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Abstract
Kernel approximation is widely used to scale up kernel SVM
training and prediction. However, the memory and computa-
tion costs of kernel approximation models are still too high
if we want to deploy them on memory-limited devices such
as mobile phones, smartwatches, and IoT devices. To address
this challenge, we propose a novel memory and computation-
efficient kernel SVM model by using binary embedding and
ternary model coefficients. First, we propose an efficient way
to generate compact binary embedding of the data, preserving
the kernel similarity. Second, we propose a simple but effective
algorithm to learn a linear classification model with ternary co-
efficients that can support different types of loss function and
regularizer. Our algorithm can achieve better generalization
accuracy than existing works on learning ternary coefficients
since we allow coefficient to be −1, 0, or 1 during the training
stage, and coefficient 0 can be removed during model infer-
ence for binary classification. Moreover, we provide a detailed
analysis of the convergence of our algorithm and the inference
complexity of our model. The analysis shows that the con-
vergence to a local optimum is guaranteed, and the inference
complexity of our model is much lower than other competing
methods. Our experimental results on five large real-world
datasets have demonstrated that our proposed method can
build accurate nonlinear SVM models with memory costs less
than 30KB.

Introduction
Kernel Support Vector Machine (SVM) is a powerful non-
linear classification model that has been successfully used
in many real-world applications. Different from linear SVM,
kernel SVM uses kernel function to capture the nonlin-
ear concept. The prediction function of kernel SVM is
f(x) =

∑
xi
αik(xi,x) where xis are support vectors and

k(xi,xj) is a predefined kernel function to compute the ker-
nel similarity between two data samples. Kernel SVM needs
to maintain all support vectors explicitly for model inference.
Therefore, the memory and computation costs of kernel SVM
inference are usually huge, considering that the number of
support vectors increases linearly with training data size on
noisy data. Many kernel approximation methods (Rahimi and
Recht 2008; Le, Sarlós, and Smola 2013; Lan et al. 2019;
Hsieh, Si, and Dhillon 2014) have been proposed to reduce
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the memory and computation costs of kernel SVM in the past
decade. The basic idea of these methods is to explicitly con-
struct the nonlinear feature mapping z = Φ(x) : Rd → Rp
such that z>i zj ≈ k(xi,xj) and then apply a linear SVM on
z. To obtain good classification accuracy, the dimensionality
of nonlinear feature mapping z needs to be large. On the other
hand, due to concerns on security, privacy, and latency caused
by performing model inference remotely in the cloud, directly
performing model inference on edge devices (e.g., Internet
of Things (IoT) devices) has gained increasing research inter-
ests recently (Kumar, Goyal, and Varma 2017; Kusupati et al.
2018). Even though those kernel approximation methods can
significantly reduce the memory and computation costs of
exact kernel SVM, their memory and computation costs are
still too large for on-device deployment. For example, the
Random Fourier Features (RFF), which is a very popular
kernel approximation method for large scale data, requires
∼ d×p×32 bits for nonlinear feature transformation, p×32
bits for nonlinear feature representation, and p× c× 32 bits
(c is the number of classes) for classification model to predict
the label of a single input data sample. The memory cost
of RFF can easily exceed several hundred megabytes (MB),
which could be prohibitive for on-device model deployment.

Recently, binary embedding methods (Yu et al. 2017;
Needell, Saab, and Woolf 2018) have been widely used for re-
ducing memory cost for data retrieval and classification tasks.
The nice property of binary embedding is that each feature
value can be efficiently stored using a single bit. Therefore,
binary embedding can reduce the memory cost by 32 times
compared with storing full precision embedding. The com-
mon way for binary embedding is to apply sign(·) function to
the famous Johnson-Lindenstrauss embedding: random pro-
jection embedding justified by the Johnson-Lindenstrauss
Lemma (Johnson, Lindenstrauss, and Schechtman 1986).
It obtains the binary embedding by z = sign(Rx) where
R ∈ Rd×p is a random Gaussian matrix (Needell, Saab, and
Woolf 2018; Ravi 2019) or its variants (Yu et al. 2017; Gong
et al. 2012; Shen et al. 2017) and sign(·) is the element-wise
sign function. However, most of them focus on data retrieval,
and our interest is on-device nonlinear classification. The
memory cost of the full-precision dense matrix R is high for
on-device model deployment. Besides, even though sign(Rx)
provides a nonlinear mapping because of the sign(·) function,
the theoretical analysis on binary mapping sign(Rx) can
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only guarantee that the angular distance among data samples
in the original space is well preserved. It cannot well preserve
the kernel similarity among data samples, which is crucial
for kernel SVM.

