
Nearly Linear-Time, Parallelizable Algorithms for Non-Monotone Submodular
Maximization

Alan Kuhnle
Department of Computer Science, Florida State University, Tallahassee, Florida

kuhnle@cs.fsu.edu

Abstract
We study combinatorial, parallelizable algorithms for maxi-
mization of a submodular function, not necessarily monotone,
with respect to a cardinality constraint k. We improve the
best approximation factor achieved by an algorithm that has
optimal adaptivity and query complexity, up to logarithmic
factors in the size of the ground set, from 0.039 to nearly 0.193.
Heuristic versions of our algorithms are empirically validated
to use a low number of adaptive rounds and total queries while
obtaining solutions with high objective value in comparison
with state-of-the-art approximation algorithms, including con-
tinuous algorithms that use the multilinear extension.

1 Introduction
A nonnegative set function f : 2N → R+, defined on all
subsets of a ground set N of size n, is submodular if for all
A,B ⊆ N , f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). Sub-
modular set functions naturally arise in many learning appli-
cations, including data summarization (Simon, Snavely, and
Seitz 2007; Sipos et al. 2012; Tschiatschek et al. 2014; Lib-
brecht, Bilmes, and Stafford 2017), viral marketing (Kempe,
Kleinberg, and Tardos 2003; Hartline, Mirrokni, and Sun-
dararajan 2008), and recommendation systems (El-Arini and
Guestrin 2011). Some applications yield submodular func-
tions that are not monotone (a set function is monotone if
A ⊆ B implies f(A) ≤ f(B)): for example, image summa-
rization with diversity (Mirzasoleiman, Badanidiyuru, and
Karbasi 2016) or revenue maximization on a social net-
work (Hartline, Mirrokni, and Sundararajan 2008). In this
work, we study the maximization of a (not necessarily mono-
tone) submodular function subject to a cardinality constraint;
that is, given submodular function f and integer k, deter-
mine arg max|S|≤k f(S) (SMCC). Access to f is provided
through a value query oracle, which when queried with the
set S returns the value f(S).

As the amount of data in applications has exhibited ex-
ponential growth in recent years (e.g. the growth of so-
cial networks (Mislove et al. 2008) or genomic data (Lib-
brecht, Bilmes, and Stafford 2017)), it is necessary to design
algorithms for submodular optimization that can scale to
these large datasets (Badanidiyuru and Vondrák 2014; Mirza-
soleiman et al. 2015; Kuhnle 2019; Crawford 2019, 2020).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One aspect of algorithmic efficiency is the query complexity,
the total number of queries to the oracle for f ; since evalua-
tion of f is often expensive, the queries to f often dominate
the runtime of an algorithm. In addition to low query com-
plexity, it is necessary to design algorithms that parallelize
well to take advantage of modern computer architectures. To
quantify parallelization, the adaptivity or adaptive complexity
of an algorithm is the minimum number of rounds such that
in each round the algorithm makes O(poly(n)) independent
queries to the evaluation oracle. The lower the adaptive com-
plexity of an algorithm, the more suited the algorithm is to
parallelization, as within each adaptive round, the queries to
f are independent and may be easily parallelized.

The design of algorithms with nontrivial adaptivity for
SMCC when f is monotone has been recently initiated by
Balkanski and Singer (2018), who also prove a lower bound
of Ω(log n/ log log n) adaptive rounds to achieve a constant
ratio. Recently, much work has focused on the design of adap-
tive algorithms for SMCC with (not necessarily monotone)
submodular functions, as summarized in Table 1. However,
although many algorithms with low adaptivity have been pro-
posed, most of these algorithms exhibit at least a quadratic
dependence of the query complexity on the size n of the
ground set, for k = Ω(n). For many applications, instances
have grown too large for quadratic query complexity to be
practical. Therefore, it is necessary to design adaptive algo-
rithms that also have nearly linear query complexity. The
only algorithm in prior literature that meets this requirement
is the (0.039 − ε)-approximation algorithm developed by
Fahrbach, Mirrokni, and Zadimoghaddam (2019a), which
has O(n log k) query complexity and O(log n) adaptivity.

Contributions In this work, we improve the best approx-
imation factor for nearly linear-time algorithms that are
highly parallelizable to 0.193 − ε. Specifically, we pro-
pose two algorithms: the (1/6 − ε)-approximation algo-
rithm ADAPTIVESIMPLETHRESHOLD (AST) with adap-
tivity O(log n) and query complexity O(n log k); and the
(0.193 − ε)-approximation algorithm ADAPTIVETHRESH-
OLDGREEDY (ATG) with adaptivity O(log2 n) and query
complexity O(n log k).

Our algorithm AST uses a novel double-thresholding pro-
cedure to obtain its ratio of 1/6− ε. Our second algorithm
ATG is a low-adaptivity modification of the algorithm of

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8200

Reference Approximation Adaptivity Queries

Buchbinder, Feldman, and Schwartz (2015) 1/e− ε O(k) O(n)
Balkanski, Breuer, and Singer (2018) 1/(2e)− ε O

(
log2(n)

)
O
(
OPT 2n log2(n) log(k)

)
Chekuri and Quanrud (2019) 3− 2

√
2− ε O(log2(n)) O

(
nk4 log2(n)

)
Ene and Nguyên (2020) 1/e− ε O(log(n)) O

(
nk2 log2(n)

)
Fahrbach, Mirrokni, and Zadimoghaddam (2019a) 0.039− ε O(log(n)) O(n log(k))
Theorem 2 (AST) 1/6− ε O(log(n)) O(n log(k))
Theorem 3 (ATG) 0.193− ε O(log2(n)) O(n log(k))

Table 1: Adaptive algorithms for SMCC where objective f is not necessarily monotone

Gupta et al. (2010), for which we improve the ratio from
1/6 to ≈ 0.193 through a novel analysis. Both of our algo-
rithms use a low-adaptivity, threshold sampling procedure
(Fahrbach, Mirrokni, and Zadimoghaddam 2019b,a; Kazemi
et al. 2019) and a subroutine for unconstrained maximiza-
tion of a submodular function (Feige, Mirrokni, and Vondrák
2011; Chen, Feldman, and Karbasi 2019) as components.
More details are given in the related work discussion below
and in Section 3.

