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Abstract

Generative adversarial networks (GANs) are known to ben-
efit from regularization or normalization of their critic (dis-
criminator) network during training. In this paper, we ana-
lyze the popular spectral normalization scheme, find a sig-
nificant drawback and introduce sparsity aware normaliza-
tion (SAN), a new alternative approach for stabilizing GAN
training. As opposed to other normalization methods, our ap-
proach explicitly accounts for the sparse nature of the fea-
ture maps in convolutional networks with ReLU activations.
We illustrate the effectiveness of our method through ex-
tensive experiments with a variety of network architectures.
As we show, sparsity is particularly dominant in critics used
for image-to-image translation settings. In these cases our
approach improves upon existing methods, in less training
epochs and with smaller capacity networks, while requiring
practically no computational overhead.

Introduction
Generative adversarial networks (GANs) (Goodfellow et al.
2014) have made a dramatic impact on low-level vision and
graphics, particularly in tasks relating to image generation
(Radford, Metz, and Chintala 2015; Karras et al. 2017),
image-to-image translation (Isola et al. 2017; Zhu et al.
2017; Choi et al. 2018), and single image super resolution
(Ledig et al. 2017; Wang et al. 2018; Bahat and Michaeli
2019). GANs can generate photo-realistic samples of fantas-
tic quality (Karras, Laine, and Aila 2019; Brock, Donahue,
and Simonyan 2018; Shaham, Dekel, and Michaeli 2019;
Ledig et al. 2017), however they are often hard to train and
require careful use of regularization and/or normalization
methods for making the training stable and effective.

A factor of key importance in GAN training, is the
way by which the critic (discriminator) network is opti-
mized. An overly-sharp discrimination function can lead to
gradient vanishing when updating the generator, while an
overly-smooth function can lead to poor discrimination be-
tween real and fake samples and thus to insufficient super-
vision for the generator. One of the most successful train-
ing approaches, is that arising from the Wasserstein GAN
(WGAN) (Arjovsky, Chintala, and Bottou 2017) formula-
tion, which asserts that the critic should be chosen among
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the set of Lipschitz-1 functions. Precisely enforcing this con-
straint is impractical (Virmaux and Scaman 2018), yet sim-
ple approximations, like weight clipping (Arjovsky, Chin-
tala, and Bottou 2017) and gradient norm penalty (Gulrajani
et al. 2017), are already quite effective.

Perhaps the most effective approximation strategy is spec-
tral normalization (Miyato et al. 2018). This method nor-
malizes the weights of the critic network after every update
step, in an attempt to make each layer Lipschitz-1 individ-
ually (which would guarantee that the end-to-end function
is Lipschitz-1 as well). Due to its simplicity and its sig-
nificantly improved results, this approach has become the
method of choice in numerous GAN based algorithms (e.g.
(Miyato and Koyama 2018; Park et al. 2019; Brock, Don-
ahue, and Simonyan 2018; Armanious et al. 2020)).

In this paper, we present a new weight normalization strat-
egy that outperforms spectral normalization, as well as all
other methods, by a significant margin on many tasks and
with various network architectures (see e.g., Fig. 1). We start
by showing, both theoretically and empirically, that normal-
izing each layer to be Lipschitz-1 is overly restrictive. In
fact, as we illustrate, such a normalization leads to very poor
GAN training if done correctly. We identify that the real rea-
son for the success of (Miyato et al. 2018) is actually its
systematic bias in the estimation of the Lipschitz constant
for convolution layers, which is typically off by roughly a
factor of 4. Following our analysis, we show that a better
way to control the end-to-end smoothness of the critic, is
to normalize each layer by its amplification of the typical
signals that enter it (rather than the worst-case ones). As
we demonstrate, in convolutional networks with ReLU ac-
tivations, these signals are typically channel-sparse (namely
many of their channels are identically zero). This motivates
us to suggest sparsity aware normalization (SAN).