In this paper, we first propose a novel binary embedding
method that can preserve the kernel similarity of the shift-
invariant kernel. Our proposed method is built on Binary
Codes for Shift-invariant kernels (BCSIK) (Raginsky and
Lazebnik 2009) but can significantly reduce the memory and
computation costs of BCSIK. Our new method can reduce
the memory cost of BCSIK fromO(dp) toO(p) and the com-
putational cost of BCSIK from O(dp) to O(plogd). Second,
in addition to binary embedding, we propose to learn the
classification model with ternary coefficients. The classifica-
tion decision function is reduced to a dot product between a
binary vector and a ternary vector, which can be efficiently
computed. Also, the memory cost of the classification model
will be reduced by 32 times. Unlike existing works (Shen
et al. 2017; Alizadeh et al. 2019) on learning ternary coeffi-
cients, we allow the model coefficient to be {−1, 0, 1} during
the training stage. This additional 0 can help to remove uncor-
related binary features and improve the generalization ability
of our model. The 0 coefficients and corresponding transfor-
mation column vectors in matrix R can be safely removed
during the model inference for binary classification problems.
A simple but effective learning algorithm that can support
different types of loss function and regularizer is proposed to
learn ternary model coefficients from data. Third, we provide
a detailed analysis of our algorithm’s convergence and our
model’s inference complexity. The analysis shows that the
convergence to a local optimum is guaranteed, and the mem-
ory and computation costs of our model inference are much
lower than other competing methods. We compare our pro-
posed method with other methods on five real-world datasets.
The experimental results show that our proposed method can
significantly reduce the memory cost of RFF while achieve
good accuracy.

Methodology
Binary Embedding for Shift-Invariant Kernels
Preliminaries on Binary Codes for the Shift-Invariant
Kernels (BCSIK). BCSIK (Raginsky and Lazebnik 2009) is
a random projection based binary embedding method which
can well preserve the kernel similarity defined by a shift-
invariant kernel (e.g., Gaussian Kernel). It works by compos-
ing random Fourier features with a random sign function. Let
us use x ∈ Rd to denote an input data sample with d features.
BCSIK encodes x into a p-dimensional binary representation
z as

z = sign(cos(R>x + b) + t), (1)
where each column r in matrix R ∈ Rd×p is randomly
drawn from a distribution corresponding to an underlying
shift-invariant kernel. For example, for Gaussian kernel
k(xi,xj) = exp(−‖xi−xj‖

2σ2 ), each entry in r is drawn from
a normal distribution N (0, σ−2). b ∈ Rp is a column vec-
tor where each entry is drawn from a uniform distribution
from [0, 2π]. t ∈ Rp is a column vector where each entry is
drawn from a uniform distribution from [−1, 1]. cos(·) and

sign(·) are the element-wise cosine and sign functions. As
can be seen, Φ(x) = cos(R>x + b) in (1) is the random
Fourier features for approximating kernel mapping which
has the theoretical guarantee E[Φ(x1)>Φ(x2)] = k(x1,x2)
for shift-invariant kernel (Rahimi and Recht 2008), where E
is the statistical expectation. sign(Φ(x) + t) uses a random
sign function to convert the full-precision mapping Φ(x) into
binary mapping z. Each entry in z can be stored efficiently
using a single bit. Therefore, compared with RFF, BCSIK
can reduce the memory cost of storing approximated kernel
mapping by 32 times.