Empirically, we demonstrate that heuristic versions of both
of our algorithms achieve superior objective value to current
state-of-the-art algorithms while using a small number of
queries and adaptive rounds on two applications of SMCC.

Throughout this work, references are made to the full ver-
sion of the manuscript, which contains complete proofs, addi-
tional empirical evaluations, and additional details. The full
version is available at https://arxiv.org/abs/2009.01947.

1.1 Related Work
Adaptive Algorithms Since the study of parallelizable
algorithms for submodular optimization was initiated by
Balkanski and Singer (2018), there have been a number of
O(log n)-adaptive algorithms designed for SMCC. When
f is monotone, adaptive algorithms that obtain the optimal
ratio (Nemhauser and Wolsey 1978) of 1 − 1/e − ε have
been designed by Balkanski, Rubinstein, and Singer (2019);
Fahrbach, Mirrokni, and Zadimoghaddam (2019b); Ene and
Nguyen (2019). Of these, the algorithms of Fahrbach, Mir-
rokni, and Zadimoghaddam (2019b); Ene and Nguyen (2019)
also have nearly optimal query complexity; that is, they have
query complexity O(n log k).

However, when the function f is not monotone, the best
approximation ratio with polynomial query complexity for
SMCC is unknown, but falls within the range [0.385, 0.491]
(Buchbinder and Feldman 2016; Gharan and Vondrák 2011).
For SMCC, algorithms with nearly optimal adaptivity have
been designed by Balkanski, Breuer, and Singer (2018);
Chekuri and Quanrud (2019); Ene, Nguyên, and Vladu
(2019); Fahrbach, Mirrokni, and Zadimoghaddam (2019a);
for the query complexity and approximation factors of these
algorithms, see Table 1. Of these, the best approximation ra-
tio of (1/e− ε) ≈ 0.368 is obtained by the algorithm of Ene
and Nguyên (2020). However, this algorithm requires access
to an oracle for the gradient of the continuous extension of
a submodular set function, which requires Ω(nk2 log2(n))

queries to sufficiently approximate; the practical performance
of the algorithm of Ene and Nguyên (2020) is investigated
in our empirical evaluation of Section 4. Other than the al-
gorithm ADAPTIVENONMONOTONEMAX of Fahrbach, Mir-
rokni, and Zadimoghaddam (2019a), all parallelizable al-
gorithms exhibit a runtime at least quadratic dependence
on n; in contrast, our algorithms have query complexity of
O(n log k) and have O(log n) or O(log2 n) adaptivity.

The ITERATEDGREEDY Algorithm Although the stan-
dard greedy algorithm performs arbitrarily badly for SMCC,
Gupta et al. (2010) showed that multiple repetitions of the
greedy algorithm, combined with an approximation for the
unconstrained maximization problem, yields an approxima-
tion for SMCC. Specifically, Gupta et al. (2010) provided the
ITERATEDGREEDY algorithm, which achieves approxima-
tion ratio of 1/6 for SMCC when the 1/2-approximation of
Buchbinder et al. (2012) is used for the unconstrained maxi-
mization subproblems. Our algorithm ADAPTIVETHRESH-
OLDGREEDY uses THRESHOLDSAMPLE combined with
the descending thresholds technique of Badanidiyuru and
Vondrák (2014) to obtain an adaptive version of ITERATED-
GREEDY, as described in Section 3. Pseudocode for ITERAT-
EDGREEDY is given in the full version, where an improved
ratio of ≈ 0.193 is proven for this algorithm; we also prove
the ratio of nearly 0.193 for our adaptive algorithm ATG in
Section 3.

1.2 Preliminaries
Notation A submodular set function defined on all subsets
of ground setN is denoted by f . The marginal gain of adding
an element s to a set S is denoted by fs(S) = f(S ∪ {s})−
f(S). The restriction of f to all subsets of a set S ⊆ N is
denoted by f�S .

Next, we describe two subproblems both of our algorithms
need to solve: namely, unconstrained maximization subprob-
lems and a threshold sampling subproblem. For both of these
subproblems, procedures with low adaptivity are needed.

Unconstrained Maximization The first subproblem is un-
constrained maximization of a submodular function. When
the function f is non-monotone, the problem of maximiz-
ing f without any constraints is NP-hard (Feige, Mirrokni,
and Vondrák 2011). Recently, Chen, Feldman, and Karbasi

8201

Algorithm 1 The ADAPTIVESIMPLETHRESHOLD Algo-
rithm

1: procedure AST(f, k, ε, δ)
2: Input: evaluation oracle f : 2N → R+, constraint
k, accuracy parameter ε > 0, failure probability δ > 0

3: M ← maxx∈N f(x); c← 4+α, where α−1 is ratio
of UNCONSTRAINEDMAX

4: for i← 0 to log1−ε(1/(ck)) in parallel do
5: τi ←M (1− ε)i
6: Ai ← THRESHOLDSAMPLE (f, k, τi, ε, δ/2)
7: Bi ←

THRESHOLDSAMPLE
(
f�N\Ai

, k, τi, ε, δ/2
)

8: A′i ← UNCONSTRAINEDMAX(Ai)
9: Ci ← arg max{f(Ai), f(A′i), f(Bi)}

10: return C ← arg maxi{f(Ci)}

(2019) developed an algorithm that achieves nearly the opti-
mal ratio of 1/2 with constant adaptivity, as summarized in
the following theorem.