Our normalization has several advantages over spectral
normalization. First, it leads to better visual results, as also
supported by quantitative evaluations with the Inception
score (IS) (Salimans et al. 2016) and the Fréchet Incep-
tion distance (FID) (Heusel et al. 2017). This is true in both
unconditional image generation and conditional tasks, such
as label-to-image translation, super-resolution, and attribute
transfer. Second, our approach better stabilizes the training,
and it does so at practically no computational overhead. In
particular, even if we apply only a single update step of
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Figure 1: Super resolution with our sparsity aware normalization. Our technique can boost the performance of any GAN-based
method, while allowing less training epochs and smaller models. For example, in the task of 4× super-resolution, we achieve
more photo-realistic reconstructions than the state-of-the-art ESRGAN network (Wang et al. 2018), while using a model with
only 9% the number of parameters of ESRGAN (1.5M for ours and 16.7M for ESRGAN).

the critic for each update of the generator, and normalize
its weights only once every 1K steps, we still obtain an im-
provement over spectral normalization. Finally, while spec-
tral normalization benefits from different tuning of the opti-
mization hyper-parameters for different tasks, our approach
works well with the precise same settings for all tasks.

Rethinking Per-Layer Normalization
GANs (Goodfellow et al. 2014) minimize the distance be-
tween the distribution of their generated “fake” samples, PF,
and the distribution of real images, PR, by diminishing the
ability to discriminate between samples drawn from PF and
samples drawn from PR. In particular, the Wasserstein GAN
(WGAN) (Arjovsky, Chintala, and Bottou 2017) targets the
minimization of the Wasserstein distance between PF and
PR, which can be expressed as

W (PR,PF) = sup
‖f‖L≤1

Ex∼PR
[f(x)]− Ex∼PF

[f(x)]. (1)

Here, the optimization is over all critic functions f : Rn →
R whose Lipschitz constant is no larger than 1. Thus, the
critic’s goal is to output large values for samples from PR

and small values for samples from PF. The GAN’s generator
attempts to shape the distribution of fake samples, PF, so as
to minimize W (PR,PF) and so to rather decrease this gap.

The Lipschitz constraint has an important role in the train-
ing of WGANs, as it prevents overly sharp discrimination
functions that hinder the ability to update the generator.
However, since f is a neural network, this constraint is im-
practical to enforce precisely (Virmaux and Scaman 2018),

and existing methods resort to rather inaccurate approxima-
tions. Perhaps the simplest approach is to clip the weights
of the critic network (Arjovsky, Chintala, and Bottou 2017).
However, this leads to stability issues if the clipping value is
taken to be too small or too large. An alternative, is to penal-
ize the norm of the gradient of the critic network (Gulrajani
et al. 2017). Yet, this often has poor generalization to points
outside the support of the current generative distribution.

To mitigate these problems, Miyato et al. (2018) sug-
gested to enforce the Lipschitz constraint on each layer in-
dividually. Specifically, denoting the function applied by the
ith layer by φi(·), we can write

f(x) = (φN ◦ φN−1 ◦ .. ◦ φ1)(x). (2)

Now, since ‖φ1 ◦ φ2‖L ≤ ‖φ1‖L · ‖φ2‖L, we have that

‖f‖L ≤ ‖φN‖L · ‖φN−1‖L · ... · ‖φ1‖L. (3)

This implies that restricting each φi to be Lipschitz-1, en-
sures that f is also Lipschitz-1. Popular activation functions,
such as ReLU and leaky ReLU, are Lipschitz-1 by construc-
tion. For linear layers (like convolutions), ensuring the Lip-
schitz condition merely requires normalizing the weights by
the Lipschitz constant of the transform, which is the top sin-
gular value of the corresponding weight matrix.

This per-layer normalization strategy has gained signif-
icant popularity due to its simplicity and the improved re-
sults that it provides when compared to the preceding alter-
natives. However, close inspection reveals that normalizing
each layer by its top singular value is actually too conser-
vative. That is, restricting each layer to be Lipschitz-1, typ-
ically leads to a much smaller set of permissible functions
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Figure 2: Fitting to a Lipschitz-1 function. Here, we trained
a network with one hidden layer to fit to samples of a
Lipschitz-1 function (blue dots). When using vanilla training
without any normalization, the fit is perfect (green). How-
ever, when using layer-wise spectral normalization, the fit is
poor (red). This illustrates the fact that the set of functions
that can be represented by a network with Lipschitz-1 layers
is often significantly smaller than the set of all Lipschitz-1
functions that can be represented by the same architecture.

than the set of functions whose end-to-end Lipschitz con-
stant is 1. As a simple illustration, consider the following
example (see proof in the Supplementary).

