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Abstract

Recently, a non-local (NL) operation has been designed as
the central building block for deep-net models to capture
long-range dependencies (Wang et al. 2018). Despite its ex-
cellent performance, it does not consider the interaction be-
tween positions across channels and layers, which is crucial
in fine-grained classification tasks. To address the limitation,
we target at singer identification (SID) task and present a fully
generalized non-local (FGNL) module to help identify fine-
grained vocals. Specifically, we first propose a FGNL opera-
tion, which extends the NL operation to explore the correla-
tions between positions across channels and layers. Secondly,
we further apply a depth-wise convolution with Gaussian ker-
nel in the FGNL operation to smooth feature maps for better
generalization. More, we modify the squeeze-and-excitation
(SE) scheme into the FGNL module to adaptively emphasize
correlated feature channels to help uncover relevant feature
responses and eventually the target singer. Evaluating results
on the benchmark artist20 dataset shows that the FGNL mod-
ule significantly improves the accuracy of the deep-net mod-
els in SID. Codes are available at https://github.com/ian-k-
1217/Fully-Generalized-Non-Local-Network.

Introduction
The ability of humans to identify singers under limited guid-
ance is remarkable. Take, for example, humans can quickly
learn to identify singers by listening to only a few clips of
music from those singers. Even without prior knowledge
about singers, the human auditory system has evolved to
be able to handle such a task by performing different func-
tionalities that include exhibiting attention for specific fre-
quency bands, capturing long-range dependencies of audio
features as a whole, and extracting distinctive cues for com-
parison. All these can be done under the influence of back-
ground instrumental music and subtle sound variations from
different singers (fine-grained vocals).

The functionalities provided by the human auditory sys-
tem were a perfect match to a particular class of deep learn-
ing algorithms called attention mechanism. Attention mech-
anism is an attempt to mimic human brain action, that is,
to selectively concentrate on a few relevant things, while ig-
noring others in deep-net models. It not only tells where to
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focus, but also improves the feature representation by cap-
turing long-range spatial (or spatio-temporal) dependencies
(Wang et al. 2018; Vaswani et al. 2017; Bahdanau, Cho, and
Bengio 2015; Ramachandran et al. 2019). Among a mass
of attention mechanisms, a non-local (NL) operation that
belongs to the self-attention mechanism has recently been
proposed, and has achieved great success in various vision
and audio processing tasks (Wang et al. 2018; Hsieh et al.
2019; Jung et al. 2020; Zhang et al. 2019; Li et al. 2019).
As illustrated in Figure 1 (a), the NL operation computes
the response at a position in an image (or audio frame) by
attending to all positions and taking their weighted aver-
age in an embedding space to achieve the goal of capturing
long-range dependencies. Despite its excellent performance,
the original NL module only considers the global spatial
(or spatio-temporal) correlation by merging channels, which
would lose important cues across channels and layers.

To mimic the functionalities of the human auditory sys-
tem and improve the effectiveness in singer identification
(SID) task, this study proposes a fully generalized non-local
(FGNL) module that extends the NL module by learning
explicit correlations among all of the elements (positions)
across channels and layers, as shown in Figure 1 (b). Specif-
ically, FGNL module contributes in three key aspects. First,
we propose the FGNL operation, which scales up the rep-
resentation power of NL operation to attend the interac-
tion among feature maps across channels and layers and re-
veal the mutual similarity of the corresponding parts. Sec-
ond, we suppress the noise in each feature map by integrat-
ing the Gaussian smoothing filter into the FGNL operation.
Third, we modify the squeeze-and-excitation (SE) scheme
(Hu, Shen, and Sun 2018) into the end of the FGNL mod-
ule to adaptively recalibrate channel-wise feature responses
by explicitly modeling inter-dependencies among channels.
Figure 2 illustrates the details of the FGNL module.

To the best of our knowledge, our work is the first to in-
troduce the attention mechanism for solving the SID task.
Extensive experimental results show that: 1) Compared with
the NL module, our FGNL module can capture richer fea-
ture representations and distinctive cues for prediction, and
achieve the state-of-the-art results on the SID task; 2) The
proposed FGNL module is flexible in the sense that it can
be integrated into different deep-net architectures and be
trained in an end-to-end fashion.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8217



Figure 1: Compared with the original non-local (NL) operation computes the response at each position by attending to all other
positions in a single channel, the proposed fully generalized non-local (FGNL) operation further considers correlations among
all of the positions across channels and layers.