Besides memory saving, a great property of BCSIK is that
the normalized hamming distance between the binary embed-
ding of any two data samples sharply concentrates around
a well-defined continuous function of the kernel similarity
between these two data samples shown in the Lemma 1.
Lemma 1 (Johnson-Lindenstrauss Type Result on BC-
SIK (Raginsky and Lazebnik 2009)). Define the functions
h1(u) , 4

π2 (1 − u) and h2(u) , min{ 12
√

1− u, 4
π2 (1 −

2
3u)}, where u ∈ [0, 1]. Fix ε, δ ∈ (0, 1). For any finite
dataset {x1, . . . ,xn} of n data samples in Rd, the following
inequality about the normalized Hamming distance on the
binary embedding between any two data samples zi and zj

holds true with probability ≥ 1− ε with p ≥ 1
2δ2 log(n

2

ε )

h1(k(xi,xj))− δ ≤
1

p
dH(zi, zj) ≤ h2(k(xi,xj) + δ. (2)

Note that the hamming distance between zi and zj can
be expressed as dH(zi, zj) = 1

2 (p − z>i zj). The bounds in
Lemma 1 indicate that the binary embedding z ∈ {−1, 1}p
as defined in (1) well preserves the kernel similarity obtained
from the underlying shift-invariant kernel.

Reduce the Memory and Computation Costs of BC-
SIK. When considering on-device model deployment, the
bottleneck of obtaining binary embedding is the matrix-
vector multiplication R>x as shown in (1). It requires O(dp)
time and space. By considering p is usually several times
larger than d for accurate nonlinear classification, the memory
cost of storing R could be prohibitive for on-device model
deployment. Therefore, we propose to generate the Gaussian
random matrix R using the idea of Fastfood (Le, Sarlós, and
Smola 2013). The core idea of Fastfood is to reparameter-
ize a Gaussian random matrix by a product of Hadamard
matrices and diagonal matrices. Assuming d = 2q1 and q is
any positive integer, it constructs V ∈ Rd×d as follows to
reparameterize a d× d Gaussian random matrix,

V =
1

σ
√
d

SHGΠHB, (3)

where
• S,G and B are diagonal matrices. S is a random scaling

matrix, G has random Gaussian entries and B has ele-
ments are independent random signs {−1, 1}. The memory
costs of S,G and B are O(d).

• Π ∈ {0, 1}d×d is a random permutation matrix and also
has O(d) space complexity
1We can ensure this by padding zeros to original data
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• H ∈ Rd×d is the Walsh-Hadamard matrix defined recur-
sively as:

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
with H2 =

[
1 1
1 −1

]
; The

fast Hadamard transform allows us to compute Hx in
O(d log d) time using the Fast Fourier Transform (FFT)
operation.

When reparameterizing a d× p Gaussian random matrix
(p� d), Fastfood replicates (3) for p/d independent random
matrices Vi and stack together as

R̃> = [V1; V2; . . . ,Vp/d]
>, (4)

until it has enough dimensions. Then, we can generate the
binary embedding in a memory and computation-efficient
way as follows,

z = sign(cos(R̃>x + b) + t). (5)

Note that each column in R̃ is a random Gaussian vector
fromN (0, σ−2Id) as proved in (Le, Sarlós, and Smola 2013),
therefore the Lemma 1 still holds when we replace R in (1)
by R̃ for efficiently generating binary embedding. Note that
the Hadamard matrix does not need to be explicitly stored.
Therefore, we can reduce the space complexity of (1) in
BCSIK from O(dp) to O(p) and reduce the time complexity
of (1) from O(dp) to O(plog(d)).

Ternary Model Coefficients for Classification
By using (5), each data sample xi ∈ Rd is transformed to
a bit vector zi ∈ Rp. Then, we can train a linear classifier
on {zi, yi}ni=1 to approximate the kernel SVM. Suppose the
one-vs-all strategy is used for multi-class classification prob-
lems, the memory cost of the learned classifier is p× c× 32,
where c is the number of classes. Since p usually needs to be
very large for accurate classification, the memory cost of the
classification model could also be too huge for edge devices,
especially when we are dealing with multi-class classification
problems with a large number of classes.