Example 1 Let f : R→ R be a two-layer network with

φ1(x) = σ(w1x+ b1), φ2(z) = wT
2 z + b2, (4)

where σ is the ReLU activation function, w1, w2, b1 ∈ Rn,
and b2 ∈ R. Such a critic can implement any continuous
piece-wise linear function with n+1 segments. Now, the end-
to-end constraint ‖f‖L ≤ 1, restricts the slope of each seg-
ment to satisfy |f ′(x)| ≤ 1. But the layer-wise constraints1

‖w1‖ ≤ 1, ‖w2‖ ≤ 1, allow a much smaller set of functions,
as they also impose for example that |f ′(−∞)+f ′(∞)| ≤ 1.
In particular, they rule out the identity function f(x) = x,
and also any function with slope larger than 0.5 or smaller
than −0.5 simultaneously for x → ∞ and x → −∞. This
is illustrated in Fig. 2.

This example highlights an important point. When we
normalize a layer by its top singular value, we restrict how
much it can amplify an arbitrary input. However, this is
overly pessimistic since not all inputs to that layer are ad-
missible. In the example above, for most choices of w1 the
input to the second layer is necessarily sparse because of the
ReLU. Specifically, if w1 has kp positive entries and kn neg-
ative ones, then the output of the first layer cannot contain
more than max{kp, kn} non-zero entries. This suggests that
when normalizing the second layer, we should only consider
how much it amplifies sparse vectors.

1Since w1 and w2 are n × 1, their top singular value is simply
their Euclidean norm.
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Figure 3: Top singular value. We plot the top singular value
(black) of each convolution layer of a trained ResNet critic
network, as well as its approximation employed by (Miy-
ato et al. 2018) (red). The approximation is typically much
smaller than the actual value, implying that the weights after
normalization are in fact much larger than intended.

As a network gets deeper, the attenuation caused by such
layer-wise normalization accumulates, and severely impairs
the network’s representation power. One may wonder, then,
why the layer-wise spectral normalization of (Miyato et al.
2018) works in practice after all. The answer is that for con-
volutional layers, this method uses a very crude approxima-
tion of the top singular value, which is typically 4× smaller
than the true top singular value2. We empirically illustrate
this in Fig. 3 for a ResNet critic architecture, where we use
the Fourier domain formulation of (Sedghi, Gupta, and Long
2018) to compute the true top singular value. This observa-
tion implies that in (Miyato et al. 2018), the weights after
normalization are in fact much larger than intended.

What would happen had we normalized each layer by its
true top singular value? As shown in Fig. 4, in this case,
the training completely fails. This is because the weights be-
come extremely small and the gradients vanish.

Sparsity Aware Normalization
We saw that the spectral normalization of (Miyato et al.
2018) is effective because of the particular approximation
used for ‖φi‖L. A natural question, then, is whether we can
somehow improve upon this normalization scheme. A naive
approach would be to set a multiplier parameter σ, to ad-
just their normalization constant. However, as the authors of
(Miyato et al. 2018) themselves indicate, such a parameter
does not improve their results. This implies that the set of
discriminator functions satisfying their per-layer constraints
does not overlap well with the set of Lipschitz-1 functions as
neither dilation nor erosion of this set improves their results.

2In (Miyato et al. 2018), the top singular value of the convolu-
tion operation is approximated by the top singular value of a 2D
matrix obtained by reshaping the 4D kernel tensor.
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Figure 4: The effect of normalization. Here, we trained a
WGAN on the CIFAR-10 dataset using exact per-layer spec-
tral normalization and the approximate method of (Miyato
et al. 2018), both initialized with the same draw of random
weights. The exact normalization does not converge, while
the approximate one rather leads to good conditioning.

A more appropriate strategy is therefore to seek for a nor-
malization method that explicitly accounts for the statistics
of signals that enter each layer. An important observation in
this respect, is that in convolutional networks with ReLU ac-
tivations, the features are typically channel-sparse. That is,
for most input signals, many of the channels are identically
zero. This is illustrated in Fig. 5, which shows a histogram
of the norms of the channels of the last layer of a trained
critic3, computed over 2048 randomly sampled images from
the training set.