Related Work
As our goal is to develop attention mechanisms for captur-
ing richer feature representations and distinctive cues so that
they could be used to facilitate the SID task. We discuss rel-
evant literature and recent progress on both topics.

Singer Identification
SID is a classic task in the field of music information re-
trieval (MIR) (Nasrullah and Zhao 2019; Hsieh et al. 2020;
Zhang et al. 2020; Van, Quang, and Thanh 2019). It aims to
automatically identify the performing singers in given au-
dio clips to facilitate the management of music libraries.
There are two main challenges in the SID task. First, due
to subtle differences in vocal organs, singers may have sim-
ilar singing voices (fine-grained vocals), resulting in small
inter-class variations (Hsieh et al. 2020; Sundberg 1989). As
the number of singers to be considered increases, this issue
becomes crucial. Second, since the songs in each singer’s al-
bums usually contain instrumental accompaniment, it is dif-
ficult for the SID model to extract vocal-only features from
such recordings, which will reduce the generalization abil-
ity of the SID model (Hsieh et al. 2020; Van, Quang, and
Thanh 2019; Sharma, Das, and Li 2019; Rafii et al. 2018;
Sturm 2014).

With the success of deep learning, deep-net models such
as convolutional neural network (CNN) and recurrent neural
network (RNN) have been widely used to address both chal-
lenges. For the first challenge, the core behind these methods
is to learn discriminative feature representations for singers
to be identified. For example, Nasrullah and Zhao (Nasrul-
lah and Zhao 2019) introduce an end-to-end trainable convo-
lutional recurrent neural network (CRNN) to learn the dis-
criminative feature representations and their temporal de-
pendency to achieve the SID task. Hsieh et al. (Hsieh et al.
2020) further add a branch in CRNN to incorporate melody
features for better performance. Van et al. (Van, Quang, and
Thanh 2019) use the bidirectional long short-term memory
(LSTM) network to learn the temporal dependency of fea-

ture representations for SID. Zhang et al. (Zhang et al. 2020)
use the WaveNet to learn feature representations directly
from the raw audio waveform in the time domain to iden-
tify singers. Despite the recent success of CNN and RNN,
both convolutional and recurrent operations can only pro-
cess a local neighborhood (Wang et al. 2018), making it
difficult to learn non-local context relations between audio
feature representations, which is essential for distinguishing
fine-grained vocals.

Regarding the second challenge, the key is to separate the
vocal parts of the given audio clips to minimize the influ-
ence of instruments on the learning of the SID model. For
example, Van et al. (Van, Quang, and Thanh 2019) combine
a gated recurrent unit (GRU) on U-Net to separate the vocal
parts from the song that with mixed background accompani-
ment. Sharma et al. (Sharma, Das, and Li 2019) introduce an
end-to-end trainable Wave-U-Net to learn the separation of
singing voices, thereby eliminating the interference of back-
ground accompaniment on singer identity cues. Hsieh et al.
(Hsieh et al. 2020) use an open source tool called Open-
Unmix (Stöter et al. 2019), which combines a three-layer
bidirectional LSTM and multiplicative skip connection to
separate the vocal and instrumental tracks of music, and has
made great progress. As source separation technology has
become more mature and has been successfully used to im-
prove the performance of SID task, in this study, we inte-
grate the source separation model (Stöter et al. 2019) into
our system and focus on solving the first challenge by intro-
ducing attention mechanism.

Attention Mechanism
Attention mechanism has enjoyed widespread adoption as
a computational module for modeling sequences because
of its ability to capture long-range dependencies and se-
lectively concentrate on the relevant subset of the input
(Vaswani et al. 2017; Bahdanau, Cho, and Bengio 2015; De-
vlin et al. 2019; Yu et al. 2018). For example, Bahdanau et
al. (Bahdanau, Cho, and Bengio 2015) present for the first
time an attention mechanism and combine it with the RNN
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encoder-decoder in a neural machine translation model to
allow selective attention to relevant information from a vari-
able length source sentence. Vaswani et al. (Vaswani et al.
2017) further propose a Transformer architecture to draw
global dependencies between input and output. This archi-
tecture entirely replaces recurrence with self-attention, and
greatly improves the performance of machine translation.
Such a self-attention mechanism has also been extended to
other language representation models such as BERT (Devlin
et al. 2019) and achieved the state-of-the-art results.

