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Abstract

In this paper, we tackle the unsupervised domain adaptation
(UDA) for semantic segmentation, which aims to segment the
unlabeled real data using labeled synthetic data. The main
problem of UDA for semantic segmentation relies on reduc-
ing the domain gap between the real image and synthetic im-
age. To solve this problem, we focused on separating infor-
mation in an image into content and style. Here, only the con-
tent has cues for semantic segmentation, and the style makes
the domain gap. Thus, precise separation of content and style
in an image leads to effect as supervision of real data even
when learning with synthetic data. To make the best of this
effect, we propose a zero-style loss. Even though we perfectly
extract content for semantic segmentation in the real domain,
another main challenge, the class imbalance problem, still ex-
ists in UDA for semantic segmentation. We address this prob-
lem by transferring the contents of tail classes from synthetic
to real domain. Experimental results show that the proposed
method achieves the state-of-the-art performance in semantic
segmentation on the major two UDA settings.

Introduction
Semantic segmentation is a task of classifying each pixel
of an image into semantic categories (e.g., sky, road, traf-
fic sign, etc.). Training the segmentation model (Chen
et al. 2017) requires large amounts of pixel-level anno-
tated data, but pixelwise image labeling is extremely labor-
intensive and time-consuming. To reduce the labeling cost,
the model learned with automatically labeled synthetic
datasets (Richter et al. 2016; Ros et al. 2016) can be used
in real-world environments (Cordts et al. 2016). In this case,
the domain gap between synthetic data and real data causes
the model to behave poorly in real-world environments, so
unsupervised domain adaptation (UDA) methods have been
proposed to solve this problem (Chang et al. 2019; Du et al.
2019; Lin et al. 2017; Luo et al. 2019).

UDA for semantic segmentation aims to train a segmen-
tation model that performs on the real domain by using un-
labeled real images and labeled synthetic images. Since the
supervision of semantic information comes only from syn-
thetic data, reducing the domain gap between the real image
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and synthetic image is a major problem. That is, if we com-
pletely adapt the real and synthetic domains, learning with
synthetic data would be the same as learning with real data.
We address this problem by forcing networks to extract con-
tent and style from an image separately.

An image includes content and style (Gatys, Ecker, and
Bethge 2016; Isola et al. 2017). The content has cues for se-
mantic segmentation regardless of style. The style is a cue to
represent a characteristic for a domain of an image regard-
less of content. The style makes a domain gap, so separating
style from content further enhances the alignment between
the two domains in the content space. However, separating
content and style in an image is challenging because we can-
not directly supervise what content or style is. In this paper,
we introduce zero-style loss to capture content and style sep-
arately. To do this, we set one content encoder and two style
encoders. By learning with our proposed zero-style loss,
the content encoder and style encoders can capture domain-
invariant content feature and domain-specific style features,
respectively.

With the UDA for semantic segmentation, we can pro-
vide a large number of additional labeled synthetic images
for training. However, this method overlooks a serious prob-
lem. In the urban scene dataset, the number of samples per
class is not equally distributed. Head classes (e.g., road,
sky) exist in most of the data, but tail classes (e.g., traf-
fic sign, bicycle) are rarely shown. The model learned with
the class-imbalanced dataset would be biased toward head
classes (Cui et al. 2019).

To further boost the performance on the target (real) do-
main, the self-training strategy has recently been applied to
the UDA methods (Li, Yuan, and Vasconcelos 2019; French,
Mackiewicz, and Fisher 2018). This strategy generates the
target pseudo labels using the segmentation model, which is
trained with labeled source (synthetic) data. The class im-
balance problem is further accelerated when using this self-
training technique. Since the segmentation model is already
biased toward the head classes, we cannot expect the correct
generation of pseudo labels for the tail classes. Thus, self-
training makes networks to be further biased toward head
classes.