In light of this observation, rather than normalizing a layer
φ(x) =Wx+ b by its Lipschitz constant,

‖φ‖L = sup
‖x‖≤1

‖Wx‖, (5)

here we propose to modify the constraint set to take into ac-
count only channel-sparse signals. Moreover, since we know
that many output channels are going to be zeroed out by the
ReLU that follows, we also modify the objective of (5) to
consider the norm of each output channel individually.

Concretely, for a multi-channel signal x with channels
x1, . . . , xk, let us denote by ‖x‖∞ its largest channel norm,
max{‖xi‖}, and by ‖x‖0 its number of nonzero channels,
#{‖xi‖ > 0}. With these definitions, we take our normal-
ization constant to be4

‖W‖0,∞ , sup
‖x‖0≤1

‖x‖∞≤1

‖Wx‖∞. (6)

Normalizing by ‖W‖0,∞ ensures that there exists no 1-
sparse input signal (i.e. with a single nonzero channel) that
can cause the norm of some output channel to exceed 1.

For convolutional layers, computing ‖W‖0,∞ is simple.
Specifically, if W has n input channels and m output chan-

3We used no normalization, but chose a run that converged.
4Note that ‖ · ‖0,∞ is not a norm since `0 is not a norm.
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Figure 5: Channel sparsity. The histogram of the channel
norms at the last layer of a critic trained without normal-
ization. For most input images, many of the channels are
identically zero.

nels, then the ith channel of y =Wx can be expressed as

yi =

n∑
j=1

wi,j ∗ xj . (7)

Here, ‘∗’ denotes single-input-single-output convolution and
wi,j is the kernel that links input channel j with output
channel i. Now, using the kernels {wi,j}, we can compute
‖W‖0,∞ as follows (see proof in the Supplementary).

Lemma 1 For a multiple-input-multiple-output filter W
with cyclic padding,

‖W‖0,∞ = max
i,j
‖F{wi,j}‖∞, (8)

where F{wi,j} is the discrete Fourier transform of wi,j ,
zero-padded to the spatial dimensions of the channels.

Thus, to compute our normalization constant, all we need
to do is take the Fourier transform of each kernel, find the
maximal absolute value in the transform domain, and then
take the largest among these m× n top Fourier values.

Efficiency
To take advantage of Lemma 1, we use cyclic padding for
all convolutional layers of the critic. This allows us to em-
ploy the fast Fourier transform (FFT) for computing the nor-
malization constants of the layers. For fully-connected lay-
ers, we use the top singular value of the eight matrix, as in
(Miyato et al. 2018). The overhead in running time is neg-
ligible. For example, on CIFAR-10, each critic update takes
the same time as spectral normalization and 20% less than
gradient-penalty regularization (see Supplementary).

In models for large images, storing the FFTs of all the fil-
ters of a layer can be prohibitive. In such settings, we com-
pute the maximum in (8) only over a random subset of the
filters. We compensate for our under-estimation of the max-
imum by multiplying the resulting value by a scalar g. As
we show in the Supplementary, the optimal value of g varies
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Figure 6: Efficiency. Here we compare three WGANs,
trained for 100 epochs on the CIFAR-10 dataset (Krizhevsky
and Hinton 2009): (i) without normalization, (ii) with
spectral-normalization (Miyato et al. 2018), (iii) with our
normalization. The training configurations and the initial
seed are the same for all networks. In contrast to (Miyato
et al. 2018), which performs weight normalization after each
critic update, in our method we can normalize the layers
much less frequently. Pay attention that even if we normalize
only once every 1000 steps, less than 80 updates in total, we
still outperform spectral normalization by a large margin.