Creating attention mechanisms to compensate for the
weakness of convolution has also become an emerging
theme in vision tasks (Hu, Shen, and Sun 2018; Wang
et al. 2018; Ramachandran et al. 2019; Woo et al. 2018;
Roy, Navab, and Wachinger 2019; Bello et al. 2019). For
example, Hu et al. (Hu, Shen, and Sun 2018) present a
channel-wise attention mechanism to explicitly model the
inter-dependencies between the channels of its spatial fea-
tures. It is intended to select the useful feature maps and
suppress the others by considering the global information
of each channel. Woo et al. (Woo et al. 2018) and Roy et al.
(Roy, Navab, and Wachinger 2019) further explore both spa-
tial and channel-wise attentions, and verify that using both is
superior to using only the channel-wise attention. Recently,
Wang et al. (Wang et al. 2018) show that self-attention is
an instantiation of non-local mean (Buades, Coll, and Morel
2005), and present a NL operation for the convolution-
based deep-net models to capture long-range dependencies.
Specifically, the NL operation computes the correlation ma-
trix between each spatial point in the feature maps to gener-
ate an attention map, and then perform the attention-guided
dense context information aggregation. Such a NL opera-
tion has become the core component for various deep-net
architectures to capture non-local context relations, and has
been successfully applied in various fields, including vi-
sion, audio, etc. (Wang et al. 2018; Li et al. 2019). Despite
its excellent performance, the original NL operation only
considers the global spatial (or spatio-temporal) correlation
by merging channels, which may miss subtle but important
cues across channels and layers in fine-grained classification
tasks. In this work, we propose the FGNL operation, which
extends the NL operation to further explore the explicit cor-
relations among all of the elements (positions) across chan-
nels and layers to obtain richer feature representations and
distinctive cues.

Approach
In this section, we elaborate the proposed FGNL module.
We first revisit the original NL operation (Wang et al. 2018).
Then, we will introduce three extensions of FGNL module
in detail, including FGNL operation, Gaussian smoothing
filter, and modified squeeze-and-excitation (MoSE) scheme.

Revisiting NL Operation
The original NL operation (Wang et al. 2018) is revisited
in matrix form shortly. Given the input feature map X ∈
RT×H×W×C for the NL operation, the goal is to obtain a
response Y ∈ RT×H×W× C

m , which aims to capture the non-

local context relations (i.e., long-range dependencies) across
the whole feature map by weighting sum of the features at
all positions,

Y = f(θ(X), φ(X))g(X), (1)

where T denotes the number of input video frames (when
the input is a single image, T can be ignored), H and W
denote the height and width of the feature map, C is the
number of channels, m is a reduction ratio, which refers to
the bottleneck design used for reducing the computational
complexity (Wang et al. 2018), f(·, ·) represents the pair-
wise function, which calculates the affinity between all po-
sitions, and θ(·), φ(·), and g(·) are learnable transformations
recommended to be implemented by using 1× 1 or 1× 1×
1 convolution (Wang et al. 2018). Thus, the transformations
can be written as

θ(X) = XWθ ∈ RN× C
m , (2)

φ(X) = XWφ ∈ RN× C
m , (3)

and
g(X) = XWg ∈ RN× C

m , (4)
parameterized by the weight matrices Wθ, Wφ, and Wg ∈
RC× C

m , respectively. Here N denotes the collapsing of all
the spatial or spatio-temporal positions in one dimension,
i.e., N = HW or N = HWT . In the implementation, the
original NL operation provides multiple options for f . For
simplicity, we choose the dot product as an example, i.e.,

f(θ(X), φ(X)) = θ(X)φ(X)T, (5)

where the size of the resulting pairwise function f(·, ·) de-
notes as RN× C

m × R C
m×N → RN×N . Thus, by substituting

equations (2) to (5) into (1), the response Y can be obtained
as

Y = XWθW
T
φX

TXWg, (6)

where the pairwise matrix XWθW
T
φX

T ∈ RN×N encodes
the mutual similarity between any positions of the input fea-
ture. The effect of NL operation can be understood as the
self-attention mechanism (Vaswani et al. 2017) in the sense
that each position (row) in the resulting Y is a linear combi-
nation of all the positions (columns) of XWg weighted by
the corresponding row of the pairwise matrix.

