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Abstract

The Mixup method, which uses linearly interpolated data, has
emerged as an effective data augmentation tool to improve
generalization performance and the robustness to adversar-
ial examples. The motivation is to curtail undesirable oscil-
lations by its implicit model constraint to behave linearly at
in-between observed data points and promote smoothness. In
this work, we formally investigate this premise, propose a
way to impose smoothness constraints explicitly, and extend
it to incorporate implicit model constraints. First, we derive
a new function class composed of kernel-convoluted models
(KCM) where the smoothness constraint is directly imposed
by locally averaging the original functions with a kernel func-
tion. Second, we propose to incorporate the Mixup method
into KCM to expand the domains of smoothness. In both
cases of the KCM and the KCM adapted with the Mixup, we
provide risk analysis, respectively, under mild conditions on
kernel functions. As a result, we show that the upper bound
of the excess risk over a new function class is not slower than
that of the excess risk over the original function class. Using
CIFAR-10 and CIFAR-100 datasets, our experiments demon-
strate that the KCM with the Mixup outperforms the Mixup
method in terms of generalization and robustness to adversar-
ial examples.

Introduction
Deep neural networks have brought an outstanding per-
formance in various fields such as computer vision
(Krizhevsky, Sutskever, and Hinton 2012), speech recogni-
tion (Graves, Mohamed, and Hinton 2013), and reinforce-
ment learning (Silver et al. 2016). To train deep neural net-
works, we solve the empirical risk minimization (ERM)
problem given data, but this solution could lead to a small
training error, but a large test error, known as overfitting.
This means that the deep neural networks could memorize
a training sample, have poor generalization ability, and lack
robustness against adversarial attacks.

Among the many techniques for regularization to reduce
overfitting, data augmentation has been widely used to im-
prove generalization performance in machine learning. In
particular, in image classification, various data augmentation
methods such as horizontal reflections and rotations have
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been commonly applied (Krizhevsky, Sutskever, and Hin-
ton 2012; Simard et al. 1998). Recently, sample-mixed aug-
mentation, called Mixup, has emerged as an effective tool
(Zhang et al. 2018). The Mixup method generates virtual
samples based on linear interpolations between random pairs
of inputs and their corresponding labels. Trained deep mod-
els using the Mixup-generated samples have demonstrated
superb performances in supervised learning (Zhang et al.
2018; Liang et al. 2018), unsupervised learning (Beckham
et al. 2019; Xie et al. 2019), and semi-supervised learning
(Berthelot et al. 2019; Verma et al. 2019b). The authors of
the Mixup method (Zhang et al. 2018) conjecture a poor gen-
eralization and lack of the robustness to adversarial exam-
ples may be due to unnecessary oscillations at in-between
observed data points. The method is designed to encourage
the model to behave linearly between training samples to
curtail undesirable oscillations when predicting outside the
training examples. This motivational claim is cogent, but has
not been scrutinized.

In this paper, we formally investigate this premise, pro-
pose a way to explicitly impose constraints, and extend it
to incorporate with implicit constraints. First, we propose a
function class where constraints are explicitly imposed and
provide a formal risk analysis. Second, we propose to incor-
porate the Mixup method in the proposed function class and
provide corresponding risk analysis.

In the first part, our strategy starts by paying attention to
the role of data augmentation in placing model constraints.
For example, data augmentation techniques such as hori-
zontal reflections and rotations encourage training to find
invariant functions to corresponding transformations. Re-
cent works have attempted to explicitly impose these con-
straints through careful construction of models (Cohen and
Welling 2016; Tai, Bailis, and Valiant 2019; van der Wilk
et al. 2018). Using interpolated data instead of original sam-
ples, the Mixup method encourages the models to implicitly
satisfy the linearity constraint and promote smoothness. In
contrast to data augmentation for rotations or flipping, there
has not been an effort to explicitly impose constraints by
constructing models. We fill this gap and build models that
explicitly bring desirable constraints of smoothness. We in-
troduce a new function class composed of kernel-convoluted
models (KCM), a derived function class given original func-
tions. In the KCM, the smoothness constraint is directly im-
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Figure 1: An illustration of regions where the Mixup method
(left), KCM (middle), and KCM with the Mixup method
(right) impose smoothness when there are three data points.

posed by locally averaging the original functions with a ker-
nel function via convolution. To derive tangible theoretical
results, we focus on product kernel functions but allow var-
ious kernels. We provide the upper bound of the excess risk
in relation to the complexity of the original function class
where the original function is a linear function or a deep
neural network.

