea-
sure distortion d. Given a deep learning model f and a loss
function `, distortion d can be formalized as follows:

SD = {x|∃k ∈ (0, 1) s.t. f(x+ k · ε · sgn(∇x`)) 6= y}
SN = {x|f(x) = y, f(x+ ε · sgn(∇x`)) = y}

d =
|SD ∩ SN |
|SN |

(5)

where (x, y) is an example drawn from dataset D. However,
because the loss function of the model is not known explic-
itly, we use a number of samples to estimate distortion d.
In all experiments, we tested 100 samples in the adversarial
direction δ = ε · sgn(∇x`) for each example. Indeed, we
can see that distortion increases in Figure 2 (a) when catas-
trophic overfitting arises.

To verify that decision boundary distortion is generally
related to catastrophic overfitting, we demonstrate how dis-
tortion and robustness against PGD7 change during train-
ing. We conducted an experiment on five different mod-
els: fast adversarial training (Fast Adv.) (Wong, Rice, and
Kolter 2020), PGD2 (PGD2 Adv.) (Madry et al. 2017),
TRADES (Zhang et al. 2019b), GradAlign (Andriushchenko

8122



Figure 4: (CIFAR10) Robust accuracy and distortion on the training batch for each epoch. Two multi-step adversarial attacks
show zero distortion during the entire training time and reach nearly 100% PGD7 accuracy. By contrast, fast adversarial training
shows high distortion and eventually collapses after the 71st epoch. The proposed method successfully avoids such problems
and achieves a high PGD7 accuracy similiar to multi-step adversarial training (Best viewed in color).

and Flammarion 2020), and the proposed method (Ours). All
models were tested on ε = 8/255. The step size α is set to
α = 1.25ε, α = 1/2ε, and α = 1/4ε for fast adversarial
training, PGD2 adversarial training, and TRADES, respec-
tively. We also conducted same experiment on PGD adver-
sarial training with different number of steps; however, be-
cause these show similar results to PGD2 adversarial train-
ing, we only included PGD2. TRADES is trained with seven
steps.

As the key observation in Figure 4, the point where de-
cision boundary distortion begins in fast adversarial train-
ing (22nd epoch) is identical to the point where robustness
against PGD7 sharply decreases; that is, catastrophic overfit-
ting occurs. Then, when decision boundary distortion disap-
pears (45th to 72nd epoch), the model immediately recovers
robust accuracy. After the 72nd epoch, the model once again
suffers a catastrophic overfitting and never regains its robust-
ness with high distortion. Hence, we conclude that there is a
close connection between decision boundary distortion and
the vulnerability of the model against multi-step adversarial
attacks.

4 Stable Single-Step Adversarial Training
Based on the results in Section 3, we assume that distorted
decision boundary might be the reason for catastrophic over-
fitting. Here, we stress that the major cause of distorted deci-
sion boundary is that single-step adversarial training uses a
point with a fixed distance ε from the original image x as an
adversarial image x′ instead of an optimal solution of the in-
ner maximum in Equation (1). Under this linearity assump-
tion, the most powerful adversarial perturbation δ would be
the same as ε · sgn(∇x`) where ε is the maximum perturba-
tion, and the following formula should be satisfied.

`(x+ δ)− `(x) = (∇x`)T δ
= (∇x`)T ε · sgn(∇x`)
= ε||∇x`||1

(6)

However, as confirmed in the previous scetion, decision
boundary distortion with a highly curved loss surface has
been observed during the training phase, which indicates
that ε is no longer the strongest adversarial step size in the
direction of δ. Thus, the linear approximation of the inner
maximization is not satisfied when distorted decision bound-
ary arises.

To resolve this issue, we suggest a simple fix to prevent
catastrophic overfitting by forcing the model to verify the
inner interval of the adversarial direction. In this case, the
appropriate magnitude of the perturbation should be taken
into consideration instead of using ε:

δ = ε · sgn(∇x`)
arg max

k∈[0,1]
`(x+ k · δ, y; θ) (7)

Here, we introduce k, which denotes the scaling parameter
for the original adversarial direction sgn(∇x`). In contrast to
previous single-step adversarial training which uses a fixed
size of k = 1, an appropriate scaling parameter k∗ helps the
model to train stronger adversarial examples as follows:

δ = ε · sgn(∇x`)
k∗ = mink∈[0,1]{k|y 6= f(x+ k · δ; θ)}
min
θ

E(x,y)∼D[`(x+ k∗ · δ, y; θ)]
(8)

In this way, regardless of the linearity assumption, we can
train the model with stronger adversarial examples that in-
duce an incorrect classification in the adversarial direc-
tion. Simultaneously, we can also detect distorted decision
boundary by inspecting the inside of distorted interval, as
shown in Figure 3.