very slowly as a function of the percentage of chosen filters
(e.g. it typically does not exceed 1.3 even for ratios as low as
25%). This can be understood by regarding the kernels’ top
Fourier coefficients as independent draws from some den-
sity. When this density decays fast, the expected value of the
maximum over k draws increases very slowly for large k.
For example, for the exponential distribution (which we find
to be a good approximation), we show in the Supplementary
that the optimal g for ratio r is given by

g =

∑m·n
j=1

1
m·n−j+1∑[m·n·r]

j=1
1

[m·n·r]−j+1

, (9)

leading to e.g. g ≈ 1.2 for r = 25% withm ·n = 642 filters.
The effect of our normalization turns out to be very strong

and therefore, besides a boost in performance, it also allows
more efficient training than spectral normalization (Miyato
et al. 2018) and other WGAN methods. Particularly:
Critic updates: For every update step of the generator, we
perform only one update step of the critic. This is in contrast
to other WGAN schemes, which typically use at least three
(Arjovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017;
Miyato et al. 2018). Despite the fewer updates, our method
converges faster (see Supplementary).
Normalization frequency: In spectral normalization, the
weights are normalized after each critic update (using a sin-
gle iteration of the power method). In contrast, we can nor-
malize the layers much less frequently and still obtain a
boost in performance. For example, as shown in Fig. 6, even

Method CIFAR-10 STL-10
Real-data 11.24± .12 26.08± .26
Unconditional GAN
(Standard CNN)
Weight clipping 6.41± .11 7.57± .10
WGAN-GP 6.68± .06 8.42± .13
Batch norm 6.27± .10
Layer norm 7.19± .12 7.61± .12
Weight norm 6.84± .07 7.16± .10
Orthonormal 7.40± .12 8.67± .08
SN-GANs 7.58± .12 8.79± .14
(ours) SAN-GANs 7.89± .09 9.18± .06
Unconditional GAN
(ResNet)
Orthonormal 7.92± .04 8.72± .06
SN-GANs 8.22± .05 9.10± .04
(ours) SAN-GANs 8.43± .13 9.21± .10
Conditional GAN
(ResNet)
BigGAN 9.24± .16
(ours) SAN-BigGAN 9.53± .13

Table 1: Inception scores for image generation on the
CIFAR-10 and STL-10 datasets. The SAN method outper-
forms all other regularization methods.

if we normalize only once every 1000 steps, we still outper-
form spectral normalization by a large margin.
Hyper-parameters: As opposed to other normalization
methods, like (Arjovsky and Bottou 2017; Gulrajani et al.
2017; Ioffe and Szegedy 2015; Salimans and Kingma 2016;
Brock et al. 2016; Miyato et al. 2018), our algorithm does
not require special hyper-parameter tuning for different
tasks. All our experiments use the same hyper-parameters.

Experiments
We now demonstrate the effectiveness of our approach in
several tasks. In all our experiments, we apply normalization
after each critic update step to obtain the best results.

Image Generation
We start by performing image generation experiments on
the CIFAR-10 (Krizhevsky and Hinton 2009) and STL-10
(Coates, Ng, and Lee 2011) datasets. We use these simple
test-beds only for the purpose of comparing different regu-
larization methods on the same architectures. Here, we use
r = 100% of the filters (and thus a compensation of g = 1).

Our first set of architectures is that used in (Miyato et al.
2018). But to showcase the effectiveness of our method, in
our STL-10 ResNet critic we remove the last residual block,
which cuts its number of parameters by 75%, from 19.5M
to 4.8M (the competing methods use the 19.5M variant).
The architectures are described in full in the Supplemen-
tary. As in (Miyato et al. 2018), we use the hinge loss (Wang
et al. 2017) for the critic’s updates. We train all networks
for 200 epochs with batches of 64 using the Adam optimizer
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score of our SAN-SPADE converges faster and to a better
result than the original SPADE.
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Figure 8: Visual comparison for image translation. The im-
ages synthesized by our SAN-SPADE have less artifacts and
contain more fine details than the original SPADE.

(Kingma and Ba 2015). We use a learning rate of 2 · 10−4
and momentum parameters β1 = 0.5 and β2 = 0.9.

Additionally, we experiment with the more modern Big-
GAN architecture (Brock, Donahue, and Simonyan 2018)
for conditional generation on CIFAR-10. We replace the
spectral normalization by our SAN in all critic’s res-blocks,
and modify Adam’s first momentum parameter to β1 = 0.5.