Our FGNL Module
The original NL operation aims to capture the long-range
dependencies between any two positions in one convolu-
tional layer. However, it only calculates the dependencies of
any two positions in each channel separately, and aggregates
all channel information in one convolutional layer together
through a joint location-wise matrix f(θ(X), φ(X)). Thus,
it will lose the interaction between positions across chan-
nels and layers. To this end, we generalize the original NL
operation so that the long-range dependencies between any
positions of any channels and layers can be modeled.

We formulate the proposed FGNL module as follows.
Given a set of input feature maps F = {X1,X2, . . . ,XL}
for the FGNL module, the goal of the FGNL operation
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Figure 2: A spatio-temporal FGNL module. The feature maps are shown as the shape of their tensors, e.g., T×Hi×Wi×C forC
channels (proper reshaping is performed when noted). θ, φ, and g denote 1×1×1 convolutions,⊗ denotes matrix multiplication,
� denotes the element-wise product, and ⊕ denotes element-wise sum. The computation of softmax is performed on each row.

is to obtain a set of non-local context responses R =
{Y1,Y2, . . . ,YM}, where L represents the number of lay-
ers and M is the number of responses. For the sake of clar-
ity, in the following, we use two-layer input feature maps
Xi ∈ RT×Hi×Wi×C and Xj ∈ RT×Hj×Wj×C , namely
F = {Xi,Xj} as an example to explain the FGNL oper-
ation. (See Figure 2.) To this end, each response Yk in R
can be calculated by weighting sum of the features at all po-
sitions,

Yk = f(G(θ(Xi)), r([G(φi(Xi)), G(φj(Xj))]))

× [G(gi(Xi)), G(gj(Xj))]. (7)

Similar to the NL operation, θ(·), φi(·), φj(·), gi(·), and
gj(·) are learnable transformations. In the implementation,
we set the number of channels represented by the weight
matrices Wθ, Wφi , Wφj , Wgi , and Wgj in the above
transformations to 1

m of the number of channels in Xi and
Xj . Here m is a reduction ratio, and is set to 32 in our ex-
periments, and G(·) represents the Gaussian smoothing fil-
ter, which suppresses noise by performing the depth-wise
convolution between the feature map and the Gaussian ker-
nel. A two-dimensional Gaussian kernel, i.e., G(p, q) =

1
2πσ2 e

−(p2+q2)/2σ2

is adopted, where p and q represent the
spatial coordinates of the feature map (i.e., resulting from
θ(Xi) or φi(Xi) or φj(Xj) or gi(Xi) or gj(Xj)), and σ
is the standard deviation. As σ grows, the feature map be-
comes smoother, providing more noise suppression capa-

bilities. [·, ·] is the operation of matrix concatenation, and
r(·) represents a rolling function, which rolls the elements
of the matrix along the channel axis. Thus, by concate-
nating the matrices from different layers and subsequently
rolling the matrix along the channel axis, the long-range de-
pendencies between the positions across channels and lay-
ers can be obtained through the operation of the pairwise
function f(·, ·). Similar to (5), we choose the dot prod-
uct as the operation for f , and then normalize it by us-
ing the softmax computation. The size of the resulting pair-
wise function f(·, ·) denotes as RNi× C

m × R C
m×(Ni+Nj) →

RNi×(Ni+Nj). Here Ni and Nj denote the collapsing of all
the spatial or spatio-temporal positions for layer i and j,
respectively. To this end, the response Yk ∈ RNi× C

m can
be calculated by the linear combination between the two
matrices resulted from f(·, ·) and [G(gi(Xi)), G(gj(Xj))].
As a result, R = {Y1,Y2, . . . ,YM= C

m
} can be ob-

tained by repeating the operation of (7), which rolls matrix
r([G(φi(Xi)), G(φj(Xj))]

C
m − 1 times along the channel

axis.
Besides capturing the long-range dependencies with

FGNL operation, we further explore the relatedness between
each response Yk in R through the modified squeeze-and-
excitation (MoSE) scheme, which adaptively recalibrates
each response Yk by considering inter-dependencies over
the M responses. Specifically, the squeeze step spatially
summarizes each response with global average pooling,
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Figure 3: The proposed CRNN FGNL and CRNNM FGNL
architectures. © means concatenation.

while the excitation function emphasizes those responses
that play crucial roles in identifying the target. In between
the squeeze layer and the excitation layer, we use two con-
volutional layers that connect ReLU and softmax activations
respectively to modify the original SE scheme (Hu, Shen,
and Sun 2018). We depict the MoSE operation as follows:

MoSE(R) = w, R̃ = w �R, (8)

where R̃ is a re-weighted set of non-local context responses,
w ∈ RM is the excitation vector, and� denotes the element-
wise product.