To solve this problem, we propose the tail-class content
transfer. Since we trained our model to separate the content
and style from an image, our model can extract the content
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from the source data, and this content would be usable in
the target domain. Therefore, we transfer the tail-class con-
tents from the source to the target. Note that unlike the target
pseudo label generated by the segmentation model, our con-
tent transfer enables the model to supervise using accurately
annotated source labels in the target domain.

To sum up, our contributions are as follows:

• We propose the zero-style loss that enables more precise
feature-level domain adaptation and domain transfer by
separating the content and style of the image indepen-
dently.

• We propose the content transfer to solve the class imbal-
ance problem in UDA for semantic segmentation. This
method is end-to-end trainable without pre-processing
datasets.

• We achieve the state-of-the-art performance for two
synthetic-to-real UDA settings; GTA5→ Cityscapes and
SYNTHIA→ Cityscapes.

Related Work
Semantic Segmentation
Semantic segmentation is a computer vision task that
predicts category per pixel of image. Recently, convo-
lutional neural network-based methods have been devel-
oped. Long, Shelhamer, and Darrell (2015) proposed Fully
Convolutional Network (FCN) for spatially dense predic-
tion. DeepLab (Chen et al. 2017) proposed Atrous Spa-
tial Pyramid Pooling (ASPP) to reliably segment on vari-
ous scales. PSPNet (Zhao et al. 2017) proposed pyramid
pooling module (PPM) that utilizes global context infor-
mation through different-region-based context aggregation.
SegNet (Badrinarayanan, Kendall, and Cipolla 2017) and U-
Net (Ronneberger, Fischer, and Brox 2015) used a encoder-
decoder architecture for mapping the low-resolution features
to input-resolution.

Unsupervised Domain Adaptation for Semantic
Segmentation
Unsupervised Domain Adaptation (UDA) is applied to se-
mantic segmentation to save the effort for per-pixel annota-
tion. The goal of the UDA for semantic segmentation is that
the model, trained with labeled source data and unlabeled
target data, achieves high performance in target data, and
this depends on reducing the discrepancy between source
and target domains. Many methods, including adversarial
learning, are proposed. Du et al. (2019) and Wu et al. (2018)
align latent representations of the two domains in feature
space. Hoffman et al. (2018) and Zhang et al. (2018) reduced
the visual difference between the two domains for input-
level adaptation. Zhu et al. (2017) proposed to transfer the
domain of images, and domain-transferred images can be
used to learn the segmentation model. Tsai et al. (2018) and
Luo et al. (2019) use output-level discriminators to adapt the
semantic predictions from two domains. Li, Yuan, and Vas-
concelos (2019) proposed self-training approach to provide
extra target information. We deal with the UDA for semantic

segmentation by separating content and style from an image
and then transferring content from source to target domain.

Class Imbalance Problem
The class imbalance problem occurs when training the
model using a dataset with a long-tailed class distribution.
This problem stands out in the semantic segmentation task
that predicts the pixel-wise category of the image. The urban
scene dataset (Cordts et al. 2016), which is commonly used
for the semantic segmentation, has an imbalanced number of
class-wise samples. In this dataset, there are many samples
for head classes (e.g., road, sky, etc.), while there are signif-
icantly fewer samples for tail classes (e.g., traffic sign, etc.).
The model trained with the imbalanced dataset is skewed to
the head classes (Cui et al. 2019).

For handling the issue, the class rebalancing approaches
have been proposed. The class-balanced loss (Cui et al.
2019) calculates the effective number of samples for each
class, and then they rebalance the loss. The cut-and-
paste (Dwibedi, Misra, and Hebert 2017), which cuts and
pastes objects into images, can be used to increase the
amount of tail-class training data. However, these methods
cannot be applied directly to UDA for semantic segmenta-
tion because of the absence of the target annotation. In this
paper, we propose the content transfer to solve the lack of
data for target tail classes, which is the essential cause of the
class imbalance problem.

Method
The overall framework is depicted in Figure 1. We first
describe the unsupervised domain adaptation (UDA) part,
which contains domain transfer and semantic prediction,
with the zero-style loss. Second, we describe the content
transfer part to address the class imbalance problem in the
UDA for semantic segmentation.