Here we propose to learn a classification model with
ternary coefficients for reducing the memory cost. Moreover,
by using binary model coefficients, the decision function of
classification is reduced to a dot product between two binary
vectors which can be very efficiently computed. Compare
to existing works (Shen et al. 2017; Alizadeh et al. 2019)
on learning binary model coefficients which constrain the
coefficient to be 1 or −1, we allow the model coefficients to
be 1, 0 or −1 during the training stage. The intuition of this
operation came from two aspects. First, suppose our data dis-
tribute in a hyper-cube and linearly separable, the direction of
the classification hyper-plane can be more accurate when we
allow ternary coefficients. For example, in a lower projected
dimension, the binary coefficients can achieve 2p directions
while the ternary ones can achieve 3p. This additional value
0 can help to remove uncorrelated binary features and im-
prove the generalization ability of our model as the result
of importing the regularization term. In addition, we add a
scaling parameter α to prevent possible large deviation be-
tween full-precision model coefficients and quantized model

coefficients which affects the computation of loss function
on training data. Therefore, our objective is formulated as

min
α,w

1

n

n∑
i=1

`(yi, αw>zi)) + λR(w)

s.t. w ∈ {−1, 0, 1}p

α > 0.

(6)

where p is the dimensionality of zi and yi is the correspond-
ing label for zi. `(yi, αw>zi) in (6) denotes a convex loss
function and R(w) denotes a regularization term on model
parameter w. λ is a hyperparameter to control the tradeoff
between training loss and regularization term.
Learning ternary coefficient with Hinge Loss and l2-
norm Regularizer. For simplicity of presentation, let us
assume yi ∈ {−1, 1}. Our model can be easily extended to
multi-class classification using the one-vs-all strategy. With-
out loss of generality, in this section, we show how to solve (6)
when hinge loss and l2-norm regularizer are used. In other
words, `(yi, αw>zi) is defined as max(0, 1 − yiαw>zi).
R(w) is defined as α2

∑p
j=1 w

2
j . Any other loss function or

regularization can also be applied.
By using hinge loss and l2-norm regularization, then (6)

will be rewritten as:

min
α,w

1

n

n∑
i=1

max(0, 1− αyiw>zi) + λα2

p∑
j=1

w2
j

s.t. w ∈ {−1, 0, 1}p

α > 0.

(7)

We can use alternating optimization to solve (7): (1) fixing
w and solving α; and (2) fixing α and solving w.
1. Fixing w and solving α. When w is fixed, (7) will be
reduced to a problem with only one single variable α as
follows

min
α

1

n

n∑
i=1

max(0, 1− (yiw
>zi)α) + (λ

p∑
j=1

w2
j )α

2

s.t. α > 0.

(8)

To solve (8), we propose to replace the constraint α > 0
by α ≥ ε where ε is a small positive number. Then, the
optimal α can be obtained by using the projected gradient
descent method (Boyd, Boyd, and Vandenberghe 2004). Our
experimental results have shown this technique can get good
accuracy.
2. Fixing α and solving w. When α is fixed, (7) will change
to the following optimization problem,

min
w

1

n

n∑
i=1

max(0, 1− αyiw>zi) + λα2

p∑
j=1

w2
j

s.t. w ∈ {−1, 0, 1}p.

(9)

Due to the non-smooth constraints, minimizing (7) is an
NP-hard problem and needs O(3p) time to obtain the global
optimal solution. The Straight Through Estimator (STE)
(Bengio, Léonard, and Courville 2013) framework which
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is popular for learning binary deep neural networks can be
used to solve (7). However, by considering that the STE can
be unstable near a certain local minimum (Yin et al. 2019;
Liu and Mattina 2019), we propose a much simpler but effec-
tive algorithm to solve (7). The idea is to update parameter w
bit by bit, i.e., one bit each time for wj , j = 1, . . . , p, while
keeping other (p− 1) bits fixed. Let use w(¬j) to denote the
vector that equals to w except the j-th entry is set to 0. There-
fore, (7) will be decomposed into a series of subproblems. A
subproblem of (7) which only involves a single variable wj
can be written as (10).

min
wj

L =
1

n

n∑
i=1

max(0, 1− yiα(w>¬jzi + wjzij))

+ λα2w2
j + λα2w>¬jw¬j

s.t. wj ∈ {−1, 0, 1}.