In the second part of our paper, we incorporate the Mixup
into the KCM and conduct a corresponding risk analysis.
As opposed to the previous endeavors that replaced data
augmentation by explicitly modeling invariance to a certain
transformation, we blend the two to expand the domain of
smoothness. While the KCM imposes smoothness over lo-
cal regions around observed data defined by kernels as de-
picted by the yellow circles in the second subplot of Figure
1, the Mixup method does over edges between two observed
data as vertexes, as depicted by the yellow line in the first
subplot of Figure 1. Therefore, combining the two may ex-
pand the domains of smoothness, as depicted by the yellow
triangular region in the third subplot of Figure 1. Using the
two-moon dataset (Pedregosa et al. 2011), we also show that
the Mixup method promotes smoothness and the KCM ren-
ders the decision boundary visibly smoother than that of the
Mixup method in Figure 2. For the minimizer of the risk of
the KCM with the Mixup, we provide risk analysis and show
that the upper bound of the excess risk can be expressed in
terms of the complexity of the function class composed of
KCM and the smoothing parameter of the KCM, and the
size of perturbation of the Mixup. Our main contributions
are summarized as follows.

• We propose a new model called a kernel-convoluted
model (KCM) where the smoothness constraint is directly
imposed by locally averaging the original functions with
a kernel function, and provide a risk analysis under some
conditions for kernels.

• We propose to incorporate the Mixup method into the
KCM to expand the domains of smoothness. We pro-
vide corresponding risk analysis and show that the upper
bound of the excess risk is O(n−1/2) when the original
function is a deep neural network and the perturbation or-
der of the Mixup is faster than n−1/2 where n is a sample
size (Theorem 3).

• Using CIFAR-10 and CIFAR-100 datasets, we demon-
strate that the KCM with the Mixup outperforms the
Mixup method in terms of generalization and robustness

to adversarial examples.
The rest of the paper is organized as follows: first, we

review work related to the Mixup and efforts to build
models that explicitly impose invariant constraints handled
by data augmentation; then, we introduce a new function
where smoothness is explicitly imposed and show its excess
risk bound. Afterward, we propose incorporating the Mixup
into the proposed model and conduct the corresponding risk
analysis; finally, we present experimental results and outline
conclusions. We also provide assumptions, some theoretical
results, and proofs in Appendix 2 in the Supplementary
material. The source-code for conducting our experiments
of binary classification on the two-moon dataset and
CIFAR-10 (cat vs. dog) and multi-class classification on
CIFAR-10 is available at

https://github.com/MJ1021/kcm-code.

Related Works and Preliminaries
Since the Mixup has shown its effectiveness, many re-
searchers have proposed variations and modifications. One
kind of modification is to interpolate in the hidden space
representations (DeVries and Taylor 2017; Guo, Mao, and
Zhang 2019; Verma et al. 2019a). Another variation is to
choose more than a pair (Guo, Mao, and Zhang 2019).
Tokozume, Ushiku, and Harada (2018) consider alterna-
tive interpolation schemes involving labels. Moreover, Liang
et al. (2018) use the spatial information to generate a new
synthetic sample by stitching the space domain of two im-
ages with different proportions of the area of a synthetic im-
age.

There have been efforts to formalize data augmenta-
tion. One approach is to establish a theoretical framework
for understanding data augmentation. For example, Dao
et al. (2019) provide a general model of augmentation as
a Markov process in which augmentation is performed via
a random sequence of transformations. Other attempts in-
clude seeking an alternative yet formal way to replace the
role of data augmentation. For example, one of the roles
of data augmentation is to impose constraints of invariance
on certain transformations. Some authors have proposed to
formally construct a model to enforce desired transforma-
tion invariance constraints. In some images, rotation, flip-
ping, and rescaling do not change labels. Such transforma-
tion invariances of a domain are often encouraged by data
augmentation. Group invariance convolutional neural net-
works (Cohen and Welling 2016; Dieleman, De Fauw, and
Kavukcuoglu 2016; Marcos et al. 2017; Worrall et al. 2017)
enforces rotation or translation invariance. Equivariant trans-
former models (Tai, Bailis, and Valiant 2019) offer flexible
types of invariance with the use of specially-derived canoni-
cal coordinate systems. van der Wilk et al. (2018) demon-
strate the explicit imposition of model constraint for the
Gaussian process using the marginal likelihood criterion.
In their works, the models are constructed in such a way
that the predictions are invariant to transformations. Further-
more, van der Wilk et al. (2018) argue the advantage of plac-
ing constraints directly through the model because the ob-
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Figure 2: Visualization of the contours of classifiers learned with ERM (left), Mixup (middle), and KCM (right). Data points
from classes -1 and 1 of the two-moon dataset are indicated by blue circles and red crosses, respectively. Decision boundaries
are represented as solid lines and contours of levels -1 and 1 are represented by dashed lines. The best configuration of α for
Mixup and h for KCM is presented in Table 3 in the Supplementary material is presented.