Unsupervised Domain Adaptation
We denote the source domain as S and target domain as T .
In the UDA, the source image Is ∈ RH×W×3 with label
Ys ∈ RH×W×K and target image It ∈ RH×W×3 without
label are given. TheH andW are the height and width of the
image and K is the number of the semantic categories. Our
model contains one shared content encoder Ec, one shared
segmenter Gc, two style encoders Es and Et, and two im-
age generators Gs and Gt. The Ec captures semantic infor-
mation regardless of domain. The Es and Et capture style
information that depends on the source and target domains,
respectively. The first convolutional layers of three encoders
are shared to extract the features from the raw image before
decomposing style and content. The Gc predicts the pixel-
level categories of the image using content feature encoded
from Ec. The Gs and Gt generate style-specific images cor-
responding to the given style while maintaining the given
content. We translate Is and It into the other domain as:

Is2t = Gt(Et(It), Ec(Is)), (1)
It2s = Gs(Es(Is), Ec(It)), (2)
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Figure 1: An overview of the proposed architecture. Our model consists of two parts, unsupervised domain adaptation (UDA)
and content transfer. The UDA part contains domain transfer and semantic segmentation. The image is separated into the
domain-specific style and domain-invariant content, and the combination of them enables us to generate the translated image.
The content feature is used for both semantic segmentation and content transfer. The content transfer part transmits the tail-
class content from source to target in the input and output space. The class imbalance problem is alleviated by learning the
segmentation model using the content transferred image and label.

where Is2t and It2s represent domain-translated images
from source to target and from target to source, respectively.

The translated images can be transferred back to the orig-
inal domain as:

Is2t2s = Gs(Es(It2s), Ec(Is2t))), (3)
It2s2t = Gt(Et(Is2t), Ec(It2s))), (4)

where Is2t2s represents the image in which domain is trans-
ferred to source→ target→ source and It2s2t represents the
image in which domain is transferred to target→ source→
target.

The goal of our domain adaptation is to adapt the contents
of the source and target domain, which is the cue for seman-
tic segmentation, not including the styles of both domains at
all. To do this, we propose the zero-style loss to ensure that
the content encoder captures only the content and the style
encoder only captures the style from an image.

Zero-Style Loss Zero loss (Benaim et al. 2019) has been
proposed to create a new image using shared information
and unique information extracted independently from two
images. We can adapt the zero loss to our model for extract-
ing content and style independently as follows:

Lzero = ||Et(Is)− 0||1 + ||Es(It)− 0||1. (5)

The Es and Et capture unique information that exists
only in the source domain and target domain by Lzero, so it
gets no information from It and Is, respectively. However,
there is no guarantee that unique information only implies
the style of the domain, such as color and texture, and does
not include the content for segmentation. The shared content
cannot be guaranteed to contain all the required information
for semantic segmentation. To address these concerns, we
propose the zero-style loss that forces the Ec to extract the
content feature for segmentation and induce Es and Et to
extract only the styles of source and target, respectively. The
content features of the two domains are aligned by Lseg , and
this affects the segmentation performance on the target do-
main.

Lseg = LCE(Ps, Ys) + LCE(Ps2t, Ys2t) (6)

where Ps = Gc(Ec(Is)) and Ps2t = Gc(Ec(Is2t)) are out-
put probability maps, and Ys2t is the same as Ys since the
content of Is2t is equal to the content of Is. The LCE de-
notes a cross-entropy loss function.

LCE(Ps, Ys) = −
H∑
h

W∑
w

K∑
k

Y (h,w,k)
s log(P (h,w,k)

s ). (7)
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The zero loss also applies to Is2t and It2s as follows:

Lzero trans = ||Es(Is2t)− 0||1 + ||Et(It2s)− 0||1. (8)

The Lzero trans is used in two perspectives. First, it guaran-
tees the domain-transferred images (Is2t and It2s) are well
adapted to each domain. Second, it enables the style en-
coders (Es and Et) to capture each style not only from orig-
inal images (Is and It), but also from domain-transferred
images (It2s and Is2t).