(10)

Since wj ∈ {−1, 0, 1}, objective (10) can be solved by
just enumerating all three possible values {−1, 0, 1} for
wj and select the one with the minimum objective value.
Note that w>zi and w>w can be pre-computed. Then,
in each subproblem (10), both w>¬jzi = w>zi − wjzij
and w>¬jw¬j = w>w − w2

j can be computed in O(1)
time. Therefore, we only need O(n) time to evaluate the
L(wj = −1), L(wj = 0) and L(wj = 1) for (10). The
optimal solution for each subproblem,

w∗j = argmin{L(wj = −1), L(wj = 0), L(wj = 1)}
(11)

can be obtained in O(n) time. Then wj will be updated to
w∗j if it is not equal tow∗j . This simple algorithm can be easily
implemented and applied to other popular loss functions (e.g.,
logloss, square loss) and regularizers (e.g., l1 regularizer).
Note that for some specific loss function (e.g., square loss),
a close form solution for wj can be derived without using
enumeration as shown in (11).

Parameter Initialization. In this section, we propose a
heuristic way to initialize α and w which can help us to
quickly obtain a local optimal solution for (7). The idea is
we first randomly select a small subset of training data to
apply the linear SVM on transformed data {zi, yi}mi=1 to get
the full-precision solution wfull. Then the parameter w is
initialized as

w = sign(wfull)

α =
‖wfull‖1

p
.

(12)

Empirically this initialization can lead to a fast convergence
to a local optimum and produce better classification accuracy.
The results are shown in Figure 2 and will be discussed in
detail in the experiments section.

Efficiently Compute Ternary-Binary Dot Product.
Once we get the ternary coefficients and the binary feature
embedding, the following question is how to efficiently com-
pute wT z since the parameter α only scales the value wT z
and will not affect the prediction results. Next, we will dis-
cuss efficiently computing wT z using bit-wise operations.

For the binary classification problem, after the training
stage, we can remove the coefficient wjs with zero value
and also the corresponding columns in matrix B. Therefore,
for model deployment, our classification model w is still a
binary vector and only one bit is needed for storing one entry
wj . Our model is different from ternary weight networks (Li,
Zhang, and Liu 2016) where the coefficient 0 needs to be
explicitly represented for model inference. Our prediction
score can be computed as,

wT z = 2POPCOUNT(z XNOR w)− len(z), (13)

where XNOR is a bit-wise operation, POPCOUNT(a) re-
turns the number of 1 bits in a and the len(z) returns the
length of vector z.

For the multi-class classification problem, the columns in
B can only be removed if their corresponding coefficients
are zero simultaneously in all w vectors for all c classes.
Therefore we will need 2-bits to store the remaining coeffi-
cients after dropping the 0 value simultaneously in all classes.
However, this 2-bit representation might have little influence
on computational efficiency. For a given class j with model
parameter w, the original wj with ternary values can be de-
composed as w = wp �ws where ws and wp are defined
as

wpj =

{
1 if wj = 1
−1 otherwise , wsj =

{
1 if wj = ±1
0 wj = 0

.

(14)
Then wT z can be computed as:

wT z = 2POPCOUNT(z XNOR wp AND ws)− len(z).
(15)

Note that for 1 in (14) represent logic TRUE and store as 1,
while 0 and −1 in (14) will be stored as 0 to represent logic
FALSE in model inference.

Algorithm Implementation and Analysis
We summarize our proposed algorithm for memory and
computation-efficient kernel SVM in Algorithm 1. During the
training stage, step 2 needs O(np) space and O(nplog(d))
time to obtain the binary embedding by using FFT. To learn
the binary model coefficients (from step 4 to step 21), it
requires O(tnp) time where t is the number of iterations.
Therefore, the training process can be done efficiently. Our
algorithm can be easily implemented and applicable to other
loss functions and regularizers. The source code of our im-
plementation is included in the supplementary materials and
will be publicly available. Next, we present a detailed anal-
ysis of the convergence of our algorithm and the inference
complexity of our model.