Finally, as in the design of the NL module (Wang et al.
2018), we use residual connection to generate the output
feature representation (map) Z ∈ RT×Hi×Wi×C (refer to
Figure 2) of the FGNL module as follows:

Z = R̃Wz +Xi, (9)

where Wz is a learnable weight matrix, which can be im-
plemented by using 1 × 1 or 1 × 1 × 1 convolution (i.e.,
depends on frame-wise (spatial) classification or sequence-
wise (spatio-temporal) classification task), and the number
of channels in Wz is scaled up to match the number of chan-
nels in Xi. “+Xi” denotes a residual connection (He et al.
2016). Such a residual connection allows us to insert a new
FGNL module into any pre-trained model, without breaking
its initial behavior (e.g., if Wz is initialized as zero). As a
result, by further considering the re-weighted non-local con-
text responses R̃, the information in Z is richer so Z can be
regarded as enhanced Xi.

Experiments
To demonstrate the effectiveness of the proposed FGNL
module, we conduct SID experiments on the benchmark
artist20 dataset (Ellis 2007), which includes a total of 1,413
complete songs collected from 20 artists (singers). In the
experiments, album-split (Hsieh et al. 2020; Nasrullah and

Zhao 2019) is employed, which ensures that the songs from
the same album are split either in the training, validation, or
the test set, to eliminate additional clues provided by the al-
bum. All evaluated deep-net models are trained with audio
clips of length {3s, 5s, 10s}. Among them, 90% audio clips
(so-called frames) are used for training and the rest are used
for testing. The data in the validation set is split from 10%
of the training data.

Evaluation Protocols
We integrate the proposed FGNL module into two state-of-
the-art SID models, the convolutional recurrent neural net-
work (CRNN) (Nasrullah and Zhao 2019) and the convo-
lutional recurrent neural network with melody (CRNNM)
(Hsieh et al. 2020) in order to compare performance. For
both CRNN and CRNNM, we follow their original archi-
tecture settings as benchmarks. Briefly, the CRNN archi-
tecture is defined as a stack of four convolutional layers,
two GRU layers, and one fully connected (FC) layer. The
CRNNM architecture is basically the same as CRNN, ex-
cept that CRNNM also includes a branch related to melody.
Such a melody branch consists of a stack of four convo-
lutional layers, and its output will be concatenated to the
main branch of the CRNN for subsequent processing. For
the proposed FGNL networks, we insert the FGNL module
into the network architecture of CRNN and CRNNM, re-
spectively named CRNN FGNL and CRNNM FGNL. For
CRNN FGNL, as shown in Figure 3 (a), we insert a FGNL
module after the fourth convolutional layer to model the
non-local context relations between the feature maps of the
fourth and third convolutional layers. For CRNNM FGNL,
as shown in Figure 3 (b), we insert the FGNL module after
the fourth convolutional layer of the mel-spectrogram and
melody branches to model the non-local context relations
between the feature maps of the fourth and third convolu-
tional layers. For the training of the above deep-net models,
we apply random initialization for the weights, a constant
learning rate of 10−4, the dropout and batch normalization
to avoid over-fitting, and the Adam solver (Kingma and Ba
2015) for optimization. Each model is trained by using back-
propagation algorithm (including back-propagation through
time algorithm) with the objective of softmax cross entropy
under the supervision of the ground truth artist (singer) la-
bel. The meta-parameters of each model are set based on the
validation error.