The proposed zero-style loss enables feature-level align-
ment in the content feature space, and it can be defined as
follows:

Lzero−style = Lzero + Lzero trans + Lseg. (9)

Cycle-Consistent Adversarial Learning In addition to
the feature alignment, we apply the adversarial loss Ladv to
reduce the domain gap in image and prediction (Chang et al.
2019). Additionally, we define cycle-consistent loss (Zhu
et al. 2017) Lcycle and reconstruction loss Lrec to prevent
content information loss that may occur in the process of the
domain transfer.

Lcycle = ||Is2t2s − Is||1 + ||It2s2t − It||1, (10)

Lrec = ||Is2s − Is||1 + ||It2t − It||1, (11)

where Is2s and It2t are reconstructed source and target im-
ages, respectively.

Pseudo Label Generation for Self-Training In the UDA
settings, there is no label for It. Our goal is to improve per-
formance on the target, so we train the model with the target
pseudo label Ỹt assigned by maximum probability threshold
(MPT) (Li, Yuan, and Vasconcelos 2019). The Ỹt is defined
as follows:

Ỹ
(h,w,k∗)
t =

{
1 if P

(h,w,k∗)
t > P k∗

thres

0 otherwise
(12)

where Pt is the output probability map of It, and class k∗ =
argmaxk P

(h,w,k)
t is chosen for each pixel I(h,w)

t . The class-
wise confidence threshold P k

thres is newly set for every Pt.

Content Transfer
In this section, we introduce the content transfer approach to
solve the class imbalance problem in the UDA for semantic
segmentation. The fundamental reason for this problem is
a lack of samples for tail classes, so we resolve this issue
to increase the training samples by transferring the tail-class
content from source to target. Our approach is applied to the
input and output space.

Tail-Class Selection For the tail-class content transfer, we
should select the tail-class region from the source image. We
easily obtain the tail-class label Ys tail ∈ RH×W×K as fol-
lows:

Y
(h,w,k)
s tail =

{
Y

(h,w,k)
s if k is a tail class

0 otherwise
(13)

(a) (b) (c) (d)

(a) (b)

(c) (d)

Figure 2: The results of the input-level content transfer with
and without considering the content of the target image.
Given the source image (a), the tail-class region is obtained
as (b). For the input-level content transfer, as shown in (c),
we can easily transfer all the source content corresponding
to all areas of (b) to the target. Since this simple way does
not consider the content information of the target image, the
original target content is obscured as inside the green dashed
box of (c). Therefore, as shown in (d), we transfer the source
content only to the head-class region by considering the con-
tent information of the target image.

The tail-class content can be directly transferred from
source to target by using Ys tail, but this method does not
consider the content information of the target image. There-
fore, it happens that the tail-class region of the original target
image is occluded by transferred content, as shown in Figure
2. To prevent this problem, we refine Ys tail to transfer the
content only to the head-class region of the original target
image. We can obtain the head-class mask from the target
image as follows:

Mt head = ỸtKhead (14)

where Khead is a K-dimensional vector with a head-class of
1 and a tail-class of 0. Then, we define a mask Mct for the
content transfer.

Mct =Mt head �Ms tail (15)

where Ms tail is a binary mask of Ys tail.

Input-Level Content Transfer In the input-level content
transfer, we transmit the tail-class content from domain-
translated image Is2t to target image It. It can be formulated
as follows:

It ct =Mct � Is2t + (1−Mct)� It. (16)

As shown in Figure 2, It ct is created in consideration of
the target content. We predict the semantic categories for the
content-transferred image It ct, and the output probability
map Pt ct of It ct is obtained by Gc(Ec(It ct)). We generate
a pseudo label Ỹt ct for It ct using Equation (12), and train
the model with the generated data. This approach solves the
class imbalance issue by increasing the tail-class samples for
training the network.
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(a) (b) (c) (d)

(a) (b)

(c) (d)

Figure 3: The results of the output-level content transfer. (a) is the content-transferred target image, (b) is the ground-truth label,
(c) is the pseudo label, and (d) is the improved pseudo label by transferring the source content to the target in output space. The
green dashed box indicates the content transmission region.

