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Abstract

In most practical applications of reinforcement learning, it is
untenable to maintain direct estimates for individual states; in
continuous-state systems, it is impossible. Instead, researchers
often leverage state similarity (whether explicitly or implic-
itly) to build models that can generalize well from a limited
set of samples. The notion of state similarity used, and the
neighbourhoods and topologies they induce, is thus of cru-
cial importance, as it will directly affect the performance of
the algorithms. Indeed, a number of recent works introduce
algorithms assuming the existence of “well-behaved” neigh-
bourhoods, but leave the full specification of such topologies
for future work. In this paper we introduce a unified formal-
ism for defining these topologies through the lens of metrics.
We establish a hierarchy amongst these metrics and demon-
strate their theoretical implications on the Markov Decision
Process specifying the reinforcement learning problem. We
complement our theoretical results with empirical evaluations
showcasing the differences between the metrics considered.

Introduction
A simple principle to generalization in reinforcement learning
is to require that similar states be assigned similar predictions.
State aggregation implements a coarse version of this princi-
ple, by using a notion of similarity to group states together.
A finer implementation is to use the similarity in an adap-
tive fashion, for example by means of a nearest neighbour
scheme over representative states. This approach is classi-
cally employed in the design of algorithms for continuous
state spaces, where the fundamental assumption is the ex-
istence of a metric characterizing the real-valued distance
between states.

To illustrate this idea, consider the three similarity met-
rics depicted in Figure 1. The metric d1 isolates each state,
the metric d3 groups together all states, while the metric d2

aggregates states based on the similarity in their long-term dy-
namics. In terms of generalization, d1 would not be expected
to generalize well as new states cannot leverage knowledge
from previous states; d3 can cheaply generalize to new states,
but at the expense of accuracy; on the other hand, d2 seems
to strike a good balance between the two extremes.

*Work performed while a Google Student Researcher.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A simple five-state MDP (top) with the neighbour-
hoods induced by three metrics: an identity metric which
isolates each state (d1); a metric which captures behavioral
proximity (d2); and a metric which is not able to distinguish
states (d3). The yellow circles represent ε-balls in the corre-
sponding metric spaces. The bottom row indicates the V ∗
values for each state.

In this paper we study the effectiveness of behavioural
metrics at providing a good notion of state similarity. We call
behavioural metrics the class of metrics derived from prop-
erties of the environment, typically measuring differences
in reward and transition functions. Since the introduction of
bisimulation metrics (Ferns, Panangaden, and Precup 2004,
2005), a number of behavioural metrics have emerged with
additional desirable properties, including lax bisimulation
(Taylor, Precup, and Panagaden 2009; Castro and Precup
2010) and π-bisimulation metrics (Castro 2020). Behavioural
metrics are of particular interest in the context of understand-
ing generalization, since they directly encode the differences
in action-conditional outcomes between states, and hence al-
low us to make meaningful statements about the relationship
between these states.

We focus on the interplay between behavioural metrics and
the continuity properties they induce on various functions of
interest in reinforcement learning. Returning to our example,
V ∗ is only continuous with respect to d1 and d2. The con-
tinuity of a set of functions (with respect to a given metric)
is assumed in most theoretical results for continuous state
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spaces, such as uniform continuity of the transition function
(Kakade, Kearns, and Langford 2003); Lipschitz continuity
of all Q-functions of policies (Pazis and Parr 2013), Lips-
chitz continuity of the rewards and transitions (Zhao and
Zhu 2014; Ok, Proutiere, and Tranos 2018) or of the optimal
Q-function (Song and Sun 2019; Touati, Taiga, and Belle-
mare 2020; Sinclair, Banerjee, and Yu 2019). We find that
behavioural metrics support these algorithms to varying de-
grees: the original bisimulation metric, for example, provides
fewer guarantees than what is required by some near-optimal
exploration algorithms (Pazis and Parr 2013). These results
are particularly significant given that behavioural metrics
form a relatively privileged group: any metric that enables
generalization must in some sense reflect the structure of
interactions within the environment and hence, act like a
behavioural metric.

Overview

Our aim is to unify representations of state spaces and the
notion of continuity via a taxonomy of metrics.