Theorem 1 (Chen, Feldman, and Karbasi (2019)). For
each ε > 0, there is an algorithm that achieves a
(1/2 − ε)-approximation for unconstrained submodular
maximization using O(log(1/ε)/ε) adaptive rounds and
O(n log3(1/ε)/ε4) evaluation oracle queries.

To achieve the approximation factor listed for our algorithms
in Table 1, the algorithm of Chen, Feldman, and Karbasi
(2019) is employed for unconstrained maximization subprob-
lems.

THRESHOLDSAMPLE The second subproblem is the fol-
lowing: given a threshold τ , choose a set S such that 1)
f(S) ≥ τ |S|; 2) if |S| < k, then for any x 6∈ S, fx(S) < τ .
Multiple algorithms in the literature satisfy this requirement,
including those in Fahrbach, Mirrokni, and Zadimoghaddam
(2019b) and Kazemi et al. (2019). In Sections 2 and 3, we
analyze our algorithms using the THRESHOLDSAMPLE pro-
cedure of Fahrbach, Mirrokni, and Zadimoghaddam (2019b).
In brief, THRESHOLDSAMPLE ensures the marginal gain
of any singleton falls below a given threshold τ , while the
average contribution of elements added is roughly τ with
probability 1−δ. THRESHOLDSAMPLE isO(log n) adaptive
and requires linearly many queries. Pseudocode for THRESH-
OLDSAMPLE is given in the full version. Below, we use the
following lemma of Fahrbach, Mirrokni, and Zadimoghad-
dam (2019b).

Lemma 1 ((Fahrbach, Mirrokni, and Zadimoghaddam
2019b)). The algorithm THRESHOLDSAMPLE outputs S ⊆
N with |S| ≤ k in O(log(n/δ)/ε) adaptive rounds such
that the following properties hold with probability at least
1 − δ: 1) There are O(n/ε) oracle queries in expectation.
2) According to a randomly uniformly chosen permutation
of S, the expected marginal E

[
fsi+1

(Si)
]
≥ (1− ε)τ. 3) If

|S| < k, then fx(S) < τ for all x ∈ N .

2 The ADAPTIVESIMPLETHRESHOLD
Algorithm

In this section, we present the algorithm ADAPTIVESIM-
PLETHRESHOLD (AST, Alg. 1) and show it obtains ratio of
1/6− ε with nearly optimal query and adaptive complexity.
Procedures for threshold sampling and unconstrained max-
imization are required; see Section 1.2 for a discussion of
these subproblems.

Overview of Algorithm Algorithm AST works as follows.
First, the for loop guesses a value of τ close to OPT

(4+α)k , where
1/α is the ratio of the algorithm used for the unconstrained
maximization subproblem. Next, THRESHOLDSAMPLE is
called with parameter τ to yield set A; followed by a sec-
ond call to THRESHOLDSAMPLE with f restricted to N \A
to yield set B. Next, an unconstrained maximization is per-
formed with f restricted to A to yield set A′; finally, the best
of the three candidate sets A,B,A′ is returned.

We prove the following theorem concerning the perfor-
mance of AST.
Theorem 2. Suppose there exists an (1/α)-approximation
for UNCONSTRAINEDMAX with adaptivity Θ and query
complexity Ξ, and let ε, δ > 0. Then there exists an
algorithm for SMCC with expected approximation ratio
1

4+α − ε with probability at least 1 − δ, expected query
complexity O

(
log1−ε(1/(6k)) · (n/ε+ Ξ)

)
, and adaptivity

O (log(n/δ)/ε+ Θ).

If the algorithm of Chen, Feldman, and Karbasi
(2019) is used for UNCONSTRAINEDMAX, AST
achieves ratio 1/6 − ε with adaptive complexity is
O (log(n/δ)/ε+ log(1/ε)/ε) and query complexity
O
(
log1−ε(1/(6k)) ·

(
n/ε+ n log3(1/ε)/ε4

))
.

Overview of Proof The proof splits into two cases: the
case that one of A or B is of size k and the case that both
are of size less than k. Since every element added has gain
roughly τ = OPT/(ck), the first case holds trivially by
the number of elements added. To gain intution for the sec-
ond case, let O be an optimal solution. By submodularity,
f(O) ≤ f(O ∩ A) + f(O \ A). The first term is bounded
by the unconstrained maximization, and the second term is
bounded by an application of submodularity and the fact that
the maximum marginal gain of adding an element into A or
B is below τ . The specific choice of c balances the trade-off
between the two cases of the proof.

Proof of Theorem 2. Let (f, k) be an instance of SMCC, and
let ε, δ > 0. Suppose algorithm AST uses a procedure for
UNCONSTRAINEDMAX with expected ratio 1/α. We will
show that the set C returned by algorithm AST(f, k, ε, δ)

satisfies E [f(C)] ≥
(

1
4+α − ε

)
OPT with probability at

least (1− δ), where OPT is the optimal solution value on the
instance (f, k).

Observe that τ0 = M = maxx∈N f(x) ≥ OPT/k by
submodularity of f . Let c = 4+α. If j = dlog1−ε(1/(ck))e,
then τj = M(1−ε)j ≤ OPT/(ck) sinceM ≤ OPT. Hence,

8202

there exists i0 such that (1−ε)OPT
ck ≤ τi0 ≤ OPT

ck . LetA,B,A′
denote Ai0 , Bi0 , A

′
i0

, respectively. For the rest of the proof,
we assume that the properties of Lemma 1 hold for the calls
to THRESHOLDSAMPLE with threshold τi0 , which happens
with at least probability 1− δ by the union bound.