Output-Level Content Transfer The semantic segmenta-
tion model biased toward head classes produces the prob-
ability map with low confidence for tail classes, so the
pseudo label Ỹt ct is highly incomplete for tail classes. To
enable more reliable supervision for tail-class content, we
also transfer the source content to the target in the output
space. Based on the fact that the label for the transferred re-
gion of It ct is the same as the Ys, we can improve the quality
of the pseudo label for It ct as follows:

Ỹ ′t ct =Mct � Ys + (1−Mct)� Ỹt ct. (17)

The pseudo label with the output-level content transfer is
shown in Figure 3. We can train the segmentation model
with the definite label for the transferred region. The seg-
mentation loss for the content transferred data is defined as
follows:

Lseg ct = LCE(Pt ct, Ỹ
′
t ct). (18)

Overall Loss Function

Our model is based on the DISE (Chang et al. 2019) and
inserted the proposed approaches. The overall loss function
is as follows:

Ltotal = LDISE + Lzero−style + Lcycle + Lseg ct, (19)

where LDISE is the loss function of DISE and contains Lrec

and Ladv .

Experiments
Datasets
In this works, we consider two common synthetic-to-real
domain adaptation problems; GTA5(Richter et al. 2016)→
Cityscapes(Cordts et al. 2016) and SYNTHIA(Ros et al.
2016) → Cityscapes. We use the synthetic dataset (GTA5
or SYNTHIA) with pixel-level semantic annotations as the
source domain and real-world dataset (Cityscapes) without
annotation as the target domain during training. For both
synthetic-to-real experiments, we evaluate the segmentation
model in the validation set of the Cityscapes.
GTA5 is the large-scale synthetic dataset containing 24966
urban scene images with a resolution of 1914×1052. These
high-resolution images are rendered from Grand Theft Auto
V game engine and automatically per-pixel annotated into
19 semantic categories. We consider all 19 classes, which
are fully compatible with Cityscapes.
SYNTHIA is another synthetic dataset rendered from a vir-
tual city. We use the SYNTHIA-RAND-CITYSCAPES sub-
set, which contains 9400 labeled images with a resolution of
1280× 760 and 16 common categories with Cityscapes. We
consider both 16 and 13 classes, following the standard pro-
tocol.
Cityscapes is the real-world dataset that contains 5000 ur-
ban street scenes. The dataset consists of a training set with
2975 images, a validation set with 500 images, and a test
set with 1525 images. The images have a resolution of
2048 × 1024 and are annotated into 19 classes. We use the
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mIoU
NonAdapt 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
AdaptSegNet 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
MaxSquare 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.2 44.3
SSF-DAN 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4
DISE 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
AdvEnt+MinEnt 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
APODA 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
MaxSquare+IW+Multi 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4
Patch Alignment 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5
WeakSegDA 91.6 47.4 84.0 30.4 28.3 31.4 37.4 35.4 83.9 38.3 83.9 61.2 28.2 83.7 28.8 41.3 8.8 24.7 46.4 48.2
BDL 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
Ours 95.3 65.1 84.6 33.2 23.7 32.8 32.7 36.9 86.0 41.0 85.6 56.1 25.9 86.3 34.5 39.1 11.5 28.3 43.0 49.6

Table 1: Results of adapting GTA5 to Cityscapes. All methods use DeepLab v2 with the backbone ResNet-101 as the segmen-
tation network. We measure the mIoU performance of the 19 classes in the evaluation set of Cityscapes.