jective function correctly reflects the reduced complexity of
constrained models. Recently, Wu et al. (2020) analyze the
effect of the label-preserving transformations via the ridge
estimator in an over-parametrized linear regression.

As for the Mixup in the classification problem, few stud-
ies have constructed a model to enforce desired constraints.
This paper fills this gap. We present the models with explicit
constraints that the Mixup attempts to attain and propose a
class of models that achieves flexible types of smoothness.

Kernel-convoluted Neural Networks and its
Excess Risk Bound

Problem Setup
Before we describe the Mixup and study its constraints, we
introduce the problem setup and notations. We restrict our
attention to a binary classification problem although the pro-
posed method can be easily extended to a multi-class classi-
fication. Let X ⊆ Rd be an input space and Y be an output
space. Assume that Y = {−1, 1}. For a given real-valued
function f : X → R, we denote the classifier by C∗(x; f)
where C∗(x; f) = sign

(
f(x)

)
for x ∈ X .

Other notations are as follows. For a real-valued function
g, we denote Lg by a Lipschitz constant of g. The p-norm

of x is defined by ‖x‖p =
(
|x1|p + · · · + |xd|p

)1/p
where

x = (x1, · · · , xd)T and p ≥ 1. For a matrixA ∈ Rd×m, we
denote the spectral norm of A by ‖A‖2. Given two positive
real values a, b, we write a . b if a ≤ cb for some generic
constant c > 0. For two sequences {an} and {bn}, we write
an = O(bn) if there exists a positive real number M and
a natural number n0 such that |an| ≤ Mbn for all n ≥ n0.
We let [n] = {1, . . . , n} for n ∈ N.

To elicit implicit model constraints of the Mixup method,
we briefly describe its steps (Zhang et al. 2018). We denote
the training data as S = {(xi, yi) : i ∈ [n]}, which is a set of
random samples drawn from the unknown joint distribution
Pdata. For a randomly selected pair from the training data S,
(xi, yi) and (xj , yj), consider linear interpolations,

x̃i = (1− λ)xi + λxj and ỹi = (1− λ)yi + λyj ,

where λ ∈ [0, 1] is the interpolation weight. The Mixup

method uses {(x̃i, ỹi) : i ∈ [n]} instead of originally ob-
served data. By plugging in (x̃i, ỹi), the trained model is
forced to satisfy f(x̃i) ≈ (1 − λ)f(xi) + λf(xj). Thus,
the Mixup method implicitly imposes the linear constraint,
which induces smoothing out the model to increase general-
ization power and robustness to adversarial examples.

Kernel-convoluted Models (KCM)
In this section, we define kernel-convoluted models (KCM).
Let F = {f | f : X → R, f is a measurable function}.
Definition 1 (Kernel-convoluted models) Assume that X
is convex. For a real-valued function f and a measure de-
fined on Borel σ-algebra Σ of subsets of X , K∗, we call
fK
∗

kernel-convoluted models where

fK
∗
(x)=K∗∗ f(x)=

∫
f(x− u)dK∗(u) for x ∈ X . (1)

The resulting function, fK
∗
, is a weighted average of f at

different input locations. If K∗ is absolute continuous with
respect to the Lebesgue measure µ, we denote the corre-
sponding density by K. Then, (1) reduces to

fK
∗
(x)=

∫
f(x−u)K(u)du=

∫
K(x−u)f(u)du. (2)

A convenient kernel to handle multivariate case is a prod-
uct kernel function defined by

K(u) =
d∏
j=1

kh(uj) = h−d
d∏
j=1

k
(uj
h

)
,

where k is a univariate kernel function, kh(u) =
h−1k

(
u/h

)
, and h > 0 is a bandwidth. When k is the Gaus-

sian probability density function, the corresponding product
kernel is called a d-dimensional Gaussian kernel.