Case |A| = k or |B| = k. Let S ∈ {A,B} satisfy |S| =
k. By Lemma 1 and the value of τi0, we have

E [f(S)/k] = E [f(S)/|S|] ≥ (1− ε)τi0 ≥
(1− ε)2OPT

ck

≥ (1/c− ε)OPT
k

.

Then E [f(C)] ≥ E [f(S)] ≥ (1/c− ε)OPT.
Case |A| < k and |B| < k. Let O be a set such that

f(O) = OPT and |O| ≤ k. Since |A| < k, by Lemma 1 it
holds that for any x ∈ N , fx(A) < τi0 . Similarly, for any
x ∈ N \A, fx(B) < τi0 . Hence, by submodularity

f(O ∪A)− f(A) ≤
∑
o∈O

fo(A) < kτi0

≤ OPT/c, (1)

f((O \A) ∪B)− f(B) ≤
∑

o∈O\A

fo(B) < kτi0

≤ OPT/c. (2)

Next, from (1), (2), submodularity, nonnegativity, and the
fact that A ∩B = ∅, we have that

f(A) + f(B) + 2OPT/c ≥ f(O ∪A) + f((O \A) ∪B)

≥ f(O \A) + f(O ∪A ∪B)

≥ f(O \A). (3)

Since UNCONSTRAINEDMAX is an α-approximation, we
have

αE [f(A′)] ≥ f(O ∩A). (4)

From Inequalities (3), (4), and submodularity, we have

OPT = f(O) ≤ f(O ∩A) + f(O \A)

≤ αE [f(C)] + 2E [f(C)] + 2OPT/c,

from which it follows that E [f(C)] ≥ OPT/c.
Adaptive and query complexities. The adaptivity of

AST is twice the adaptivity of THRESHOLDSAMPLE plus the
adaptivity of UNCONSTRAINEDMAX plus a constant. Fur-
ther, the total query complexity is log1−ε(1/(6k)) times the
sum of twice the query complexity of THRESHOLDSAMPLE
and the query complexity of UNCONSTRAINEDMAX.

3 The ADAPTIVETHRESHOLDGREEDY
Algorithm

In this section, we present the algorithm ADAPTIVETHRESH-
OLDGREEDY (ATG, Alg. 2), which achieves ratio≈ 0.193−
ε in nearly optimal query and adaptive complexities. The
price of improving the ratio of the preceding section is an
extra log(n) factor in the adaptivity.

Algorithm 2 The ADAPTIVETHRESHOLDGREEDY Algo-
rithm

1: procedure ATG(f, k, ε, δ)
Input: evaluation oracle f : 2N → R+, constraint k,
accuracy parameter ε > 0, failure probability δ > 0

2: c ← 8/ε, ε′ ← (1 − 1/e)ε/8, δ′ ←
δ/(2 log1−ε′(1/(ck)))

3: M ← maxx∈N f(x), A← ∅, B ← ∅
4: for i← 0 to log1−ε′(1/(ck)) do
5: τ ←M (1− ε′)i
6: S ← THRESHOLDSAMPLE(fA, k −
|A|, τ, ε′, δ′)

7: A← A ∪ S
8: for i← 0 to log1−ε′(1/(ck)) do
9: τ ←M (1− ε′)i

10: S ← THRESHOLDSAMPLE(fB�N\A, k −
|B|, τ, ε′, δ′)

11: B ← B ∪ S
12: A′ ← UNCONSTRAINEDMAX(A, ε′)
13: C ← arg max{f(A), f(A′), f(B)}
14: return C

Overview of Algorithm Our algorithm (pseudocode in
Alg. 2) works as follows. Each for loop corresponds to a
low-adaptivity greedy procedure using THRESHOLDSAMPLE
with descending thresholds. Thus, the algorithm is structured
as two, iterated calls to a greedy algorithm, where the sec-
ond greedy call is restricted to select elements outside the
set A returned by the first. Finally, an unconstrained maxi-
mization procedure is used within the first greedily-selected
set, and the best of the three candidate sets is returned. In
the pseudocode for ATG, Alg. 2, THRESHOLDSAMPLE is
called with functions of the form fS , which is defined to be
the submodular function fS(·) = f(S ∪ ·).

At a high level, our approach is the following: the ITER-
ATEDGREEDY framework of Gupta et al. (2010) runs two
standard greedy algorithms followed by an unconstrained
maximization, which yields an algorithm with O(nk) query
complexity and O(k) adaptivity. We adopt this gramework
but replace the standard greedy algorithm with a novel greedy
approach with low adaptivity and query complexity. To de-
sign this novel greedy approach, we modify the descending
thresholds algorithm of Badanidiyuru and Vondrák (2014),
which has query complexityO(n log k) but very high adaptiv-
ity of Ω(n log k). We use THRESHOLDSAMPLE to lower the
adaptivity of the descending thresholds greedy algorithm (see
the full version for pseudocode and a detailed discussion).

For the resulting algorithm ATG, we prove a ratio of
0.193 − ε (Theorem 3), which improves the 1/6 ratio for
ITERATEDGREEDY proven in Gupta et al. (2010). This novel
analysis requires that partial solutions returned by the greedy
algorithms are analyzed together, which creates difficulties
since the output of the second greedy algorithm must be
conditioned on the random set A chosen by the first greedy
algorithm. If the output of the first greedy approach is condi-
tioned upon selecting set A, a lower bound on the expected
marginal gain of choosing elements into A cannot be ob-

8203

tained. Therefore, a careful analysis is required to prove the
ratio for the ATG algorithm.