To evaluate whether the background accompaniment will
affect the generalization ability of the above deep-net mod-
els, two evaluation settings are considered, including the
original audio file and the vocal-only. The difference be-
tween them is that the vocal-only setting further employs
the Open-Unmix toolkit (Stöter et al. 2019) to separate the
vocal parts from each audio file in training and test. In the
experiments, we report the evaluation results of each deep-
net model at the frame level and the song level. Specifically,
at the frame level, each t-length (3s, 5s, or 10s) audio spec-
trogram is treated as an independent sample, and the perfor-
mance is measured by taking the F1 score across all samples
in the test set. For evaluation at the song level, majority vot-
ing will be applied to select the most frequent frame level
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Original Audio File Vocal-Only
Frame Level Song Level Frame Level Song Level

Model Type 3s 5s 10s 3s 5s 10s 3s 5s 10s 3s 5s 10s #Parameters
CRNN Average 0.44 0.45 0.48 0.57 0.55 0.58 0.42 0.46 0.51 0.72 0.74 0.74 394,516(Nasrullah and Zhao 2019) Best 0.46 0.47 0.53 0.62 0.59 0.60 0.44 0.48 0.53 0.76 0.79 0.77

CRNN FGNL (Ours) Average 0.52 0.54 0.55 0.72 0.73 0.73 0.44 0.47 0.51 0.79 0.80 0.79 584,141Best 0.54 0.57 0.58 0.76 0.79 0.78 0.44 0.48 0.53 0.81 0.82 0.83
CRNNM Average 0.47 0.47 0.51 0.62 0.61 0.65 0.42 0.46 0.49 0.73 0.75 0.73 778,772(Hsieh et al. 2020) Best 0.48 0.50 0.53 0.67 0.68 0.69 0.43 0.47 0.50 0.75 0.79 0.75

CRNNM FGNL (Ours) Average 0.54 0.55 0.58 0.74 0.74 0.73 0.42 0.47 0.52 0.77 0.83 0.81 1,175,381Best 0.55 0.57 0.63 0.82 0.81 0.83 0.44 0.47 0.53 0.83 0.84 0.86

Table 1: The average and best F1 scores of the frame level and the song level in various length settings. Each t-length (3s, 5s, or
10s) experiment repeats three independent runs. Bold is the comparison winner of the same series (CRNN or CRNNM) model.

Original Audio File Vocal-Only
Frame Level Song Level Frame Level Song Level

Model Type 3s 5s 10s 3s 5s 10s 3s 5s 10s 3s 5s 10s

CRNN (Nasrullah and Zhao 2019) Average 0.44 0.45 0.48 0.57 0.55 0.58 0.42 0.46 0.51 0.72 0.74 0.74
Best 0.46 0.47 0.53 0.62 0.59 0.60 0.44 0.48 0.53 0.76 0.79 0.77

CRNN NL Average 0.51 0.52 0.54 0.71 0.69 0.69 0.42 0.46 0.50 0.77 0.78 0.76
(w/o the cues across channels and layers) Best 0.53 0.53 0.55 0.76 0.74 0.74 0.43 0.46 0.51 0.81 0.81 0.79
CRNN FGNL LIGHT Average 0.51 0.54 0.54 0.70 0.73 0.69 0.43 0.47 0.51 0.77 0.77 0.77
(w/o the cues across layers) Best 0.54 0.55 0.55 0.78 0.77 0.78 0.44 0.48 0.53 0.80 0.80 0.82

CRNN FGNL (Ours) Average 0.52 0.54 0.55 0.72 0.73 0.73 0.44 0.47 0.51 0.79 0.80 0.79
Best 0.54 0.57 0.58 0.76 0.79 0.78 0.44 0.48 0.53 0.81 0.82 0.83

Table 2: Ablation experiments of CRNN with three attention modules, including NL (Wang et al. 2018), FGNL LIGHT, and
FGNL. Each t-length experiment repeats three independent runs. Bold indicates the comparison winner of the model.

artist prediction as the final prediction for each song. Note
that in the implementation, if the confidence (softmax out-
put) of the test frame is less than 0.5, it will be removed and
will not participate in voting (Nasrullah and Zhao 2019). The
F1 score is then reported by song to quantify performance.