Our first contribution is a general result about the continu-
ity relationships of different functions of the MDP (Theorem
1). While Gelada et al. (2019) (resp. Norets (2010)) proved
the uniform Lipschitz continuity of the optimal action-value
function (resp. local continuity of the optimal value function)
given the uniform Lipschitz continuity (resp. local continu-
ity) of the reward and transition functions and Rachelson and
Lagoudakis (2010) showed the uniform Lipschitz continuity
of the value function given the uniform Lipschitz continu-
ity of the action-value function in the case of deterministic
policies, Theorem 1 is a more comprehensive result about
the different components of the MDP (reward and transition
functions, value and action value functions), for a spectrum
of continuity notions (local and uniform continuity, local and
uniform Lipschitz continuity) and applicable with stochastic
policies, also providing counterexamples demonstrating that
these relationships are only implication results.

Our second contribution is to demonstrate that different
metrics lead to different notions of continuity for different
classes of functions (Section Continuity: Prior metrics, Sec-
tion value-based metrics and Table 2). We first study metrics
that have been introduced in the literature (presented in Sec-
tion Prior metrics and abstractions). While Li, Walsh, and
Littman (2006) provide a unified treatment of some of these
metrics, they do not analyse these abstractions through the
lens of continuity. Using our taxonomy, we find that most
commonly discussed metrics are actually poorly suited for
algorithms that convert representations into values, so we
introduce new metrics to overcome this shortcoming (sec-
tion Value-based metrics). We also analyse the relationships
between the topologies induced by all the metrics in our
taxonomy (Theorem 2).

Finally, we present an empirical evaluation that supports
our taxonomy and shows the importance of the choice of a
neighbourhood in reinforcement learning algorithms (section
Empirical evaluation).

Background
We consider an agent interacting with an environment,
modelled as a Markov Decision Process (MDP) M =
〈S,A,R,P, γ〉 (Puterman 1994). Here S is a continuous
state space with Borel σ-algebra Σ and A a discrete set of
actions. Denoting ∆(X) to mean the probability distribution
overX , we also have thatP : S×A → ∆(S) is the transition
function, R : S × A → [0, Rmax] is the measurable reward
function, and γ ∈ [0, 1) is the discount factor. We write Pas
to denote the next-state distribution over S resulting from
selecting action a in s and write Ras for the corresponding
reward.

A stationary policy π : S → ∆(A) is a mapping from
states to distributions over actions, describing a particular
way of interacting with the environment. We denote the set
of all policies by Π. For any policy π ∈ Π, the value function
V π(s) measures the expected discounted sum of rewards
received when starting from state s ∈ S and acting according
to π:

V π(s) := E
[∑
t≥0

γtRatst ; s0 = s, at ∼ π(· | st)
]
.

The maximum attainable value is Vmax := Rmax
1−γ . The value

function satisfies Bellman’s equation:
V π(s) = E

a∼π(· | s)
[Ras + γ E

s′∼Pas
V π(s′)].

The state-action value function or Q-function Qπ describes
the expected discounted sum of rewards when action a ∈ A is
selected from the starting state s, and satisfies the recurrence

Qπ(s, a) = Ras + γ E
s′∼Pas

V π(s′).

A policy π is said to be optimal if it maximizes the value
function at all states:

V π(s) = max
π′∈Π

V π
′
(s) for all s ∈ S.

The existence of an optimal policy is guaranteed in both finite
and infinite state spaces. We will denote this policy π∗ ∈ Π.
The corresponding value function and Q-function are denoted
respectively V ∗ and Q∗.

Metrics, Topologies, and Continuity
We begin by recalling standard definitions regarding metrics
and continuity, two concepts central to our work.
Definition 1 (Royden, 1968). A metric space 〈X, d〉 is a
nonempty set X of elements (called points) together with a
real-valued function d defined on X × X such that for all
x, y, and z in X: d(x, y) ≥ 0; d(x, y) = 0 if and only if
x = y; d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y).
The function d is called a metric. A pseudo-metric d is a
metric with the second condition replaced by the weaker
condition x = y =⇒ d(x, y) = 0.

In what follows, we will often use metric to stand for
pseudo-metric for brevity.