However, because we do not know the explicit loss func-
tion of the model, forward propagation is the only approach
for checking the adversarial images in the single-step ad-
versarial attack direction. Hence, we propose the follow-
ing simple method. First, we calculate the single-step ad-
versarial direction δ. Next, we choose multiple checkpoints
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Algorithm 1: Stable single-step adversarial training
Parameter: B mini-batches, a perturbation size ε, a

step size α, and c check points for a
network fθ

for i = 1, ..., B do
η = Uniform(−ε, ε)
ŷi,0 = fθ(xi + η)
δ = η + α · ∇η`(ŷi,0, yi)
for j = 1, ..., c do

ŷi,j = fθ(xi + j · δ/c))
end
x′i = xi + min({k|ŷi,k 6= yi} ∪ {1}) · δ/c
θ = θ −∇θ`(fθ(x′i), yi)

end

(x + 1
c δ, ..., x + c−1

c δ, x + δ). Here, c denotes the number
of checkpoints except for the clean image x, which is tested
in advance during the single-step adversarial attack process.
We then feed all checkpoints to the model and verify that the
predicted label ŷj matches the correct label y for all check-
points x + j

cδ where j ∈ {1, ..., c}. Among the incorrect
images and the clean image x, the smallest j is selected; if
all checkpoint are correctly classified, the adversarial image
x′ = x + δ is used. Algorithm 1 shows a summary of the
proposed method.

Suppose the model has L layers with n neurons. Then, the
time complexity of forward propagation is O(Ln2). Con-
sidering that backward propagation has the same time com-
plexity, the generation of one adversarial example requires
O(2Ln2) in total. Thus, with c checkpoints, the proposed
method consumes O((c + 4)Ln2) because it requires one
adversarial direction O(2Ln2), forward propagation for c
checkpoints O(cLn2), and one optimization step O(2Ln2).
Compared to PGD2 adversarial training, which demands
O(6Ln2), the proposed method requires more time when
c > 2. However, the proposed method does not require ad-
ditional memory for computing the gradients of the check-
points because we do not need to track a history of variables
for backward propagation; hence, larger validation batch
sizes can be considered. Indeed, the empirical results de-
scribe in Section 5 indicate that the proposed method con-
sumes less time than PGD2 adversarial training under c ≤ 4.

Figure 4 shows that the proposed method successfully
avoids catastrophic overfitting despite using a single-step ad-
versarial attack. Furthermore, the proposed model not only
achieves nearly 100% robustness against PGD7, which fast
adversarial training cannot accomplish, but also possesses
zero distortion until the end of the training. This is the op-
posite of the common understanding that single-step adver-
sarial training methods cannot perfectly defend the model
against multi-step adversarial attacks.

The proposed model learns the image with the small-
est perturbation among the incorrect adversarial images.
In other words, during the initial states, the model out-
puts incorrect predictions for almost every image such that
min({k|ŷi,k 6= yi} ∪ {1}) = 0 in Algorithm 1. As addi-

Figure 5: (CIFAR10) Comparison of PGD7 accuracy on
the training batch between fast adversarial training with ε-
scheduling and the proposed method. The dashed line in-
dicates the average maximum perturbation E [||δ||∞] calcu-
lated from the proposed method for each epoch and is used
as the maximum perturbation of fast adversarial training.

tional batches are trained, the average maximum perturba-
tion E[||δ||∞] increases, as in Figure 5, where δ = x′−x and
x′ is selected by the proposed method. Thus, the proposed
method may appear to simply be a variation of ε-scheduling.
In order to point out the difference, fast adversarial train-
ing with ε-scheduling is also considered. For each epoch, we
use the average maximum perturbation E[||δ||∞] calculated
from the proposed method as the maximum perturbation ε.
The result is summarized in Figure 5.

Notably, ε-scheduling cannot help fast adversarial training
avoid catastrophic overfitting. The main difference between
ε-scheduling and the proposed method is that, whereas ε-
scheduling uniformly applies the same magnitude of the per-
turbation for every image, the proposed method gradually
increases the magnitude of the perturbation appropriately by
considering the loss surface of each image. Therefore, in
contrast to ε-scheduling, the proposed method successfully
prevents catastrophic overfitting, despite the same size of the
average perturbation used during the training process.

5 Adversarial Robustness
In this section, we conduct a set of experiments on CI-
FAR10 (Krizhevsky, Hinton et al. 2009) and Tiny Ima-
geNet (Le and Yang 2015) , using PreAct ResNet-18 (He
et al. 2016). Input normalization and data augmentation in-
cluding 4-pixel padding, random crop and horizontal flip
are applied. We use SGD with a learning rate of 0.01,
momentum of 0.9 and weight decay of 5e-4. To check
whether catastrophic overfitting occurs, we set the total
epoch to 200. The learning rate decays with a factor of
0.2 at 60, 120, and 160 epochs. All experiments were con-
ducted on a single NVIDIA TITAN V over three differ-
ent random seeds. Our implementation in PyTorch (Paszke
et al. 2019) with Torchattacks (Kim 2020) is available at
https://github.com/Harry24k/catastrophic-overfitting.