Lemma 2 (Convergence of Algorithm 1). The Algorithm 1
will converge to a local optimum of objective (7).

The proof of Lemma 2 can be done based on the fact that
each updating step in solving (8) and (11) will only decrease
the objective function (7). By using our proposed parameter
initialization method, Our experimental results empirically
show that our proposed algorithm can converge to a local
optimal solution fast.
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Algorithms Memory Cost (bits) Computation Cost
Transformation Embedding Classifier # of BOPS # of FLOPs

RFF ∼ d× p× 32 p× 32 c× p× 32 − O(d× p+ p)
Fastfood ∼ p× 5× 32 p× 32 c× p× 32 − O(plog(d) + p)

BJLE ∼ d× p× 32 p c× p× 32 − O(d× p+ p)
BCSIK ∼ d× p× 32 p c× p× 32 − O(d× p+ p)

Our Proposed ∼ p× 5× 32 p c× p O(p) O(plog(d))

Table 1: Memory and Computation Costs for Different Algorithms

Algorithm 1 Memory and computation-efficient kernel SVM
via binary embedding and ternary model coefficients

Training
Input: training data set D = {xi, yi}ni=1, new dimension
p, regularization parameter λ;
Output: transformation parameter R̃ ∈ Rd×p, b ∈ Rp,
t ∈ Rp; classification model with ternary coefficients w;

1: Generate random Gaussian matrix R̃ as defined in (4),
random vector b and t.

2: Compute the binary embedding as defined in (5)
3: Initialization: w, α as shown in (12)
4: r = w>w. # Pre-Computing regularizer
5: for i = 1 to n do
6: hi = w>zi # Pre-Computing predictions
7: end for
8: repeat
9: solve (8) by fixing w

10: repeat {Learning w by fixing α}
11: for j = 1 to p do
12: evaluate L(wj = −1), L(wj = 0) and L(wj =

1)
13: obtain the optimal solution of w∗j based on (11)
14: if wj 6= w∗j then
15: set woldj = wj and update wj = w∗j
16: update hi = hi − (woldj − wj)zij for each

sample
17: update r = r − (woldj )2 + (wj)

2

18: end if
19: end for
20: until objective (9) converge;
21: until objective (7) converge;

Prediction
Input: a test sample xi, ternary coefficient w, transforma-
tion parameters R̃,b, t;
Output: predicted label ŷi;

1: compute binary embedding zi as defined in (5)
2: obtain the predicted label by ŷi = sign(w>zi);

Inference Complexity of Our Model. The main advan-
tage of our model is that it provides memory and computation-
efficient model inference. To compare the memory and com-
putation costs for classifying a single input data sample with
other methods, we decompose the memory cost into (1) mem-
ory cost of transformation parameters; (2) memory cost of

embedding; and (3) memory cost of the classification model.
We also decompose the computation cost into (1) number of
binary operations (# of BOPS) and (2) number of float-point
operations (# of FLOPS). To deploy our model, since we
do not need to store the Hadamard matrix H explicitly, we
only need 32× 3× p bits to store S,G,Π. B can be stored
in p bits, b and t can be stored in 2 × 32 × p bits. There-
fore, total ∼ p× 5× 32 bits are needed for storing transfor-
mation parameters. For RFF, BCSIK, and Binary Johnson-
Lindenstrauss Embedding (BJLE), they need to maintain a
large d× p Gaussian matrix explicitly. Therefore, their mem-
ory cost of transformation parameters is ∼ d× p× 32 bits,
which is ∼ d times larger than our proposed method. As for
storing the transformed embedding, RFF needs p× 32 bits
where binary embedding methods (i.e., BJLE, BCSIK, and
our proposed method) only need p bits. As for storing the
classification model, assume that the number of classes is
c, and one-vs-all strategy is used. Then, c× p× 32 bits are
needed for full-precision model coefficients, and c× p bits
are needed for binary model coefficients. With respect to the
computation complexity of our model, step 1 in prediction
needs O(dlog(d)) FLOPs, and step 2 needs O(p) BLOPs.
The memory and computation costs for different algorithms
are summarized in Table 1. Furthermore, since both w and
zi are bit vectors, the dot product between them can be re-
placed by cheap XNOR and POPCOUNT operations, which
have been showing to provide 58× speed-ups compared with
floating-point dot product in practice (Rastegari et al. 2016).