A metric d is useful for our purpose as it quantifies, in
a real-valued sense, the relationship between states of the
environment. Given a state s, a natural question is: What
other states are similar to it? The notion of a topology gives a
formal answer.
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Definition 2 (Sutherland, 2009). A metric space 〈X, d〉 in-
duces a topology (X, Td) defined as the collection of open
subsets of X; specifically, the subsets U ⊂ X that satisfy the
property that for each x ∈ U , there exists ε > 0 such that the
ε-neighbourhood Bd(x, ε) = {y ∈ X|d(y, x) < ε} ⊂ U .
Let (X, T ) and (X, T ′) be two topologies on the same space
X . We say that T is coarser than T ′, or equivalently that T ′
is finer than T , if T ⊂ T ′.

Given two similar states under a metric d, we are inter-
ested in knowing how functions of these states behave. In the
introductory example, we asked specifically: how does the
optimal value function behave for similar states? This leads
us to the notion of functional continuity. Given f : X → Y a
function between a metric space (X, dX) and a metric space
(Y, dY ),

• Local continuity (LC): f is locally continuous at x ∈ X
if for any ε > 0, there exists a δx,ε > 0 such that for all
x′ ∈ X , dX(x, x′) < δx,ε =⇒ dY (f(x), f(x′)) < ε. f
is said to be locally continuous on X if it is continuous at
every point x ∈ X .

• Uniform continuity (UC): f is uniformly continuous on
X when given any ε > 0, there exists δε > 0 such that for
all x, x′ ∈ X, dX(x, x′) < δε =⇒ dY (f(x), f(x′)) < ε.

• Local Lipschitz continuity (LLC): f is locally Lipschitz
continuous at x ∈ X if there exists δx > 0,Kx > 0
such that for all x′, x′′ ∈ BdX (x, δx), dY (f(x′), f(x′′)) ≤
KxdX(x′, x′′).

• Uniform Lipschitz continuity (ULC): f is uniformly Lip-
schitz continuous if there exist K > 0 such that for all
x, x′ ∈ X we have dY (f(x), f(x′)) ≤ KdX(x, x′).

The relationship between these different forms of continu-
ity is summarized by the following diagram:

UC ULC

LC LLC

(1)

where an arrow indicates implication; for example, any func-
tion that is ULC is also UC.

Here, we are interested in functions of states and state-
action pairs. Knowing whether a particular function f pos-
sesses some continuity property p under a metric d informs
us on how well we can extrapolate the value f(s) to other
states; in other words, it informs us on the generalization
properties of d.

Prior Metrics and Abstractions
The simplest structure is to associate states to distinct groups,
what is often called state aggregation (Bertsekas 2011). This
gives rise to an equivalence relation, which we interpret as
a discrete pseudo-metric, that is a metric taking a countable
range of values.

Definition 3. An equivalence relation E ⊆ X ×X induces
a discrete pseudo-metric eE where eE(x, x′) = 0 if (x, y) ∈
E, and 1 otherwise.

Throughout the text, we will use e to denote discrete
pseudo-metrics. Two extremal examples of metrics are the
identity metric eI : S×S → {0, 1}, induced by the identity
relation I = {(s, t) ∈ S × S|s = t} (e.g. d1 in Figure 1),
and the trivial metric eT : S × S → {0} that collapses all
states together (e.g. d3 in Figure 1).

In-between these extremes, η-abstractions (Li, Walsh, and
Littman 2006; Abel, Hershkowitz, and Littman 2017) are
functions φ : S → Ŝ that aggregates states which are mapped
close to each other by a function f . That is, given a threshold
η ≥ 0 and f : S × A → R, φf,η(s) = φf,η(t) =⇒
|f(s, a) − f(t, a)| ≤ η. We list a few choices for f along
with the name of the abstraction we will refer to throughout
this text in Table 1.
η-abstractions are defined in terms of a particular func-

tion of direct relevance to the agent. However, it is not im-
mediately clear whether these abstractions are descriptive,
and, more specifically, the kind of continuity properties they
support. An alternative is to relate states based on the out-
comes that arise from different choices, starting in these
states. These are bisimulation relations (Givan, Dean, and
Greig 2003).
Definition 4. An equivalence relation E ⊆ S × S with SE
the quotient space and Σ(E) the Σ measurable sets closed
under E, if whenever (s, t) ∈ E we have:

• Bisimulation relation[Givan, Dean, and Greig, 2003].
Behavioral indistinguishability under equal actions;
namely, for any action a ∈ A, Ras = Rat , and Pas (X) =
Pat (X) for all X ∈ Σ(E). We call E a bisimulation rela-
tion. We denote the largest bisimulation relation as ∼, and
its corresponding discrete metric as e∼.