With the above definition on kernel function , h represents
degree of heterogeneity of kernelizing models. As h shrinks,
the kernel-convoluted model converges to the original func-
tion: that is,

lim
h→0

∫
f(x− u)K(u)du = f(x).
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Generalization Error Bounds via the Empirical
Rademacher Complexity of KCM
We restrict our attention to the case where K∗ is abso-
lutely continuous with respect to the Lebesgue measure µ
as (2) and suppress superscript ∗ for brevity. We denote
FK = {fK | f ∈ F} where K is the corresponding den-
sity function. Assume that K is the product kernel. For a
given real-valued kernel-convoluted function fK defined on
X , we consider a new classifier C(x; fK) as C(x; fK) =
sign

(
fK(x)

)
for x ∈ X . The classification risk of fK is

defined by

R(Pdata, f
K) = E(x,y)∼Pdata

[
I
(
C(x; fK) 6= y

)]
= E(x,y)∼Pdata

[
`
(
yfK(x)

)]
,

where I(·) is an indicator function and `(z) = 1 if z ≤ 0
and is 0 otherwise. While the 0-1 loss can be used for binary
classification problem, directly minimizing the correspond-
ing empirical risk is NP-hard due to the non-convexity of
the ` (Hoffgen, Simon, and Vanhorn 1995). To resolve this
issue, many authors have been considered a suitable surro-
gate loss that has advantageous properties (Bartlett, Jordan,
and McAuliffe 2006; Kim, Ohn, and Kim 2018; Mohri, Ros-
tamizadeh, and Talwalkar 2018; Yin, Kannan, and Bartlett
2019). Denote a surrogate loss function φ : R → [0, B]. To
avoid confusion, we add φ to a sub-index in the above def-
inition of the risk and call it as φ-risk: that is, for a given
surrogate loss function φ, we define

Rφ(Pdata, f
K) = E(x,y)∼Pdata

φ
(
yfK(x)

)
,

Rφ(Pdata, f
∗
φ,conv) = inf

fK∈FK
Rφ(Pdata, f

K),

Rφ(Pdata, f
∗
φ) = inf

f∈F
Rφ(Pdata, f).

To estimate the φ-risk we replace Pdata by empirical
distribution, Pn and the surrogate empirical risk based on
the training data S can be expressed as Rφ(Pn, fK) =
1
n

∑n
i=1 φ

(
yif

K(xi)
)
.

We use the empirical Rademacher complexity of G given
Sz (Bartlett and Mendelson 2002), defined as

R̂Sz (G) = Eε

[
sup
g∈G

1

n

n∑
i=1

εig(zi)
]

to bound the generalization error where G is a family of
functions mapping from Z to [a, b], Sz = {zi : i ∈ [n]} is a
fixed sample of size n, and ε = (ε1, . . . , εn)T and ε1, . . . , εn
are random variables with P(εi = 1) = P(εi = −1) = 1/2
(Mohri, Rostamizadeh, and Talwalkar 2018). Let

f̂φ,conv = arg min
fK∈FK

Rφ(Pn, fK).

Now, we present the excess risk of f̂φ,conv relative to
Rφ(Pdata, f

∗
φ,conv), and to Rφ(Pdata, f

∗
φ), respectively. To

avoid confusion, we call the former the excess KCM risk,
and the latter, the excess risk. For the excess KCM risk, we
can extend the results on the risks over F via Rademacher
complexity (Bartlett and Mendelson 2002; Mohri, Ros-
tamizadeh, and Talwalkar 2018), and show that the upper

bound of the excess KCM risk is bounded as long as the
Rademacher complexity of FK is well-controlled. Details
are in Corollary 1 in the Supplementary material.
Theorem 1 (Excess risk bound) Assume that the Lipschitz
continuity on φ and f stated in (A1) and (A2) in the Supple-
mentary material as well as (A3) stated in below hold. For
any η > 0, with probability at least (1− η), we have

Rφ(Pdata, f̂φ,conv)−Rφ(Pdata, f
∗
φ)

≤ 4LφR̂S(FK) + 6B

√
log 4

η

2n
+O(h).