Experiments
In this section, we compare our proposed method with other
efficient kernel SVM approximation methods and binary em-
bedding methods. We evaluate the performance of the follow-
ing six methods.

• Random Fourier Features (RFF) (Rahimi and Recht 2008):
It approximates the shift-invariant kernel based on its
Fourier transform.

• Fastfood kernel (Fastfood) (Le, Sarlós, and Smola 2013):
It uses the Hadamard transform to speed up the matrix
multiplication in RFF.

• Binary Johnson-Lindenstrauss Embedding (BJLE) : It
composes JL embedding with sign function (i.e., z =
sign(Rx)) which is a common binary embedding method.

• Binary Codes for Shift-Invariant Kernels (BCSIK) (Ragin-
sky and Lazebnik 2009): It composes the Random Fourier
Features from RFF with random sign function.
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metric usps-b usps covtype webspam mnist fashion-mnist

RFF
accuracy 98.63 94.76 84.19 97.79 96.88 87.5
memory cost 2064KB 2136KB 448KB 2048KB 6328KB 6328KB
memory red. 1x 1x 1x 1x 1x 1x

Fastfood
accuracy 98.29 94.34 84.82 97.47 96.48 87.55
memory cost 40KB 112KB 40KB 40KB 112KB 112KB
memory red. 51x 19x 11x 51x 57x 57x

BJLE
accuracy 97.53 92.53 80.77 96.39 92.95 84.06
memory cost 2056KB 2128KB 440KB 2040KB 6320KB 6320KB
memory red. 1x 1x 1x 1x 1x 1x

BCSIK
accuracy 97.85 93.32 81.91 96.41 93.05 84.01
memory cost 2056KB 2128KB 440KB 2040KB 6320KB 6320KB
memory red. 1x 1x 1x 1x 1x 1x

Our Method
accuracy 98.01 93.57 81.68 96.34 93.27 83.29
memory cost 32KB 104KB 32KB 32KB 104KB 104KB
memory red. 64x 21x 14x 64x 61x 61x

Our Method-b
accuracy 96.57 92.12 78.12 94.75 92.66 82.07
memory cost 24KB 29KB 24KB 24KB 29KB 29KB
memory red. 84x 74x 19x 85x 218x 218x

Table 2: Accuracy and memory cost of different models

• Our proposed method with full-precision model coeffi-
cients

• Our proposed method with binary model coefficients

To evaluate the performance of these six methods, we use
five real-world benchmark datasets. The detailed information
about these datasets is summarized in Table 3. The first three
datasets are download from LIBSVM website 2, mnist and
fashion-mnist are download from openml. 3

Dataset class train size test size d
usps-b 2 7,291 2007 256
usps 10 7,291 2007 256

covtype 2 464,810 114,202 54
webspam 2 280,000 70,000 254

mnist 10 60,000 10,000 780
fashion-mnist 10 60,000 10,000 780

Table 3: Experiment datasets

Experiment Results
All the data are normalized by min-max normalization such
that the feature values are within the range [−1, 1]. The
dimension of nonlinear feature mapping p is set to 2048.
The σ is chosen from {2−5, 2−4, . . . , 25}. The regularization
parameter in both linear SVM and our method is chosen
from {10−3, 10−2, . . . , 103}. The prediction accuracy and
the memory cost for model inference for all algorithms are
reported in Table 2. Memory reduction is also included in Ta-
ble 2, where 86x means the memory cost is 86 times smaller
compared with RFF. As shown in Table 2, RFF gets the
best classification accuracy for all five datasets. However, the

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3https://www.openml.org/search?type=data

memory cost for model inference is very high. The binary
embedding methods BJLE and BCSIK can only reduce the
memory cost by a small amount because the bottleneck is the
transformation matrix R ∈ Rd×p. Compared with BJLE and
BCSIK, Fastfood is memory-efficient for nonlinear feature
mapping. However, the memory cost for the classification
model could be high for Fastfood, especially when the num-
ber of classes is large. Compared with RFF, our proposed
method with ternary coefficients can significantly reduce the
memory cost from 19x to 218x for model inference.