A simpler form of our arguments shows that the improved
ratio also holds for the original ITERATEDGREEDY of Gupta
et al. (2010); this analysis is given in the full version. We
prove the following theorem concerning the performance of
ATG.

Theorem 3. Suppose there exists an (1/α)-approximation
for UNCONSTRAINEDMAX with adaptivity Θ and
query complexity Ξ, and let ε, δ > 0. Then the al-
gorithm ADAPTIVETHRESHOLDGREEDY for SMCC
has expected approximation ratio e−1

e(2+α)−α − ε with
probability at least (1 − δ), adaptive complexity of
O
(
log1−ε(1/k) log(n/δ)/ε+ Θ

)
and expected query

complexity of O
(
log1−ε(1/k) · (n/ε) + Ξ

)
.

If the algorithm of Chen, Feldman, and Karbasi (2019)
is used for UNCONSTRAINEDMAX, ATG achieves ap-
proximation ratio ≈ 0.193 − ε with adaptive complex-
ity O (log(k) log(n)) and query complexity O (n log(k)),
wherein the ε dependence has been suppressed.

Proof of Theorem 3. In this proof, we assume that the guar-
antees of Lemma 1 hold for each call to THRESHOLDSAM-
PLE made by ATG; this occurs with probability at least (1−δ)
by the union bound and the choice of δ′.

Overview of Proof For the proof, a substantial amount of
machinery is necessary to lower bound the marginal gain.
The necessary definitions are made first; then, in Lemmas 2 –
5, we formulate the necessary lower bounds on the marginal
gains for the first and second greedy procedures. For each
respective greedy procedure, this is accomplished by consid-
ering respective events ω, ω′ that fix a subset that defines the
choices the algorithm has made up until the call to THRESH-
OLDSAMPLE that adds a batch of elements that includes that
i-th marginal gain; then, the set of all possible events ω, ω′
are marginalized over. This allows us to formulate a recur-
rence on the sum of the expected marginal gains (Lemma 6).
Finally, the recurrence allows us to proceed similarly to our
proof in for ITERATEDGREEDY after a careful analysis of
the error introduced (see the full version).

Definitions of Random Variables Consider the probabil-
ity space of all possible sequences of sets returned by the
successive calls to THRESHOLDSAMPLE on line 6 and line
10 and the call to UNCONSTRAINEDMAX on line 12. Further,
after each call to THRESHOLDSAMPLE, suppose the elements
of S returned by THRESHOLDSAMPLE are added to A or B
in uniformly random order. Let Ai be the random variable
defined as the value of the setA during the execution of ATG
when |A| = i; define Bi analogously. Let t = (t1, t2, . . . , tl)
and τ = (τ1, τ2, . . . , τl) be the random variables recording
the sizes of nonempty sets returned by THRESHOLDSAMPLE
and the corresponding values of τ , respectively, during the
for loop on line 4. Similarly, let t′ = (t′1, t

′
2, . . . , t

′
l′) and

τ ′ = (τ ′1, τ
′
2, . . . , τ

′
l′) record the analogous values during the

for loop on line 8. For 0 ≤ i ≤ k, let j(i) be the maximum

value of the following set: {
∑j
h=1 th = sj : j ≥ 1∧ sj ≤ i}

or 0 if t1 > i. and let j′(i) be defined analogously for the se-
quence (t′1, . . . , t

′
l′). Finally, let O ⊆ N have f(O) = OPT,

|O| ≤ k.
Let l ≤ k, α ∈ Nl and β ∈ Rl be sequences of length l.

Let i ≤ k, and let E ⊆ N . Let ω be the event that t = α and
τ = β and Aj(i) = E; let Ω be the collection of all events ω
of this form.

The next four lemmas are proven in the full version.

Lemma 2. Let ω ∈ Ω. Then E [f(Ai+1)− f(Ai) | ω] +
M
ck ≥

(1−ε′)2
k · (f(O ∪ E)− f(E)) .

Lemma 3. Let 0 ≤ i < k. E [f (Ai+1)− f (Ai)] + M
ck ≥

(1−ε′)2
k E

[
f
(
O ∪ Aj(i)

)
− f

(
Aj(i)

)]
.

The next two lemmas show an analogous result for the
expected gain of B.

Let l ≤ k, and let α ∈ Nl and β ∈ Rl be sequences of
length l. Let i ≤ k, let A be a subset of U of size at most
k, and let F be a subset of U \ A. Let ω′ be the event that
A = A ∧ Bj′(i) = F ∧ t′ = α ∧ τ ′ = β. Finally, let Ω′ be
the collection of all events ω′ of this form.

Lemma 4. Let ω′ ∈ Ω′. Then E [f(Bi+1)− f(Bi) | ω′] +
M
ck ≥

(1−ε′)2
k · (f((O \A) ∪ F)− f(F)) .

Lemma 5. Let 0 ≤ i < k. E [f (Bi+1)− f (Bi)] + M
ck ≥

(1−ε′)2
k E

[
f
(
O \ A ∪ Bj′(i)

)
− f

(
Bj′(i)

)]
.

The next lemma establishes the main recurrence.

Lemma 6. Let Γi = f (Ai) + f (Bi). Then E [Γi+1] −
E [Γi] + 2M

ck ≥
(1−ε′)2

k (E [f (O \ A)]− E [Γi]) .

Proof of Lemma 6.