The first term of the upper bound is due to the Ledoux-
Talagrand contraction inequality (Mohri, Rostamizadeh, and
Talwalkar 2018), and is a function of h through FK . Theo-
rem 1 states that the excess risk bound depends on the em-
pirical Rademacher complexity, the degree of heterogeneity
of kernelized models (h), the sample size (n), and the cer-
tainty in the success of the whole procedure (η). Therefore,
a wide bandwidth can be a dominating term of the upper
bound and leads to a slower convergence. The next section
shows when f is a deep neural network, certain choices of
kernels can keep the empirical Ramemacher complexity of
the new function class the same as that of the original func-
tion class asymptotically.

The Empirical Rademacher Complexity of FK

In this section, we study the bounds of R̂S(FK) shown in
Theorem 1 and its relationship with R̂S(F). To delve into
the effect of the convolution, we first consider the case when
f is a linear function with lp norm constraints. A linear
function bases on a rich class of hypotheses used in sev-
eral learning algorithms such as ridge regression (Hoerl and
Kennard 1970) and support vector machines (Cortes and
Vapnik 1995). Moreover, the lp norm constraints have been
widely considered to constrain the family of linear predic-
tors by many authors until recently (Awasthi, Frank, and
Mohri 2020). We show that a symmetric univariate kernel
function allows us to avoid polynomial dimension depen-
dence even if p > 1 and keep the same Rademacher com-
plexity as that of the original class. Details are given in The-
orem 2 in the Supplementary material.

Now, we characterize the KCM when the original func-
tion f is a deep neural network. For deep neural networks
with L hidden layers, we denote a sequence of matrices
by W = {W 1, . . . ,WL+1}, where W s ∈ Rds×ds−1 for
s ∈ [L+ 1]. Note that d0 = d and dL+1 = 1. Let

fW(x) = WL+1ρ
(
WLρ

(
· · · ρ(W 1x)

))
,

where [ρ(x)]j = ρ(xj) and ρ is an activation func-
tion. We use the rectifier linear unit (ReLU) activation
function ρ(t) = max{0, t} for t ∈ R. Let dmax =
max{d0, d1, . . . , dL+1}. The loss function can be written as
φ
(
yfW(x)

)
where φ : R → [0, B] is Lφ-Lipschitz. Define

the function class for deep neural networks with spectrally-
normalized constraints as follows:

FDNN,‖.‖2 = {x 7→ fW(x) | ‖W s‖2 ≤ rs, s ∈ [L+ 1]}.
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We state the assumptions for the following theorem.
(A3) For some constant c1K > 0,

∫
Kp(u)‖u‖2du <

c1K <∞ where Kp(t) =
∏d
j=1 k(tj).

(A4) For any x ∈ X , ‖x‖2 ≤ Bx for some constantBx >
0.

Under (A4), Li et al. (2018) show that R̂S
(
FDNN,‖.‖2

)
.

G, where

G =
Bx
∏L+1
s=1 rs√
n

√√√√√dw log

( (L+ 1)
√
n max

1≤s≤L+1
{rsms}

√
dw min

1≤s≤L+1
rs

)
,

dw = d0 × d1 + · · ·+ dL × dL+1, rank(A) is the rank of a
matrixA, and ms =

√
rank(W s). Let FKDNN,‖.‖2 = {x 7→

K ∗ fW(x) | fW ∈ FDNN,‖.‖2}. The following theorem
shows the empirical Rademacher complexity of FKDNN,‖.‖2
given S.

Theorem 2 Assume that K is a symmetric density function.
Under (A3) and (A4), we have

R̂S
(
FKDNN,‖.‖2

)
.
B∗
Bx

G,

where B∗ = 3hc1K +Bx.

We have analogous results with the linear case in that
choosing symmetric kernel functions: the complexity of
the new kernel-convoluted function class given S will be
asymptotically equivalent to that of the original one.

Kernel-convoluted Models with Mixup
Generalization Error Bound of KCM with Mixup
In this section, we adapt the Mixup method to the KCM.
A motivation of such adaptation is to broaden the domain of
smoothness as depicted in Figure 1. We conduct risk analysis
of the proposed function class when the Mixup method is
incorporated. The proposed estimator is

f̂φ,prop = arg min
fK∈FK

Rφ,prop(Pn, fK),

where Rφ,prop(Pn, fK) = 1
n

∑n
i=1 φ

(
ỹif

K(x̃i)
)
. In this

paper, we consider the case where the interpolation weight
depends on n, and is denoted by λn. We show in Theorem
3 in the Supplementary material that the excess KCM risk
with Mixup of f̂φ,prop defined by

Rφ(Pdata, f̂φ,prop)−Rφ(Pdata, f
∗
φ,conv)

can be bounded by R̂S(FK), the term involving λn and the
bandwidth h.