• Lax-bisimulation relation [Taylor, Precup, and Pana-
gaden, 2009].
Behavioral indistinguishability under matching actions;
namely, for any action a ∈ A from state s there is an
action b ∈ A from state t such that Ras = Rbt , and
Pas (X) = Pbt (X) for all X ∈ Σ(E), and vice-versa, we
call E a lax-bisimulation relation. We denote the largest
lax-bisimulation relation as ∼lax, and its corresponding
discrete metric as e∼lax .

• π-bisimulation relation [Castro, 2020]. Behavioral in-
distinguishability under a fixed policy; namely, given a
policy π ∈ Π,

∑
a∈A π(a|s)Ras =

∑
a∈A π(a|t)Rat ,

and
∑
a∈A π(a|s)Pas (X) =

∑
a∈A π(a|s)Pbt (X) for all

X ∈ Σ(E). We call E a π-bisimulation relation. We
denote the largest bisimulation relation as ∼π, and its
corresponding discrete metric as e∼π .

A bisimulation metric is the continous generalization of
a bisimulation relation. Formally, d is a bisimulation met-
ric if its kernel is equivalent to the bisimulation relation.
The canonical bisimulation metric (Ferns, Panangaden, and
Precup 2005) is constructed from the Wasserstein distance
between probability distributions.
Definition 5. Let (Y, dY ) be a metric space with Borel
σ-algebra Σ. The Wasserstein distance (Villani 2008) be-
tween two probability measures P and Q on Y , un-
der a given metric dY is given by WdY (P,Q) =
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f φf,η

Q∗ approximate Q function abstraction (η ≥ 0) / Q∗-irrelavance (η = 0)
R and P approximate model abstraction (η ≥ 0) / Model-irrelevance (η = 0)

Qπ Qπ-irrelevance abstraction (η = 0)
max
A

Q∗ a∗-irrelevance abstraction (η = 0)

Table 1: Different types of state abstractions.

infλ∈Γ(P,Q) E(x,y)∼λ[dY (x, y)], where Γ(P,Q) is the set of
couplings between P and Q.

Lemma 1 (Ferns, Panangaden, and Precup, 2005). Let
M be the space of state pseudo-metrics and define
the functional F : M → M as F (d)(x, y) =
maxa∈A

(
|Rax −Ray|+ γWd(Pax ,Pay )

)
. Then F has a least

fixed point d∼ and d∼ is a bisimulation metric.

In words, bisimulation metrics arise as the fixed points of
an operator on the space of pseudo-metrics. Lax bisimulation
metrics d∼lax and a π-bisimulation metrics d∼π can be de-
fined in an analogous fashion; for succinctness, their formal
definitions are included in the appendix.

Continuity Relationships

Our first result characterizes the continuity relationships be-
tween key functions of the MDP. The theorem considers
different forms of continuity and relates how the continuity
of one function implies another. While the particular case of
uniform Lipschitz continuity of Q∗ (resp. local continuity of
V ∗) from P + R has been remarked on before by Gelada
et al. (2019) (resp. Norets (2010)) as well as the case of
uniform Lipschitz continuity of V π given the uniform Lips-
chitz continuity of Qπ for stochastic policies π (Rachelson
and Lagoudakis 2010), to the best of our knowledge this is
the first comprehensive treatment of the topic, in particular
providing counterexamples.

Theorem 1. If we decompose the Cartesian product S ×A
as: dS×A(s, a, s′, a′) = dS(s, s′) + dA(a, a′) with dA the
identity metric, the LC, UC and LLC relationships between P ,
R, V π , V ∗, Qπ and Q∗ functions are given by diagram 3. A
directed arrow f → g indicates that function g is continuous
whenever f is continuous. Labels on arrows indicate condi-
tions that are necessary for that implication to hold. P+R is
meant to stand for both P andR continuity; π-cont indicates
continuity of π : S → ∆(A). An absence of a directed arrow
indicates that there exists a counter-example proving that
the implication does not exist. In the ULC case, the previous
relationships also hold with the following additional assump-
tions: γLP < 1 for P + R → Q∗ and γLP(1 + Lπ) < 1

for P + R π-cont−−−→ Qπ where LP and Lπ are the Lipschitz
constants of P and π, respectively.