Table 1 shows comparisons between our approach (SAN-
GAN) and other regularization methods in terms of Incep-
tion score (Salimans et al. 2016). The competing methods
include weight clipping (Arjovsky and Bottou 2017), gradi-
ent penalty (WGAN-GP) (Gulrajani et al. 2017), batch norm
(Ioffe and Szegedy 2015), layer norm (Ba, Kiros, and Hinton
2016), weight norm (Salimans and Kingma 2016), orthonor-
mal regularization (Brock et al. 2016), and spectral normal-
ization (SN-GAN) (Miyato et al. 2018). As can be seen, our
models outperform the others by a large gap. Most notably,
SAN-BigGAN performs substantially better than the origi-
nal BigGAN, and sets a new state-of-the-art in conditional
image generation on CIFAR-10.

0.60.650.70.75
3

4

5

6

7

SAN-SRGAN
SAN-SRGAN

SinGAN

EDSR

ESRGAN

SRResNet
xSRResNet

Deng

VDSR

SRGAN

ENET

SSIM

N
IQ

E

Figure 9: Perception-distortion evaluation for SR. We com-
pare our models (λadversarial = 10−1 and 10−2) to other
state-of-the-art super-resolution models in terms of percep-
tual quality (NIQE, lower is better) and distortion (SSIM).
Our method improves upon all existing perceptual methods
(those at the bottom right) in both perceptual quality and
distortion.

Method BSD100 URBAN100 DIV2K
SRGAN 25.18 / 3.40
ENET 24.93 / 4.52 23.54 / 3.79
ESRGAN 25.31 / 3.64 24.36 / 4.23 28.18 / 3.14
ESRGAN* 25.69 / 3.56 24.36 / 3.96 28.22 / 3.06
Ours (0.1) 25.32 / 3.21 23.86 / 3.70 27.74 / 2.87
Ours (0.01) 26.15 / 3.44 24.85 / 3.83 28.76 / 3.16

Table 2: PSNR/NIQE comparison among different percep-
tual SR methods on varied datasets. Our models attain a sig-
nificantly higher PSNR and lower NIQE than other percep-
tual SR methods.

Image-to-Image Translation
Next, we illustrate our method in the challenging task of
translating images between different domains. Here we fo-
cus on converting semantic segmentation masks to photo-
realistic images. In the Supplementary, we also demonstrate
the power of SAN for attribute transfer.

We adopt the state-of-the-art SPADE scheme (Park et al.
2019) as a baseline framework, and enhance its results by
applying our normalization. We use the same multi-scale
discriminator as (Park et al. 2019), except that we replace
the zero padding by circular padding and preform SAN. To
reduce the memory footprint, we use r = 25% of the filters
with a compensation factor of g = 1.3. All hyper-parameters
are kept as in (Park et al. 2019), except for Adam’s first mo-
mentum parameter, which we set to β1 = 0.5.

We use 512 × 256 images from the Cityscapes dataset
(Cordts et al. 2016). For quantitative evaluation, we use the
Fréchet Inception distance (FID). As can be seen in Fig. 7,
our method converges faster and leads to a final model that
outperforms the original SPADE by a non-negligible mar-
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Figure 10: The influence of normalization in super-resolution. We compare the state-of-the-art ESRGAN method to our ap-
proach, with and without normalization, at a magnification factor of 4×. As can be seen, our normalization leads to sharper and
more photo-realistic images.

gin. Specifically, SAN-SPADE achieves an FID of 58.56
while the original SPADE achieves 63.65. Figure 8 shows
a qualitative comparison between SPADE and our SAN ver-
sion after 1.1 × 104 iterations. As can be seen, our synthe-
sized images have less artifacts and contain more details.

Single Image Super Resolution
Finally, we illustrate SAN in single image super resolution
(SR), where the goal is to restore a high resolution image
from its down-sampled low resolution version. We focus on
4× SR for images down-sampled with a bicubic kernel.

Following the state-of-the-art ESRGAN (Wang et al.
2018) method, our loss function comprises three terms,

L = λcontent ·Lcontent+Lfeatures+λadversarial ·Ladversarial. (10)

Here, Lcontent is the L1 distance between the reconstructed
high-res image x̂ and the ground truth image x. The term
Lfeatures measures the distance between the deep features of x̂
and x, taken from 4th convolution layer (before the 5th max-
pooling) of a pre-trained 19-layer VGG network (Simonyan
and Zisserman 2014). Lastly, Ladversarial is an adversarial loss
that encourages the restored images to follow the statistics of
natural images. Here, we use again the hinge loss.