Theorem 3 (Excess risk with Mixup) Let X be a compact
set. Under (A1)-(A6) in the Supplementary material for any
η > 0, with probability at least (1− η) we have:

Rφ(Pdata, f̂φ,prop)−Rφ(Pdata, f
∗
φ)

≤ 4LφR̂S(FK) + 6B

√
log 4

η

2n
+O(λn) +O(h).

Algorithm 1 Training Mixup with KCM

Input: Training data S = {(xi, yi)}i∈[n], kernel density
functionK, parameter of Beta distribution α, size of mini-
batch nB , sample size for Monte Carlo approximation N
Parameter: Parameter θ in a given model fθ
Output: Updated parameter θ̂
Initialize parameters θ in the model fθ
for t = 1 to itermax do

Randomization of λ: λj ∼ Beta(α, α) for j ∈ [nB ]
and put λ = min{(1− λ), λ}
Mixup: for randomly selected pairs (xj , yj) and
(xj′ , yj′), construct S̃B = {(x̃j , ỹj)}j∈[nB ],
where

x̃j = (1− λj)xj + λjxj′

ỹj = (1− λj)yj + λjyj′ .

Realization of u: ui′ ∼ K(·) for i′ ∈ [N ]
for j = 1 to nB do

Averaging f̄θ(x̃j) = 1
N

∑
i′ fθ(x̃j − ui′)

end for
Update θ by descending: 1/nB

∑
j φ
(
ỹj f̄θ(x̃j)

)
end for

Theorem 3 shows that the excess risk with Mixup of
f̂φ,prop can be bounded by the terms from the upper bound
of the excess KCM risk with Mixup and the size of the band-
width. This implies that even with choosing a symmetric
kernel, the dependence on h still remains. When perturba-
tion of the Mixup and smoothing range of KCM are smaller
than O(n−1/2), the upper bound would be asymptotically
equivalent to that of the original class.

Algorithm
The algorithm for the proposed method is provided in Algo-
rithm 1. In implementing the KCM, the kernel-convoluted
function can be approximated by Monte Carlo approxima-
tion, fK(x) ≈ f̂K(x) = N−1

∑N
i′=1 f(x− ui′) where ui′

are random samples from a kernel density function K for
i′ ∈ [N ]. We bring attention to the fact that the case of N
being 1 gives an unbiased estimator of the integral. In our
experiments on CIFAR-10 and CIFAR-100, we find that the
proposed method with N=1 or 5 produces better test accura-
cies than the Mixup method as described in the next section.

Experiment
We conduct experiments using three datasets, the two-moon
dataset (Pedregosa et al. 2011), CIFAR-10, and CIFAR-100
(Krizhevsky and Hinton 2009) for both binary classification
and multi-class classification. The results for binary classi-
fication are summarized in Tables 3 and 4 in Appendix 1 in
the Supplementary material. For multi-class classification,
we extend our binary classification setup by employing the
cross-entropy loss function. Using the datasets, we compare
(i) ERM, (ii) Mixup, (iii) KCM with various degrees of h
and N and (iv) Mixup with KCM and compare the effect
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Dataset Learning rule Test accuracy

CIFAR-10

ERM 95.01
KCM (0.01, 1) 95.06

MIXUP 96.11
MIXUP + KCM (0.01, 5) 96.39

CIFAR-100

ERM 74.44
KCM (0.01, 1) 75.34

MIXUP 78.47
MIXUP + KCM (0.01, 1) 79.12

Table 1: (Test accuracy) The median test accuracies of the
last 10 epochs. For KCM, the configuration pair (h,N) rep-
resents the combination of the bandwidth h and the sample
size for Monte Carlo approximation N . For MIXUP, we set
α = 1. The full results are summarized in Table 5 in the
Supplementary material.

of implicit constraint, explicit constraint through the pro-
posed KCM, and combined constraint through the Mixup
with KCM. We denote the Mixup method as ‘MIXUP’ and
the Mixup with KCM as ‘MIXUP+KCM’. We also con-
duct experiments for robustness to adversarial examples to
show that MIXUP+KCM can significantly improve the ro-
bustness of neural networks compared to MIXUP. We use
the d-dimensional Gaussian kernel. We provide implemen-
tation details and results in Appendix 1 in the Supplementary
material.