Results and Comparisons
For all the above competition methods, Table 1 summarizes
the average and best test F1 scores of the frame level and
the song level resulted from three independent runs. For
the comparison between CRNN and CRNNM, similar to
the results in (Hsieh et al. 2020), the results first show that
CRNNM is better than CRNN in most settings. Such re-
sults indicate that further consideration of melody-related
features is positive for SID. However, although CRNNM
outperformed CRNN, the performance is still limited. One
explanation for this may be that both convolutional and re-
current operations in CRNNM only consider a local neigh-
borhood (Wang et al. 2018), so it is difficult to capture the
non-local context relations (i.e., long-range dependencies)
between audio features to distinguish singer. To tackle the is-
sue, we introduce the attention mechanism and develop the
FGNL module to explicitly model the correlations among
all of the positions in the feature map across channels and
layers. By further integrating the FGNL module, the results
support that CRNN FGNL and CRNNM FGNL can learn
richer feature representations and distinctive cues to com-
plete SID. That is, compared with the original CRNN and
CRNNM, CRNN FGNL and CRNNM FGNL achieve great
improvements. In addition, it is noteworthy that the improve-

ment of the FGNL module is not just because it adds the
number of parameters to the baseline model. To see this, we
note that in Table 1, CRNN FGNL has better performance
than CRNNM but has fewer parameters.

For comparing the original audio file setting with the
vocal-only setting at the frame level and the song level, as
shown in Table 1, we first notice that the vocal-only setting
at the frame level performs worse than the original audio file
setting. Such results indicate that a model trained with the
original audio files may benefit from the additional infor-
mation in the accompaniment. This is supported by another
observation. It is observed that the model can identify the
singer, even if some segments (e.g., intro, inter, or outro)
in the song do not contain the vocals. However, it is inter-
esting that the vocal-only setting at the song level performs
better than the original audio file setting. This is because in
song level prediction, lower confidence frames will be re-
moved and will not contribute to the voting. Although the
accompaniment in the original audio file setting will pro-
vide extra information, the confidence is usually low. This is
because the accompaniment in some vocal segments of the
song could confuse the identification. In this case, the source
separation technique, which is used to separate the human
voice from the original audio, would increase the identifica-
tion confidence of the SID model. Thus, the results indicate
that source separation plays a positive role when considering
the identification confidence in the song level. All in all, the
proposed FGNL module makes significant improvements to
CRNN and CRNNM in both the original audio file and the
vocal-only settings.
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Figure 4: Visualization of the embeddings (projected into 2-D space by t-SNE) under the original audio file setting of the 5-sec
frame level test samples. From left to right are CRNN, CRNN NL, CRNN FGNL LIGHT, and CRNN FGNL.

Original Audio File Vocal-Only
Frame Level Song Level Frame Level Song Level

Model Type 3s 5s 10s 3s 5s 10s 3s 5s 10s 3s 5s 10s
CRNN FGNL Average 0.52 0.54 0.54 0.71 0.73 0.72 0.44 0.46 0.50 0.78 0.79 0.76
without Gaussian smoothing Best 0.53 0.55 0.55 0.77 0.80 0.74 0.45 0.47 0.52 0.81 0.83 0.81
CRNN FGNL Average 0.52 0.53 0.54 0.71 0.72 0.71 0.43 0.45 0.51 0.78 0.78 0.78
without MoSE Best 0.54 0.54 0.55 0.77 0.77 0.77 0.44 0.46 0.53 0.81 0.82 0.83
CRNN FGNL Average 0.53 0.54 0.54 0.72 0.71 0.70 0.44 0.46 0.51 0.80 0.76 0.77
with Gaussian smoothing and SE Best 0.54 0.55 0.57 0.78 0.79 0.78 0.44 0.48 0.52 0.83 0.78 0.83
CRNN FGNL Average 0.52 0.54 0.55 0.72 0.73 0.73 0.44 0.47 0.51 0.79 0.80 0.79
with Gaussian smoothing and MoSE Best 0.54 0.57 0.58 0.76 0.79 0.78 0.44 0.48 0.53 0.81 0.82 0.83

Table 3: Ablation experiments of CRNN FGNL with and without Gaussian smoothing, MoSE, and SE (Hu, Shen, and Sun
2018) mechanisms. Bold indicates the comparison winner of the model.