For the generator, we use the much slimmer SRGAN net-
work (Ledig et al. 2017), so that our model has only 9%
the number of parameters of ESRGAN (1.5M for ours and
16.7M for ESRGAN). As suggested in (Lim et al. 2017),
we remove the batch normalization layers from the genera-
tor. For the critic network, we choose a simple feed forward

CNN architecture with 10 convolutional layers and 2 fully
connected ones (see architectures in the Supplementary).

We train our network using the 800 DIV2K training im-
ages (Agustsson and Timofte 2017), enriched by random
cropping and horizontal flipping. The generator’s weights
are initialized to those of a pre-trained model optimized to
minimize mean squared error. We minimize the loss (10)
with λcontent = 10−2, and for the adversarial term, λadversarial
we examine two options of 10−1 and 10−2. We use the
Adam optimizer (Kingma and Ba 2015) with momentum pa-
rameters set to 0.5 and 0.9, as in Section . We use a batch size
of 32 for 400K equal discriminator and generator updates.
The learning rate is initialized to 2 · 10−4 and is decreased
by a factor of 2 at 12.5%, 25%, 50% and 75% of the total
number of iterations.

Following (Blau and Michaeli 2018), we compare our
method to other super-resolution schemes in terms of both
perceptual quality and distortion. Figure 9 shows a com-
parison against EDSR (Lim et al. 2017), VDSR (Kim,
Kwon Lee, and Mu Lee 2016), SRResNet (Ledig et al.
2017), xSRResNet (Kligvasser, Rott Shaham, and Michaeli
2018), Deng (Deng 2018), ESRGAN(Wang et al. 2018), SR-
GAN (Ledig et al. 2017), ENET (Sajjadi, Scholkopf, and
Hirsch 2017) and SinGAN (Shaham, Dekel, and Michaeli
2019). Here, perceptual quality is quantified using the no-
reference NIQE metric (Mittal, Soundararajan, and Bovik
2012) (lower is better), which has been found in (Blau et al.
2018) to correlate well with human opinion scores in this
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Figure 11: Further super-resolution comparisons. Compared to ESRGAN, our method better recovers textures, like grass and
stones.

task. Distortion is measured by SSIM (Wang et al. 2004)
(higher is better). We report average scores over the BSD100
test set (Martin et al. 2001). As can be seen, our method
achieves the best perceptual quality, and lower distortion
levels than the perceptual methods (at the bottom right).

In Table 2, we report comparisons to the best percep-
tual methods on two more datasets, the URBAN100 and
DIV2K test sets. As the original ESRGAN (Wang et al.
2018) uses gradient penalty as a normalization scheme, for
a fair comparison, we train an equivalent version, ESR-
GAN*, with spectral normalization (Miyato et al. 2018).
Note that our model outperforms ESRGAN (winner of the
PRIM challenge on perceptual image super-resolution (Blau
et al. 2018)) as well as the improved variant ESRGAN*.
This is despite the fact that our generator network has only
9% the number of parameters of ESRGAN’s generator. Fur-
thermore, while our model has the same generator architec-
ture as SRGAN, it outperforms it by 1dB in PSNR without
any sacrifice in perceptual score.

Figures 1 and 11 shows a visual comparison with ES-
RGAN. As can been seen, our method manages to restore
more of the fine image details, and produces more realistic
textures. Figure 10 shows yet another visual result, where we
specifically illustrate the effect of our normalization. While
without normalization our method is slightly inferior to ES-
RGAN, when we incorporate our normalization, the visual
quality is significantly improved.

Limitations
SAN does not provide a boost in performance when the
critic’s feature maps do not exhibit strong channel-sparsity.
This happens, for example, in BigGAN for 128 × 128 im-
ages (see Supplementary). There, there is one set of features
in each res-block that are less sparse (those after the residual
connection). A possible solution could be to use a different
compensation factor g for different layers, according to their
level or sparsity. However, we leave this for future work.

Conclusion
We presented a new per-layer normalization method for
GANs, which explicitly accounts for the statistics of signals
that enter each layer. We showed that this approach stabi-
lizes the training and leads to improved results over other
GAN schemes. Our normalization adds a marginal com-
putational burden compared to the forward and backward
passes, and can even be applied once every several hundred
steps while still providing a significant benefit.
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