During the training session, the maximum perturbation ε
was set to 8/255. For PGD adversarial training, we use a
step size of α = max(2/255, ε/n), where n is the num-
ber of steps. TRADES uses α = 2/255 and seven steps for
generating adversarial images. Following Wong, Rice, and
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Method Standard FGSM PGD50 Black-box AA Time (h)
Multi-step PGD2 Adv. 86.6±0.8 49.7±2.6 36.0±2.3 85.6±0.8 34.8±2.1 4.5

PGD4 Adv. 86.0±0.8 49.6±3.0 36.7±2.9 85.3±0.8 35.4±2.6 6.7
PGD7 Adv. 84.4±0.2 51.5±0.1 40.5±0.1 83.8±0.2 39.4±0.2 11.1
TRADES 85.3±0.4 50.7±1.6 39.3±1.9 84.4±0.4 38.6±2.0 15.1

Single-step Fast Adv. 84.5±4.3 95.1±6.8 0.1±0.1 80.8±8.7 0.0±0.0 3.2
GradAlign 83.9±0.2 44.3±0.0 31.7±0.2 83.3±0.3 30.9±0.2 13.6

Ours (c = 2) 86.8±0.3 48.3±0.5 32.5±0.2 85.9±0.1 30.9±0.2 3.5
Ours (c = 3) 87.7±0.8 50.5±2.4 33.9±2.3 86.7±0.9 32.3±2.2 3.9
Ours (c = 4) 87.8±0.9 50.5±2.3 33.7±2.4 87.0±0.8 32.2±2.4 4.4

Table 1: Standard and robust accuracy (%) and training time (hour) on CIFAR10.

Figure 6: (Tiny ImageNet) PGD7 accuracy on the training
batch.

Method Standard FGSM PGD50 Time (h)
PGD2 Adv. 46.3±1.2 14.7±2.7 10.3±2.7 27.7
Fast Adv. 26.2±0.7 49.0±5.7 0.0±0.0 19.6

Ours (c = 3) 49.6±1.5 12.5±0.1 7.8±0.1 25.7

Table 2: Standard accuracy and robustness (%) and training
time (h) on Tiny ImageNet.

Kolter (2020), we use α = 1.25ε for fast adversarial train-
ing and the proposed method. The regularization parameter
β for the gradient alignment of GradAlign is set to 0.2 as
suggested by Andriushchenko and Flammarion (2020).

First, we check whether our method shows the same re-
sults as those of Tiny ImageNet described in the previous
section. Figure 6 shows that the proposed method also suc-
cessfully prevents catastrophic overfitting in a large dataset.
PGD7 accuracy decreases rapidly only for fast adversarial
training after the 49th epoch, but not for others including the
proposed method. The full results with the change in distor-
tion are shown in Appendix B.

We then evaluate robustness on the test set. FGSM and
PGD50 with 10 random restarts are used for evaluating ro-
bustness of the models. Furthermore, to estimate accurate
robustness and detect gradient obfuscation (Athalye, Car-
lini, and Wagner 2018), we also consider PGD50 adversarial
images generated from Wide-ResNet 40-10 (Zagoruyko and
Komodakis 2016) trained on clean images (Black-box), and
AutoAttack (AA) which is one of the latest strong adversar-
ial attacks proposed by Croce and Hein (2020).

Tables 1 and 2 summarize the results. From Table 1, we
can see that multi-step adversarial training methods yield

more robust models, but generally requires a longer compu-
tational time. In particular, TRADES requires over 15 hours,
which is 5-times slower than the proposed method. Among
the single-step adversarial training methods, fast adversar-
ial training is computationally efficient, however, because
catastrophic overfitting has occurred, it shows 0% accuracy
against PGD50 and AA.

Interestingly, we observe that fast adversarial training
achieves a higher accuracy for FGSM adversarial images
than clean images in both datasets, which does not appear in
other methods. The accuracy when applying FGSM on only
correctly classified images is 84.4% on CIFAR10, whereas
all other numbers remain almost unchanged when we use at-
tacks on correctly classified clean images. We note that this
is another characteristic of the catastrophic overfitted model
which we describe in more detail in Appendix B.

The proposed method, by contrast, shows the best stan-
dard accuracy and robustness against PGD50, Black-box,
and AA with a shorter time. GradAlign also provides suf-
ficient robustness; however, it takes 3-times longer than the
proposed method. As shown in Table 2, similar results are
observed on Tiny ImageNet. We include the results of the
main competitors, PGD2 adversarial training, fast adversar-
ial training, and the proposed method with c = 3 which
shows the best performance on CIFAR10. Here again, the
proposed method shows high standard accuracy and adver-
sarial robustness close to that of PGD2 adversarial training.
We provide additional experiments with different settings,
such as cyclic learning rate schedule in Appendix C.

6 Conclusion
In this study, we empirically showed that catastrophic over-
fitting is closely related to decision boundary distortion by
analyzing their loss surface and robustness during training.
Decision boundary distortion provides a reliable understand-
ing of the phenomenon in which a catastrophic overfitted
model becomes vulnerable to multi-step adversarial attacks,
while achieving a high robustness on the single-step adver-
sarial attacks. Based on these observations, we suggested a
new simple method that determines the appropriate magni-
tude of the perturbation for each image. Further, we eval-
uated robustness of the proposed method against various
adversarial attacks and showed sufficient robustness using
single-step adversarial training without the occurrence of
any catastrophic overfitting.
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