E [Γi+1]− E [Γi] +
2M

ck
(a)

≥ (1− ε′)2

k

(
E
[
f
(
O \ A ∪ Bj′(i)

)
− f

(
Bj′(i)

)]
+ E

[
f
(
O ∪ Aj(i)

)
− f

(
Aj(i)

)])
(b)
=

(1− ε′)2

k

(
E
[
f
(
O ∪ Aj(i)

)
+ f

(
O \ A ∪ Bj′(i)

)]
− E

[
f
(
Aj(i)

)
− f

(
Bj′(i)

)])
(c)

≥ (1− ε′)2

k
E
[
f (O \ A)− f

(
Aj(i)

)
− f

(
Bj′(i)

)]
(d)

≥ (1− ε′)2

k
(E [f (O \ A)]− E [Γi]) ,

where (a) and (b) follow from linearity of expectation and
Lemmas 3 and 5.

Inequality (c) follows from the submodularity and nonneg-
ativity of f and the definition of expected value; indeed,

f ((O \A) ∪B′) + f (O ∪A′)− f (A′)− f (B′)

≥ f (O \A)− f (A′)− f (B′) ,

from submodularity and nonnegativity of f , for any sets
satisfying A′ ⊆ A and B′ ∩A = ∅; the values of the random

8204

variables during any single run of the algorithm satisfy these
conditions.

Inequality (d) follows from linearity of expectation and
the facts that during any run of the algorithm, j(i) ≤
i, j′(i) ≤ i; and E [f (Aj+1)− f (Aj)] ≥ 0 and
E [f (Bj+1)− f (Bj)] ≥ 0 for any j; these latter two inequal-
ities hold by Lemma 1 and imply E [f (Ai)] ≥ E

[
f
(
Aj(i)

)]
and E [f (Bi)] ≥ E

[
f
(
Bj′(i)

)]
.

Lemma 6 yields a recurrence of the form ui+1 ≥ aui + b,
u0 = 0, and has the solution ui ≥ b

1−a (1−ai). Consequently,
we have

E [f(Ak)] + E [f(Bk)] ≥[
E [f(O \A)]− 2M

c(1− ε′)2

]
·
(

1− e−(1−ε
′)2
)
. (5)

Let β = 1− e−(1−ε′)2 . From the choice of C on line 13, we
have 2f(C) ≥ f(A) + f(B) and so from (5), we have

E [f(O \A)] ≤ 2

β
E [f(C)] +

2M

c(1− ε′)2

≤ 2

β
E [f(C)] +

2f(O)

c(1− ε′)2
. (6)

For any set A, f(O) ≤ f(O ∩A) + f(O \A) by submod-
ularity and nonnegativity. Therefore,

f(O) ≤ E [f(O ∩A)] + E [f(O \A)] . (7)

Since an (1/α)-approximation is used for UNCON-
STRAINEDMAX, for any A, f(O ∩ A)/α ≤ E [f(C)|A];
therefore,

E [f(O ∩A)] ≤ αE [f(C)] . (8)
From (6), (7), and (8) and the choices of c, ε′ on line 2, we

have from Lemma 7 in the full version

E [f(C)] ≥

(
1− 2

c(1−ε′)2

α+ 2
β

)
f(O)

≥
(

(e− 1)

α(e− 1) + 2e
− ε
)
f(O).

4 Empirical Evaluation
In this section, we evaluate our algorithm in comparison
with the state-of-the-art parallelizable algorithms: ADAP-
TIVENONMONOTONEMAX of Fahrbach, Mirrokni, and Zadi-
moghaddam (2019a) and the algorithm of Ene and Nguyên
(2020). Our results are summarized as follows.
• Our algorithm ATG obtains the best objective value of any

of the parallelizable algorithms; obtaining an improvement
of up to 18% over the next algorithm, our AST. Both
Fahrbach, Mirrokni, and Zadimoghaddam (2019a) and
Ene and Nguyên (2020) exhibit a large loss of objective
value at small k values; see Figs. 1(a) and 1(c).
• Both our algorithm AST and ADAPTIVENONMONOTONE-

MAX use a very small number of adaptive rounds. Both
ATG and the algorithm of Ene and Nguyên (2020) use
roughly an order of magnitude more adaptive rounds; see
Figs. 1(b) and 1(e).

• The algorithm of Ene and Nguyên (2020) is the most query
efficient if access is provided to an exact oracle for the mul-
tilinear extension of a submodular function and its gradi-
ent1. However, if these oracles must be approximated with
the set function, their algorithm becomes very inefficient
and does not scale beyond small instances (n ≤ 100).
Our algorithms used fewer queries to the submodular set
function than the linear-time algorithm of Buchbinder,
Feldman, and Schwartz (2015).

Algorithms In addition to the algorithms discussed in the
preceding paragraphs, we evaluate the following baselines:
the ITERATEDGREEDY algorithm of Gupta et al. (2010),
and the linear-time (1/e− ε)-approximation algorithm FAS-
TRANDOMGREEDY of Buchbinder, Feldman, and Schwartz
(2015). These algorithms are both O(k)-adaptive, where k is
the cardinality constraint.

For all algorithms, accuracy parameter εwas set to 0.1; 100
samples were used to evaluate expectations in all adaptive
algorithms (thus, these algorithms were run as heuristics
with no performance guarantee). Randomized algorithms are
averaged over 20 independent repetitions, and the mean is
reported. The standard deviation is indicated by a shaded
region in the plots. Any algorithm that requires a subroutine
for UNCONSTRAINEDMAX is implemented to use a random
set, which is a (1/4)-approximation by Feige, Mirrokni, and
Vondrák (2011).

Applications All combinatorial algorithms are evaluated
on two applications of SMCC: the cardinality-constrained
maximum cut application and revenue maximization on so-
cial networks, a variant of the influence maximization prob-
lem in which k users are selected to maximize revenue. We
evaluate on a variety of network technologies from the Stan-
ford Large Network Dataset Collection (Leskovec and Krevl
2020).