SYNTHIA→ Cityscapes
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NonAdapt 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6
MaxSquare 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 39.3 45.8
Patch Alignment 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5
AdaptSegNet 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7
CLAN 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
AdvEnt+MinEnt 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0
MaxSquare+IW+Multi 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.4 48.2
DISE 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 48.8
SSF-DAN 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 - 50.0
BDL 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
WeakSegDA 92.0 53.5 80.9 11.4 0.4 21.8 3.8 6.0 81.6 84.4 60.8 24.4 80.5 39.0 26.0 41.7 44.3 51.9
APODA 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 - 53.1
Ours 93.3 54.0 81.3 14.3 0.7 28.8 21.3 22.8 82.6 83.3 57.7 22.8 83.4 30.7 20.2 47.2 46.5 53.9

Table 2: Results of adapting SYNTHIA to Cityscapes. All methods use DeepLab v2 with the backbone ResNet-101 as the
segmentation network. We measure the mIoU of the 16 classes in the evaluation set of Cityscapes and the mIoU of the 13
classes (mIoU*), excluding classes with *.

training set without labels during the learning process and
evaluate the segmentation model in the validation set.

Implementation Details
We implement with PyTorch (Paszke et al. 2017), and all
experiments are conducted using a single Nvidia Titan RTX
GPU and an Intel Core i7-9700K CPU. Our model is based
on the DISE (Chang et al. 2019), which includes three en-
coders, two decoders (one segmenter and one generator),
and discriminators. For cycle-consistency learning, we use
two generators for the source and target domains differently
from DISE. The segmentation model is based on DeepLab
v2 with the backbone ResNet-101, and the output of the
first convolutional layer is shared to capture the content and
style features. For adversarial learning, discriminators and

three pairs of encoder and decoder are trained alternately.
Discriminators are learned to determine whether the pixel-
level semantic prediction comes from the source domain
or the target domain and to determine whether the gener-
ated source and target style images are real or fake. Gener-
ators are trained to generate the reconstructed images and
style translated images, and the segmenter is trained with
the class balanced weight factor (Cui et al. 2019) for source
data to predict the pixel-level semantic probabilities. In the
self-training, we use the maximum probability threshold (Li,
Yuan, and Vasconcelos 2019) to assign the pseudo label of
the target image. For every target probability map, we sort
the class-wise probabilities and set the probability corre-
sponding to the top 50% as the class-wise confidence thresh-
old. If the threshold is greater than 0.9, we set it to 0.9.
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mIoU mIoUtailSty Cyc ST In Out
DISE 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4 28.8

Ours

X 91.6 51.2 82.7 33.0 25.9 29.3 32.7 29.9 82.4 25.6 81.7 59.6 29.6 85.1 30.9 43.5 6.1 29.1 34.8 46.6 30.9 (+7.3%)
X X 91.9 51.9 82.8 34.1 26.2 29.3 33.1 31.6 82.9 28.2 81.0 59.5 29.1 85.7 31.2 43.9 8.0 28.4 32.4 46.9 30.6 (+6.3%)
X X X 93.9 61.5 83.8 36.8 23.7 28.1 30.9 32.4 85.2 35.5 83.0 52.6 26.6 86.5 33.2 43.7 12.6 25.1 36.4 48.0 29.9 (+3.8%)
X X X X 94.5 62.6 84.3 35.9 24.4 30.2 30.2 34.9 85.3 35.7 84.0 55.6 27.7 86.7 31.8 43.6 12.7 26.7 39.2 48.7 31.5 (+9.4%)
X X X X X 95.3 65.1 84.6 33.2 23.7 32.8 32.7 36.9 86.0 41.0 85.6 56.1 25.9 86.3 34.5 39.1 11.5 28.3 43.0 49.6 33.3 (+15.6%)

Table 3: Ablation studies of adapting GTA5 to Cityscapes.