Next we explore different properties of our proposed algo-
rithm on usps dataset with σ set to 1.

(a) Memory (b) Computation time

Figure 1: Memory and computation efficiency

Memory Efficiency of Binary Model. Figure 1(a) illus-
trates the impact of parameter p. Since RFF, BJLE, BC-
SIK methods need more than 10 times memory to achieve
the same accuracy as Fastfood, so we only compare three
memory-efficient methods. As can be seen from it, the accu-
racy increases as p increases and will converge if p is large
enough. Besides, we further compare the memory cost and
the prediction accuracy of three Fastfood-based kernel ap-
proximation methods. We take the usps dataset as an example.
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We can set larger p to gain the same performance of the full
precision methods shown in Table.2. Furthermore, if we con-
sider the memory cost, our binary model can achieve higher
accuracy with the same memory, as shown in 1(a).

Computation Time. We compare the time consumption of
our method to process one single sample with the processing
time of RFF and the original Fastfood kernel approximation
method in Figure 1(b). The dark areas represent the feature
embedding time, and the light areas are the prediction time.
We show that our method’s total computation time can be sig-
nificantly reduced compared with the other two methods. We
have two main observations. First, the Fast Fourier transform
in random projection can significantly reduce the projection
time, especially when the original data is a high-dimensional
dataset (e.g., MNIST and Fashion MNIST). Besides, the
binary embedding will add few additional time in feature
embedding but will significantly improve the speed in the
prediction stage.

(a) Convergence

(b) Accuracy

Figure 2: Comparison between random initialization and our
proposed initialization method

Convergence of Our Algorithm. In Figure 2(a), we em-
pirically show how our proposed algorithm converges. Here,
we compare the two different initialization methods: (1) ran-
dom initialization; (2) initialization from linear SVM solu-
tion. We can observe that using the initialization from a linear
SVM solution leads to a slightly lower objective value and
converges in a few iterations. Motivated by this observation,
we train a linear model on a small subset of data and binarize
it as the initial w for our algorithm in practice.

Effectiveness of SVM Initialization. In Figure 2(b), we

further illustrate the effect of our initialization strategy by
comparing the prediction accuracy. We can observe that using
the initialization from a linear SVM solution leads to higher
accuracy and more stable performance compared with the
random initialization.

Decision Boundary of Ternary Coefficients. We use the
synthetic nonlinear circle dataset to illustrate the effect of the
ternary coefficients. The circle is in two-dimensional space
as shown in Figure 3. The blue points in the larger outer
circle belong to one class, and the red ones belong to an-
other. We show the decision boundary of using binary and
ternary coefficients. As shown in this figure, our proposed
binary embedding with linear classifiers can produce effec-
tive nonlinear decision boundaries. Besides, as the feature
binary embedding might involve some additional noise, the
classification model using ternary coefficients can produce
better and smoother decision boundary than using binary
coefficients.

(a) binary coefficients (b) ternary coefficients

Figure 3: Comparison of the decision boundaries between
binary coefficients and ternary coefficients

Conclusion
This paper proposes a novel binary embedding method that
can preserve the kernel similarity among data samples. Com-
pared to BCSIK, our proposed method reduces the mem-
ory cost from O(dp) to O(p) and the computation cost from
O(dp) toO(plog(d)) for binary embedding. Besides, we pro-
pose a new algorithm to learn the classification model with
ternary coefficients. Our algorithm can achieve better gen-
eralization accuracy than existing works on learning ternary
coefficients since we allow the coefficient to be {−1, 0, 1}
during the training stage. Our proposed algorithm can be eas-
ily implemented and applicable to other types of loss function
and regularizer. We also provide a detailed analysis of the
convergence of our algorithm and the inference complexity
of our model. We evaluate our algorithm based on five large
benchmark datasets and demonstrate our proposed model can
build accurate nonlinear SVM models with memory cost less
than 30KB on all five datasets.
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