The algorithm of Ene and Nguyên (2020) requires access
to an oracle for the multilinear extension and its gradient. In
the case of maximum cut, the multilinear extension and its
gradient can be computed in closed form in time linear in
the size of the graph, as described in the full version. This
fact enables us to evaluate the algorithm of Ene and Nguyên
(2020) using direct oracle access to the multilinear extension
and its gradient on the maximum cut application. However,
no closed form exists for the multilinear extension of the
revenue maximization objective. In this case, we found (see
the full version) that sampling to approximate the multilinear
extension is exorbitant in terms of runtime; hence, we were
unable to evaluate Ene and Nguyên (2020) on revenue maxi-
mization. For more details on the applications and datasets,
see the full version.

Results on cardinality-constrained maximum cut. In
Fig. 1, we show representative results for cardinality-
constrained maximum cut on web-Google (n = 875713)

1The definition of the multilinear extension is given in the full
version

8205

(a) Objective, small k (b) Rounds, small k (c) Objective, large k

(d) Queries, large k (e) Rounds, large k (f) Legend

Figure 1: Comparison of objective value (normalized by the ITERATEDGREEDY objective value), total queries, and adaptive
rounds on web-Google for the maxcut application for both small and large k values. The large k values are given as a fraction
of the number of nodes in the network. The algorithm of Ene and Nguyên (2020) is run with oracle access to the multilinear
extension and its gradient; total queries reported for this algorithm are queries to these oracles, rather than the original set
function.

for both small and large k values. Results on other datasets
and revenue maximization are given in the full version. In
addition, results for Ene and Nguyên (2020) when the multi-
linear extension is approximated via sampling are given in
the full version. The algorithms are evaluated by objective
value of solution, total queries made to the oracle, and the
number of adaptive rounds (lower is better). Objective value
is normalized by that of ITERATEDGREEDY.

In terms of objective value (Figs. 1(a) and 1(c)), our al-
gorithm ATG maintained better than 0.99 of the ITERATED-
GREEDY value, while all other algorithms fell below 0.95
of the ITERATEDGREEDY value on some instances. Our
algorithm AST obtained similar objective value to ADAP-
TIVENONMONOTONEMAX on larger k values, but performed
much better on small k values. Finally, the algorithm of
Ene and Nguyên (2020) obtained poor objective value for
k ≤ 100 and about 0.75 of the ITERATEDGREEDY value
on larger k values. It is interesting to observe that the two
algorithms with the best approximation ratio of 1/e, Ene and
Nguyên (2020) and FASTRANDOMGREEDY, returned the
worst objective values on larger k (Fig. 1(c)).

For total queries (Fig. 1(d)), the most efficient is Ene and
Nguyên (2020), although it does not query the set function di-
rectly, but the multilinear extension and its gradient. The most
efficient of the combinatorial algorithms was AST, followed
by ATG. Finally, with respect to the number of adaptive
rounds (Fig. 1(e)), the best was ADAPTIVENONMONOTONE-
MAX, closely followed by AST; the next lowest was AST,
followed by Ene and Nguyên (2020).

5 Conclusions and Future Work

We have provided two combinatorial algorithms for efficient
and parallelizable maximization of submodular functions;
both algorithms are within polylogarithmic factors of optimal
adaptivity and query complexity. The approximation factor of
such a nearly optimal algorithm is improved by our analysis
from 0.039− ε of Fahrbach, Mirrokni, and Zadimoghaddam
(2019a) to 0.193 − ε. An empirical evaluation of heuristic
versions of our algorithms demonstrate that our simpler al-
gorithm AST nearly matches the adaptivity of Fahrbach,
Mirrokni, and Zadimoghaddam (2019a) while improving on
solution quality, while our second algorithm sacrifices a small
amount of adaptivity for even better solution quality. Finally,
an empirical evaluation of the state-of-the-art algorithm (Ene
and Nguyên 2020) for parallelizable maximization of conti-
nous DR-submodular functions on the multilinear extension
of the maximum cut objective shows that if an oracle to
the multilinear extension is unavailable, combinatorial algo-
rithms are much more efficient than approximation of the
multilinear extension by sampling.

Although we improved the ratio of fast, parallelizable al-
gorithms for SMCC, there is still a theoretical gap between
our ratio of 0.193 − ε for nearly linear-time combinatorial
algorithms and the best known approximation factor for this
problem (0.385 of Buchbinder and Feldman (2016).) Hence,
future work includes narrowing this gap. Also, future work in-
cludes investigating if modifications of our algorithms could
be run with theoretical guarantees on quality of solution,
instead of as heuristics.

8206

Acknowledgments
The work of Alan Kuhnle was partially supported by Florida
State University. Yixin Chen, Victoria G. Crawford, and the
anonymous reviewers provided helpful feedback on earlier
versions of the manuscript.

References
Badanidiyuru, A.; and Vondrák, J. 2014. Fast algorithms for
maximizing submodular functions. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA).

Balkanski, E.; Breuer, A.; and Singer, Y. 2018. Non-
monotone Submodular Maximization in Exponentially Fewer
Iterations. In Advances in Neural Information Processing
Systems (NeurIPS).

Balkanski, E.; Rubinstein, A.; and Singer, Y. 2019. An Ex-
ponential Speedup in Parallel Running Time for Submodular
Maximization without Loss in Approximation. In ACM-SIAM
Symposium on Discrete Algorithms (SODA).

Balkanski, E.; and Singer, Y. 2018. The adaptive complexity
of maximizing a submodular function. In ACM SIGACT
Symposium on Theory of Computing (STOC).

Buchbinder, N.; and Feldman, M. 2016. Constrained Sub-
modular Maximization via a Non-symmetric Technique.
Mathematics of Operations Research 44(3).