SYNTHIA→ Cityscapes
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mIoU mIoUtailSty Cyc ST In Out
DISE 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 18.6

Ours

X 91.3 52.4 78.6 7.1 1.3 26.7 19.6 17.5 78.4 78.3 53.1 20.1 81.1 29.0 16.0 42.4 43.3 23.7 (+27.4%)
X X 91.6 53.0 78.9 6.1 1.2 26.8 19.1 17.7 78.5 78.4 53.5 20.2 81.5 29.3 16.4 43.4 43.5 24.0 (+29.0%)
X X X 91.7 52.3 78.8 13.7 2.2 26.2 13.8 18.3 79.8 79.5 53.8 21.0 81.9 29.8 14.3 45.8 43.9 23.2 (+24.7%)
X X X X 93.3 55.2 81.2 14.7 0.8 27.9 20.1 21.8 82.5 83.1 57.2 23.9 83.2 30.2 17.7 46.3 46.2 26.3 (+41.4%)
X X X X X 93.3 54.0 81.3 14.3 0.7 28.8 21.3 22.8 82.6 83.3 57.7 22.8 83.4 30.7 20.2 47.2 46.5 27.2 (+46.2%)

Table 4: Ablation studies of adapting SYNTHIA to Cityscapes.

In this paper, we select the pole, traffic light, traffic sign,
rider, motorcycle, and bicycle as tail classes. We selectively
use the tail-class samples for the content transfer. The pole
is used for content transfer when it exists together with the
traffic light or traffic sign, and the rider is used for content
transfer when it exists together with the motorcycle or bi-
cycle. We pre-calculate the median value for the number of
tail-class samples per image in the source dataset and per-
form the content transfer during learning when the number
of tail-class samples in the source image is higher than that
value.

During the training, we resize the input image to a size
of 1024 × 512 and then randomly crop to a 512 × 256 size
patch. We first train the UDA part to generate a reliable tar-
get pseudo label, and then we add the content transfer part
and train together. This process reduces the content transfer
failures that may occur due to the inaccuracy of the target
pseudo label. We train the model with a batch size 2 and
use the weights provided in (Chang et al. 2019) as initial
weights. The batch normalization layers are freeze. We use
the SGD solver with an initial learning rate of 2.5 × 10−6

and a momentum of 0.9 for the segmentation model and the
Adam solver with an initial learning rate of 1.0× 10−5 and
betas β1 = 0.5, β2 = 0.999 for the generators. We use the
Adam solver with an initial learning rate of 1.0×10−6 to op-
timize discriminators for segmentation and image, and they
have betas β1 = 0.9, β2 = 0.99 and β1 = 0.5, β2 = 0.999,
respectively. All the learning rates decrease according to the
polynomial policy. For a fair comparison with DISE at the
evaluation time, we use a 1024 × 512 sized input to obtain
the output prediction of 1024× 512 size and then resize it to

2048× 1024.

Experimental Results
We compare our method with existing state-of-the-art UDA
methods AdaptSegNet (Tsai et al. 2018), CLAN (Luo
et al. 2019), MaxSquare (Chen, Xue, and Cai 2019), SSF-
DAN (Du et al. 2019), DISE (Chang et al. 2019), Ad-
vEnt+MinEnt (Vu et al. 2019), APODA (Yang et al. 2020),
MaxSquare+IW+Multi (Chen, Xue, and Cai 2019), Patch
Alignment (Tsai et al. 2019), WeakSegDA (Paul et al. 2020),
and BDL (Li, Yuan, and Vasconcelos 2019). We report the
results for GTA5→Cityscapes in Table 1 and the results for
SYNTHIA→Cityscapes in Table 2. All methods are trained
using the labeled GTA5 or SYNTHIA as the source and the
unlabeled Cityscapes training set as the target, and they are
based on DeepLab v2 with the backbone ResNet-101. We
use the mean of class-wise Intersection-over-Union (mIOU)
as an evaluation metric, and we measure the performance
on the validation set of Cityscapes. All UDA methods have
higher performance than “NonAdapt,” which learns the seg-
mentation model using only the source dataset, and it sug-
gests that domain adaptation is effective in semantic seg-
mentation problem. We aim at not only improving the per-
formance of each tail-class but also preventing performance
degradation in head classes. Thus our method keeps a bal-
ance between head and tail classes, and we achieve the state-
of-the-art performance.