Qπ V π

P +R

Q∗ V ∗

π-cont

π-cont

(2)

Proof. All proofs and counterexamples are provided in the
appendix.

The arrows are transitive and apply for all forms of con-
tinuity illustrated in Diagram (1); for example, if we have
ULC for Q∗, this implies we have LC for V ∗. This diagram
is useful when evaluating metrics as they clarify the strongest
(or weakest) form of continuity one can demonstrate. When
considering deterministic policies, we can notice that the π-
continuity mentioned in Theorem 1 is very restrictive, as the
following lemma shows.

Lemma 2. If a deterministic policy π : S → A is continuous,
S is connected1 andA is discrete, then π is globally constant.

Taxonomy of Metrics
We now study how different metrics support the continuity of
functions relevant to reinforcement learning and the relation-
ship between their induced topologies. While the taxonomy
we present here is of independent interest, it also provides a
clear theoretical foundation on which to build results regard-
ing metric-respecting embeddings (Gelada et al. 2019; Zhang
et al. 2020).

Continuity: Prior Metrics
We begin the exposition by considering the continuity in-
duced by discrete metrics. These enable us to analyze the
properties of some representations found in the literature.
The extremes of our metric hierarchy are the identity metric
eI and trivial metric eT, which respectively support all and
one continuous functions, and were represented by d1 and d3

in the introductory example.

Lemma 3 (Identity metric). eI induces the finest topology
on S, made of all possible subsets of S. Let (Y, dY ) be
any metric space. Any function h (resp. Any bounded h)
: (S, eI)→ (Y, dY ) is LC and UC (resp. ULC).

1A connected space is topological space that cannot be repre-
sented as the union of two or more disjoint non-empty open subsets.
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Lemma 4 (Trivial metric). eT induces the coarsest topology
on S, consisting solely of {∅,S}. Let (Y, dY ) be any metric
space. Any function h : (S, eI) → (Y, dY ) is LC, UC and
ULC iff h is constant.

We can also construct a discrete metric from any state
aggregation φ : S → Ŝ as eφ(s, t) = eI(φ(s), φ(t)) = 0 if
φ(s) = φ(t), and 1 otherwise. However, as stated below, η-
abstractions do not guarantee continuity except in the trivial
case where η = 0.

Lemma 5. If η = 0, then any function f (resp. bounded
function f ): (S, dS) → (Y, dY ) is LC and UC (resp. ULC)
with respect to the pseudometric eφf,η . However, given a
function f and η > 0, there exists an η-abstraction φf,η such
that f is not continuous with respect to eφf,η .

Unlike the discrete metrics defined by η-abstractions, both
bisimulation metrics and the metric induced by the bisimula-
tion relation support continuity of the optimal value function.

Lemma 6. Q∗ (resp. Qπ) is ULC with Lipschitz constant 1
with respect to d∼ (resp. d∼π ).

Corollary 1. Q∗ (resp. Qπ) is ULC with Lipschitz constant
Vmax with respect to e∼ (resp. e∼π ).

We note that Ferns, Panangaden, and Precup (2004) proved
a weaker statement involving V ∗ (resp. Castro, Panangaden,
and Precup (2009), V π). To summarize, metrics that are
too coarse may fail to provide the requisite continuity of
reinforcement learning functions. Bisimulation metrics are
particularly desirable as they achieve both a certain degree
of coarseness, while preserving continuity. In practice, how-
ever, Ferns, Panangaden, and Precup’s bisimulation metric
is difficult to compute and estimate, and tends to be conser-
vative – as long as two states can be distinguished by action
sequences, bisimulation will keep them apart.

Value-Based Metrics
As an alternative to bisimulation metrics, we consider sim-
ple metrics constructed from value functions and study their
continuity offerings. These metrics are simple in that they
are defined in terms of differences between values, or func-
tions of values, at the states being compared. The last metric,
d∆∀ , is particularly appealing as it can be approximated, as
we describe below. Under this metric, all Q-functions are
Lipschitz continuous, supporting some of the more demand-
ing continuous-state exploration algorithms (Pazis and Parr
2013).