To verify whether the cues across channels and layers in
the proposed FGNL module are useful, we conducted ab-
lation experiments under the CRNN architecture. Specif-
ically, the proposed CRNN FGNL is compared with the
CRNN FGNL LIGHT (i.e., without the cues across layers),
the CRNN NL (Wang et al. 2018) (i.e., without the cues
across channels and layers), and the original CRNN. All at-
tention modules (i.e., NL, FGNL LIGHT, and FGNL) are
inserted after the fourth convolutional layer of the CRNN
architecture (Nasrullah and Zhao 2019). For performance
comparison, it is obvious from Table 2 that CRNN NL is
superior to CRNN in almost all settings. The results con-
firm that by further introducing NL module to model the
non-local context relations of audio features, SID perfor-
mance can indeed be improved. Despite its excellent perfor-
mance, it can only compute the response at each position by
attending to all other positions in each channel separately,
which will lose important information between positions
across channels and layers. Compared with CRNN NL, the
CRNN FGNL LIGHT demonstrates that by further consid-
ering the cues across channels, the performance can indeed
be improved. The results can be further verified by visualiz-
ing the feature embedding in each competing model. To this
end, we employ t-distributed stochastic neighbor embedding
(t-SNE) (Maaten and Hinton 2008) to project the computed

embedding vectors to a 2-D space for visualization. Briefly,
for each of the above models, we regard the output of the last
layer of GRU in the CRNN architecture as embedding and
visualize it through t-SNE. For space limit, we visualize the
four competing models under the setting of the original au-
dio file at the 5-sec frame level. The audio samples of testing
set are drawn and colored according to the ground truth artist
(singer) labels in Figure 4. It can be seen from the result of
CRNN FGNL LIGHT that samples from different singers
are fairly well-separated in the embedding space. The re-
sult of CRNN NL looks chaotic and less separated, suggest-
ing again that a model taking the cues across channels (i.e.,
CRNN FGNL LIGHT) may achieve SID better. Finally, as
shown in Table 2 and Figure 4, by simultaneously explor-
ing the correlations between positions across channels and
layers, the CRNN FGNL can indeed capture richer feature
representations and distinctive cues to facilitate the identifi-
cation of singers. Overall, CRNN FGNL achieves the best
performance among the above competing models.

Finally, to evaluate whether integrating the Gaussian
smoothing filter and the modified squeeze-and-excitation
(MoSE) scheme into the FGNL module (refer to Figure 2)
can improve the generalization ability of the model, abla-
tion experiments are further conducted in CRNN FGNL (re-
fer to Figure 3(a)). Four settings are considered, including
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CRNN FGNL without Gaussian smoothing, CRNN FGNL
without MoSE, CRNN FGNL with Gaussian smoothing and
squeeze-and-excitation (SE) (Hu, Shen, and Sun 2018), and
CRNN FGNL with Gaussian smoothing and MoSE (our full
version). Table 3 summarizes performance comparison. It
is observed that the CRNN FGNL with Gaussian smooth-
ing and MoSE outperforms CRNN FGNL without Gaus-
sian smoothing and CRNN FGNL without MoSE, demon-
strating that generalizing the ability of the model could re-
sult from both using the Gaussian smoothing filter to sup-
press the noise of the feature map, and using the MoSE
scheme to recalibrate the channel-wise feature responses.
Besides, comparing the original SE and the proposed MoSE
scheme, the results show that CRNN FGNL with Gaus-
sian smoothing and MoSE is better than CRNN FGNL with
Gaussian smoothing and SE. Such results indicate that us-
ing the convolutional layer and softmax operation instead of
fully connected layer and sigmoid operation in SE module
can indeed increase the generalization ability of the model.
All in all, the ablation experiments show that the Gaus-
sian smoothing filter and the MoSE scheme improve the
SID performance for the deep-net model. More experiments
and a demo video can be found at https://github.com/ian-k-
1217/Fully-Generalized-Non-Local-Network.

Conclusions
We have introduced a new attention mechanism called the
fully generalized non-local (FGNL) module, which can bet-
ter capture the non-local context relations (i.e., long-range
dependencies) of audio features to help identify fine-grained
vocals. The results have demonstrated that the FGNL mod-
ule significantly improves the accuracy of the deep-net mod-
els in singer identification (SID) task and achieves the state-
of-the-art level. Moreover, it is shown that the proposed
FGNL module is superior to the popular non-local (NL)
module (Wang et al. 2018) by explicitly modeling the rich
inter-dependencies between any positions across channels
and layers in the feature space, while the NL module only
considers the correlations between positions along the spe-
cific channel. Based on the promising outcomes, our future
work will focus on developing more effective loss functions
to improve the fineness of the learned feature representation.
We also plan to expand the scale of the experiments to other
tasks in the future, such as vision tasks.
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