Buchbinder, N.; Feldman, M.; Naor, J. S.; and Schwartz,
R. 2012. A Tight Linear Time (1 / 2)-Approximation for
Unconstrained Submodular Maximization. In Symposium on
Foundations of Computer Science (FOCS).

Buchbinder, N.; Feldman, M.; and Schwartz, R. 2015. Com-
paring Apples and Oranges: Query Tradeoff in Submodular
Maximization. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA).

Chekuri, C.; and Quanrud, K. 2019. Parallelizing greedy
for submodular set function maximization in matroids and
beyond. Proceedings of the Annual ACM Symposium on
Theory of Computing 78–89.

Chen, L.; Feldman, M.; and Karbasi, A. 2019. Unconstrained
submodular maximization with constant adaptive complexity.
In STOC, 102–113.

Crawford, V. G. 2019. An Efficient Evolutionary Algorithm
for Minimum Cost Submodular Cover. In International Joint
Conference on Artificial Intelligence (IJCAI).

Crawford, V. G. 2020. Faster Guarantees of Pareto Opti-
mization for Submodular Maximization. In arxiv preprint
arXiv:1908:01230.

El-Arini, K.; and Guestrin, C. 2011. Beyond Keyword Search:
Discovering Relevant Scientific Literature. In ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD).

Ene, A.; and Nguyen, H. L. 2019. Submodular Maximiza-
tion with Nearly-optimal Approximation and Adaptivity in
Nearly-linear Time. In ACM-SIAM Symposium on Discrete
Algorithms (SODA).

Ene, A.; and Nguyên, H. L. 2020. Parallel Algorithm for Non-
Monotone DR-Submodular Maximization. In International
Conference on Machine Learning (ICML).
Ene, A.; Nguyên, H. L.; and Vladu, A. 2019. Submodular
maximization with matroid and packing constraints in paral-
lel. Proceedings of the Annual ACM Symposium on Theory
of Computing 90–101.
Fahrbach, M.; Mirrokni, V.; and Zadimoghaddam, M. 2019a.
Non-monotone Submodular Maximization with Nearly Opti-
mal Adaptivity Complexity. In International Conference on
Machine Learning (ICML).
Fahrbach, M.; Mirrokni, V.; and Zadimoghaddam, M. 2019b.
Submodular Maximization with Nearly Optimal Approxi-
mation, Adaptivity, and Query Complexity. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 255–273.
Feige, U.; Mirrokni, V.; and Vondrák, J. 2011. Maximiz-
ing non-monotone submodular functions. SIAM Journal on
Computing .
Gharan, S. O.; and Vondrák, J. 2011. Submodular maxi-
mization by simulated annealing. ACM-SIAM Symposium on
Discrete Algorithms (SODA) .
Gupta, A.; Roth, A.; Schoenebeck, G.; and Talwar, K. 2010.
Constrained non-monotone submodular maximization: Of-
fline and secretary algorithms. In International Workshop on
Internet and Network Economics (WINE).
Hartline, J.; Mirrokni, V. S.; and Sundararajan, M. 2008. Op-
timal marketing strategies over social networks. International
Conference on World Wide Web (WWW) 189–198.
Kazemi, E.; Mitrovic, M.; Zadimoghaddam, M.; Lattanzi,
S.; and Karbasi, A. 2019. Submodular Streaming in All its
Glory: Tight Approximation, Minimum Memory and Low
Adaptive Complexity. In International Conference on Ma-
chine Learning (ICML).

Kempe, D.; Kleinberg, J.; and Tardos, É. 2003. Maximizing
the spread of influence through a social network. In ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD).
Kuhnle, A. 2019. Interlaced Greedy Algorithm for Maximiza-
tion of Submodular Functions in Nearly Linear Time. In Ad-
vances in Neural Information Processing Systems (NeurIPS).
Leskovec, J.; and Krevl, A. 2020. SNAP Datasets: Stanford
Large Network Dataset Collection. URL http://snap.stanford.
edu/data. Accessed 2021-03-17.
Libbrecht, M. W.; Bilmes, J. A.; and Stafford, W. 2017.
Choosing non-redundant representative subsets of protein
sequence data sets using submodular optimization. Proteins:
Structure, Function, and Bioinformatics (July 2017): 454–
466.
Mirzasoleiman, B.; Badanidiyuru, A.; and Karbasi, A. 2016.
Fast Constrained Submodular Maximization : Personalized
Data Summarization. In International Conference on Ma-
chine Learning (ICML).
Mirzasoleiman, B.; Badanidiyuru, A.; Karbasi, A.; Vondrak,
J.; and Krause, A. 2015. Lazier Than Lazy Greedy. In AAAI
Conference on Artificial Intelligence (AAAI).

8207

Mislove, A.; Koppula, H. S.; Gummadi, K. P.; Druschel, P.;
and Bhattacharjee, B. 2008. Growth of the Flickr Social
Network. In First Workshop on Online Social Networks.
Nemhauser, G. L.; and Wolsey, L. A. 1978. Best Algorithms
for Approximating the Maximum of a Submodular Set Func-
tion. Mathematics of Operations Research 3(3): 177–188.
Simon, I.; Snavely, N.; and Seitz, S. M. 2007. Scene summa-
rization for online image collections. In IEEE International
Conference on Computer Vision (ICCV).
Sipos, R.; Swaminathan, A.; Shivaswamy, P.; and Joachims,
T. 2012. Temporal corpus summarization using submodu-
lar word coverage. In ACM International Conference on
Information and Knowledge Management (CIKM).
Tschiatschek, S.; Iyer, R.; Wei, H.; and Bilmes, J. 2014.
Learning Mixtures of Submodular Functions for Image Cxol-
lection Summarization. In Advances in Neural Information
Processing Systems (NeurIPS).

8208