Lemma 7. For a given MDP, let Qπ be the Q-function of
policy π, and Q∗ the optimal Q-function. The following are
continuous pseudo-metrics:

1. d∆∗(s, s
′) = max

a∈A
|Q∗(s, a)−Q∗(s′, a)|

2. d∆π
(s, s′) = max

a∈A
|Qπ(s, a)−Qπ(s′, a)|

3. d∆∀(s, s
′) = max

π∈Π,a∈A
|Qπ(s, a)−Qπ(s′, a)|

Q∗ (resp. Qπ) is ULC with Lipschitz constant 1 wrt to d∆∗

(resp. d∆π ). Qπ is ULC with Lipschitz constant 1 wrt to d∆∀
for any π ∈ Π.

Remark. When S is finite, the number of policies to consider
to compute d∆∀ is finite: d∆∀(s, s

′) = max
π∈Π,a∈A

|Qπ(s, a)−

Qπ(s′, a)| = max
π∈ΠAVF,a∈A

|Qπ(s, a) − Qπ(s′, a)|, where

ΠAV F is the finite set of extremal policies corresponding to
Adversarial Value Functions (AVFs) (Bellemare et al. 2019).
d∆∀ provides strong continuity of the value-function for all

policies contrary to any other metric that has been used in the
literature. Since computing d∆∀ is computationally expen-
sive, we will approximate it by the pseudometric dÃVF(n) =

max
π∈ΠÃVF(n)

,a∈A
|Qπ(s, a) − Qπ(s′, a)|, where ΠÃVF(n) are n

samples from the set of extremal policies ΠAVF.

Categorizing Metrics, Continuity and Complexity
We now formally present in Theorem 2 the topological re-
lationships between the different metrics. This hierarchy is
important for generalization purposes as it provides a compar-
ison between the shapes of different neighbourhoods which
serve as a basis for RL algorithms on continuous state spaces.
Theorem 2. The relationships between the topologies in-
duced by the metrics in Table 2 are given by the following
diagram. We denote by d1 → d2 when Td1 ⊂ Td2 , that is,
when Td1 is coarser than Td2 . Here d denotes any arbitrary
metric.

e∼lax d∼lax dÃVF(n) d eI

e∼ d∼ d∆∗ d∆∀ d∆π

d eT e∼π d∼π

Proof. All proofs can be found in the appendix. The relation
d∼lax → d∼ was shown by Taylor, Precup, and Panagaden
(2009) but not expressed in topological terms.

We summarize in Table 2 our continuity results mentioned
throughout this section and supplement them with the conti-
nuity of the lax-bisimulation metric proven in Taylor, Precup,
and Panagaden (2009). To avoid over-cluttering the table,
we only specify the strongest form of functional continuity
according to Theorem 1. As an additional key differentiator,
we also note the complexity of computing these metrics from
a full model of the environment, which gives some indication
about the difficulty of performing state abstraction. Proofs
are provided in the appendix.

From a computational point of view, all continuous met-
rics can be approximated using deep learning techniques
which makes them even more attractive to build representa-
tions. Atari 2600 experiments by Castro (2020) show that
π-bisimulation metrics do perform well in larger domains.
This is also supported by (Zhang et al. 2020) who use an
encoder architecture to learn a representation that respects
the bisimulation metric.
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Metric LC UC ULC LLC Complexity

Discrete metric eI Y S Y S B(Y S) BL(Y S) O(|S|)
Trivial metric eT {y}S {y}S {y}S {y}S O(1)

Model-irrelevance P ,R P ,R P ,R P ,R
Qπ-irrelevance Qπ Qπ Qπ Qπ

Q∗-irrelevance Q∗ Q∗ Q∗ Q∗

a∗-irrelevance Q∗ Q∗ Q∗ Q∗

Approx. abstraction - - - -
e∼ Q∗ Q∗ Q∗ Q∗ O(|A||S|3)
d∼ Q∗ Q∗ Q∗ Q∗ O

(
|A||S|5 log |S| ln δln γ

)
e∼π Qπ Qπ Qπ Qπ O(|S|3)
d∼π Qπ Qπ Qπ Qπ O

(
|S|5 log |S| ln δln γ

)
e∼lax V ∗ V ∗ V ∗ V ∗ O(|A|2|S|3)
d∼lax V ∗ V ∗ V ∗ V ∗ O

(
|A|2|S|5 log |S| ln δln γ

)
d∆∗ Q∗ Q∗ Q∗ Q∗ O

(
|S|2|A| log(R−1

maxδ(1−γ))
log(γ)