Ablation Study
Tables 3 and 4 show the effect of adding each component of
the proposed method to the base network. “UDA” and “CT”
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(a) (b) (c) (d) (e)

GTA5‐>Cityscapes

SYNTHIA‐>Cityscapes

(a) (b) (c) (d) (e)

Figure 4: Qualitative segmentation results of UDA for GTA5 → Cityscapes. (a) Original inputs of Cityscapes; (b) Ground
truths; Prediction results from (c) DISE, (d) Ours without OutCT, and (e) Ours.

(a) (b) (c) (d) (e)

GTA5‐>Cityscapes

SYNTHIA‐>Cityscapes

(a) (b) (c) (d) (e)

Figure 5: Qualitative segmentation results of UDA for SYNTHIA→ Cityscapes. (a) Original inputs of Cityscapes; (b) Ground
truths; Prediction results from (c) DISE, (d) Ours without OutCT, and (e) Ours.

represent the unsupervised domain adaptation part and con-
tent transfer part in our method, respectively. “Sty” means
training with the zero-style loss, and “Cyc” means cycle-
consistency learning, and “ST” means self-training with the
pseudo label of the target image. “In” refers to the input-
level content transfer, and “Out” refers to the output-level
content transfer. “mIoUtail” is the mIoU of the tail classes.

As shown in Tables 3 and 4, we increase the performance
by training the model with “Sty” and “Cyc.” The “ST” im-
proves mIoU (46.9 → 48.0 and 43.5 → 43.9), but it rather
degrades mIoUtail (30.6→ 29.9 and 24.0→ 23.2). It means
that self-training using a class-imbalanced dataset can make
the class imbalance problem worse. That is the point that
content transfer exploits in UDA. Even when “InCT” is ap-
plied alone, mIoUtail is significantly improved (29.9→ 31.5
and 23.2 → 26.3), and mIoU is also enhanced (48.0 →
48.7 and 43.9→ 46.2). When “OutCT” is also applied, both
mIoUtail (31.5 → 33.3 and 26.3 → 27.2) and mIoU (48.7
→ 49.6 and 46.2→ 46.5) are improved from “InCT”. Here,

the improvement from “InCT” to “OutCT” on SYNTHIA→
Cityscapes (+ 0.3) is lower than GTA5→Cityscapes (+ 0.9).
It demonstrates the limitation of our “OutCT”. When a con-
tent taken from the source data is transferred to the target
data, the content is placed at the same location in the tar-
get data by Equations (16) and (17). However, the vertical
angle between SYNTHIA and Cityscapes is quite different,
so some objects can be transferred in the unlikely region in
Cityscapes (e.g., a rider in the sky), degrading “OutCT.” It
can be improved with a context-aware content transfer, and
we leave this for future works.

The effectiveness of “CT” can also be seen from the ex-
amples. Figures 4 and 5 show that tail-class objects inside
dashed boxes are segmented better than DISE after “CT” is
performed. In the first row of Figure 4, the traffic sign is seg-
mented better than DISE when “InCT” is applied. Further-
more, when “OutCT” is also applied, the traffic sign’s border
and the pole’s border become clearer because “OutCT” en-
ables more reliable supervision.
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Conclusion
In this paper, we proposed the zero-style loss that reduces
the domain gap between the source data and target data by
completely separating the content and style of the image.
The zero-style loss aligns the content features of the two
domains, and this leads to improved semantic segmenta-
tion performance in the target domain. Moreover, our pro-
posed content transfer enhances performance by solving the
class imbalance problem in unsupervised domain adaptation
(UDA) for semantic segmentation. In the two UDA segmen-
tation scenarios from synthetic to real, we achieve the state-
of-the-art performance.
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