CIFAR-10 and CIFAR-100

The CIFAR-10 dataset consists of 60000 RGB images in 10
classes, with 6000 images per class. The CIFAR-100 dataset
is similar to CIFAR-10, except it has 100 classes containing
600 images each. Both datasets have 50000 training images
and 10000 test images.

To make a direct comparison with the original Mixup us-
ing CIFAR-10/100, we adopt the experimental configuration
in the Mixup paper (Zhang et al. 2018) and use the author’s
official code1. As for MIXUP+KCM, we add code for the
local averaging part (the fourth line from the bottom in Al-
gorithm 1). We note that there are training and test phases,
and the performance of the methods is measured by the me-
dian of test accuracies of the last 10 epochs as the Mixup
paper considered. We use ResNet-34, which is one of the
architectures from the official code.

Table 1 reports the median test accuracies of the last
10 epochs with the best configuration for KCM and
MIXUP+KCM. The detailed results are summarized in Ta-
ble 5 in Supplementary material. In particular, in CIFAR-10,
with an appropriate choice of (h,N), KCM/MIXUP+KCM
(resp.) outperforms ERM/MIXUP (resp.). However, in
CIFAR-100, consideration of KCM leads to better perfor-
mance both ERM and MIXUP for all configurations.

1https://github.com/facebookresearch/mixup-cifar10

Robustness to Adversarial Examples
Neural networks trained using ERM are vulnerable to vi-
sually imperceptible but thoroughly chosen adversarial per-
turbations, which lead to deterioration of the performance of
the model (Szegedy et al. 2014). Data augmentation also has
been commonly used to increase model robustness (Good-
fellow, Shlens, and Szegedy 2015; Zhang et al. 2018; Rajput
et al. 2019). For example, Rajput et al. (2019) analyzes the
effect of data augmentation via the lens of margin to prov-
ably improve robustness, especially the required size of the
augmented data set for ensuring a positive margin.

To examine the robustness to adversarial examples and
make a direct comparison to the Mixup method, we follow
the experimental setting as the author employed in the orig-
inal Mixup paper (Zhang et al. 2018). We use ResNet-34
model: two of them trained via ERM on CIFAR-10/100, the
third trained using KCM, the fourth trained using the Mixup,
and the fifth trained using the Mixup with KCM. We ad-
minister white/black box attacks generated by FGSM and I-
FGSM (Goodfellow, Shlens, and Szegedy 2015). For every
pixel, the maximum perturbation levels are 0.031 and 0.03
for CIFAR-10 and CIFAR-100, respectively. The number of
iterations for I-FGSM is 10. The other setup is the same as
that of the Mixup paper.

The results are summarized in Table 2. For all types of
attacks, Top-1 test accuracies of KCM+MIXUP were higher
than those of MIXUP with margins ranging from 0.24% to
4.25% in CIFAR-10, and with margins ranging from 0.09%
to 2.18% in CIFAR-100.

Discussion and Conclusions
While the Mixup method reduces unnecessary oscillations
or promotes smoothness by implicit linear constraints via
data augmentation, we propose a new smoothed network,
KCM. To expand the domain of smoothness, we adapt KCM
to the Mixup method. We provide upper bounds of excess
risk for the KCM and its adapted version with the Mixup.
The results offer insights on how the degree of heterogene-
ity of kernelizing models and the size of perturbation in the
Mixup play a role in risk analysis. The experimental results
demonstrate that the Mixup method helps to smooth the de-
cision boundary and improves accuracy, but the proposed

Dataset Attacks Learning rule FGSM I-FGSM

CIFAR-10
White-box MIXUP 75.63 51.82

MIXUP + KCM 78.24 56.07

Black-box MIXUP 85.31 88.87
MIXUP + KCM 85.79 89.11

CIFAR-100
White-box MIXUP 38.79 22.99

MIXUP + KCM 39.65 25.17

Black-box MIXUP 63.62 67.97
MIXUP + KCM 63.79 68.06

Table 2: (Robustness) The test accuracies of each method
based on Top-1 accuracy. For KCM, we choose the configu-
ration pair (h,N) that shows the best performance in Table
1.
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method with explicit model constraints attains smoothness
more effectively. Experiments on CIFAR-10 and CIFAR-
100 show that the proposed method can improve perfor-
mance and increase robustness to adversarial examples with
proper hyperparameters.
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