)
d∆π

Qπ Qπ Qπ Qπ O
(
|S|2|A| log(R−1

maxδ(1−γ))
log(γ)

)
d∆∀ Qπ , ∀π ∈ Π Qπ , ∀π ∈ Π Qπ , ∀π ∈ Π Qπ , ∀π ∈ Π NP-hard? (Bellemare et al. 2019)

Table 2: Categorization of state metrics, their continuity implications, and their complexity (when known). The notation {y}S
denotes any function h : S → Y that is constant, Y S refers to all functions h : S → Y . B(Y S) (resp. BL(Y S) ) is a bounded
(resp. locally bounded) function h : S → Y . “-” denotes an absence of LC, UC, ULC and LLC. In the complexity column, δ is
the desired accuracy.

Empirical Evaluation
We now conduct an empirical evaluation to quantify the
magnitude of the effects studied in the previous sections.
Specifically, we are interested in how approximations de-
rived from different metrics impact the performance of basic
reinforcement learning procedures. We consider two kinds
of approximations: state aggregation and nearest neighbour,
which we combine with six representative metrics: e∼, e∼lax ,
d∼, d∼lax , d∆∗ , and dÃVF(50).

We conduct our experiments on Garnet MDPs, which are
a class of randomly generated MDPs (Archibald, McKinnon,
and Thomas 1995; Piot, Geist, and Pietquin 2014). Specifi-
cally, a Garnet MDP Garnet(nS , nA) is parameterized by
two values: the number of states nS and the number of actions
nA, and is generated as follows: 1. The branching factor bs,a
of each transition Pas is sampled uniformly from [1 : nS ].
2. bs,a states are picked uniformly randomly from S and
assigned a random value in [0, 1]; these values are then nor-
malized to produce a proper distribution Pas . 3. EachRas is
sampled uniformly in [0, 1]. The use of Garnet MDPs grants
us a less-biased comparison of the different metrics than if
we were to pick a few specific MDPs. Nonetheless, we do
provide extra experiments on a set of GridWorld tasks in the
appendix. The code used to produce all these experiments is
open-sourced 2.

Generalizing the Value Function V ∗

We begin by studying the approximation error that arises
when extrapolating the optimal value function V ∗ from a

2Code available at https://github.com/google-research/google-
research/tree/master/rl metrics aaai2021

subset of states. Specifically, given a subsampling fraction
f ∈ [0, 1], we sample d|S| × fe states and call this set
κ. For each unknown state s ∈ S \ κ, we find its near-
est known neighbour according to metric d: NN(s) =
arg mint∈κ d(s, t). We then define the optimal value func-
tion as V̂ ∗(s) = V ∗(NN(s)), and report the approximation
error in Figure 2 (left). This experiment gives us insights
into how amenable the different metrics are for transferring
value estimates across states; effectively, their generalization
capabilities.

According to Theorem 2, the two discrete metrics e∼ and
e∼lax induce finer topologies than their four continuous coun-
terparts. Most of the states being isolated from each other in
these two representations, e∼ and e∼lax perform poorly. The
three continuous metrics d∼, d∼lax and d∆∗ all guarantee
Lipschitz continuity of V ∗ while dÃVF(50) is approximately
V ∗ Lipschitz continuous. However, d∼lax (resp. d∆∗) pro-
duce coarser (resp. approximately coarser) topologies than
d∼ (resp. dÃVF(50)) (see Theorem 2). This is reflected in their
better generalization error compared to the latter two metrics.
Additionally, the lax bisimulation metric d∼lax outperforms
d∆∗ substantially, which can be explained by noting that
d∼lax measures distances between two states under indepen-
dent action choices, contrary to all other metrics.

Generalizing the Q-function Q∗

We now illustrate the continuity (or absence thereof) of Q∗
with respect to the different metrics. In Figure 2 (center), we
perform a similar experiment as the previous one, still using
a 1-nearest neighbour scheme but now extrapolating Q∗.

As expected, we find that metrics that do not support Q∗
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Figure 2: Errors when approximating the optimal value function (left) and optimal Q-function (center) via nearest-neighbours
and errors when performing value iteration on aggregated states (right). Curves for e∼ and e∼lax are covering each other on all
of the plots. Averaged over 100 Garnet MDPs with 200 states and 5 actions, with 50 independent runs for each (to account for
subsampling differences). Confidence intervals were very tiny due to the large number of runs so were not included.

continuity, including d∼lax , cannot generalize from a subset
of states, and their average error decreases linearly. In con-
trast, the three other metrics are able to generalize. Naturally,
d∆∗ , which aggregates states based on Q∗, performs particu-
larly well. However, we note that d∆∀ also outperforms the
bisimulation metric d∼, highlighting the latter’s conserva-
tiveness, which tends to separate states more. By our earlier
argument regarding d∼lax , this suggests there may be a class
of functions, not represented in Table 2, which is continuous
under d∼ but not dÃVF(50).

Approximate Value Iteration
As a final experiment, we perform approximate value iter-
ation using a state aggregation φ derived from one of the
metrics. For each metric, we perform 10 different aggrega-
tions using a k-median algorithm, ranging from one aggregate
state to 200 aggregate states. For a given aggregate state c, let
Q(c, a) stand for its associated Q-value. The approximation
value iteration update is

Q̂k(c, a)← 1

|c|
∑

s|φ(s)=c

[
Ras + γEs′∼Pas max

a∈A
Q̂k(φ(s′))

]
We can then measure the error induced by our aggregation
via maxa∈A

1
|S|
∑
s∈S |Q∗(s, a)− Q̂k(φ(s), a)|, which we

display in the rightmost panel of Figure 2.
As in our second experiment, the metrics that do not sup-

port Q∗-continuity well fail to give good abstractions for
approximate value iteration. As for e∼, the topology induced
by this metric is too fine (Theorem 2) leading to poor gener-
alisation results. The performance of d∆∗ is consistent with
Theorem 2, which states that it induces the coarsest topology.
However, although it is known that Q∗-continuity is suffi-
cient for approximate value iteration (Li, Walsh, and Littman
2006), it is somewhat surprising that it outperforms dÃVF(50),
since dÃVF(50) is an approximant of d∆∀ that is designed to
provide continuity with respect to all policies, so it may be
expected to yield better approximations at intermediate it-
erations. Despite this, d∆∀ still serves as an interesting and
tractable surrogate metric to d∆∗ .

Discussion

Behavioral metrics are important both to evaluate the good-
ness of a given state representation and to learn such a repre-
sentation. We saw that approximate abstractions and equiva-
lence relations are insufficient for continuous-state RL prob-
lems, because they do not support the continuity of common
RL functions or induce very fine representations on the state
space leading to poor generalization.

Continuous behavioural metrics go one step further by con-
sidering the structure of the MDP in their construction and
inducing coarser topologies than their discrete counterparts;
however, within that class we still find that not all metrics
are equally useful. The original bisimulation metric of Ferns,
Panangaden, and Precup (2004), for example, is too conser-
vative and has a rather fine topology. This is confirmed by
our experiments in Figure 2, where it performs poorly overall.
The lax bisimulation metric guarantees the continuity of V ∗
which makes it suitable for transferring optimal values be-
tween states but fails to preserve continuity of Q∗. Together
with our analysis, the d∆∗ and d∆∀ metrics seem interesting
candidates when generalising within a neighbourhood.

d∆∀ is useful when we do not know the value improve-
ment path the algorithm will be following (Dabney et al.
2020). Despite being approximated from a finite number of
policies, the performance of dÃVF(n), reflects the fact that it
respects, in some sense, the entire space of policies that are
spanned by policy iteration and makes it useful in practice.
One advantage of this metric is that it is built from value func-
tions, which are defined on a per-state basis; this makes it
amenable to online approximations. In contrast, bisimulation
metrics are only defined for pairs of states, which makes it
difficult to approximate in an online fashion, specifically due
to the difficulty of estimating the Wasserstein metric on every
update.

Finally, continuing our analysis on partially observable sys-
tems is an interesting area for future work. Although Castro,
Panangaden, and Precup (2009) proposed various equiva-
lence relations for partially observable systems, there has
been little work in defining proper metrics for these systems.
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