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Abstract

Unsupervised active learning has been an active research
topic in machine learning community, with the purpose of
choosing representative samples to be labelled in an un-
supervised manner. Previous works usually take the mini-
mization of data reconstruction loss as the criterion to se-
lect representative samples, by which the original inputs can
be better approximated. However, data are often drawn from
low-dimensional subspaces embedded in an arbitrary high-
dimensional space in many scenarios, thus it might severely
bring in noise if attempting to precisely reconstruct all en-
tries of one observation, leading to a suboptimal solution. In
view of this, this paper proposes a novel unsupervised Active
Learning model via Subspace Learning, called ALSL. In con-
trast to previous approaches, ALSL aims to discover low-rank
structures of data, and then perform sample selection based
on the learnt low-rank representations. To this end, we de-
vise two different strategies and propose two corresponding
formulations to select samples with and under low-rank sam-
ple representations, respectively. Since the proposed formula-
tions involve several non-smooth regularization terms, we de-
velop a simple but effective optimization procedure to solve
them. Extensive experiments are performed on five publicly
available datasets, and experimental results demonstrate the
proposed first formulation achieves comparable performance
with the state-of-the-arts, while the second formulation sig-
nificantly outperforms them, achieving a 13% improvement
over the second best baseline at most.

Introduction
Recently, unsupervised active learning has attracted lots of
attention in machine learning community. Different from su-
pervised active learning approaches pretraining a classifier
by labeled data (Roy and McCallum 2001; Gal, Islam, and
Ghahramani 2017; Yoo and Kweon 2019), the goal of unsu-
pervised active learning is to select representative samples to
be labelled in an unsupervised manner, so as to better reduce
the cost of annotations but still guarantee the performance of
downstream models trained by the selected samples.

*Changsheng Li is the corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One key point in unsupervised active learning is how to
evaluate representativeness of one sample. To this end, some
researchers propose to measure it through minimizing the
data reconstruction loss and taking the contributions to re-
constructing other samples as its representativeness. Based
on this criteria, many unsupervised active learning methods
have been proposed in the past decade (Yu, Bi, and Tresp
2006; Zhang et al. 2011; Cai and He 2011; Nie et al. 2013;
Hu et al. 2013; Shi and Shen 2016; Li et al. 2019, 2020a,b).
Roughly speaking, unsupervised active learning can be di-
vided into two categories: linear and nonlinear ones (Li et al.
2020a). For linear methods, they usually assume that each
sample can be well reconstructed by a linear combination
of a selected sample subset in the original space. The typ-
ical works include transductive experimental design (TED)
(Yu, Bi, and Tresp 2006), robust structured representation
(RRSS) (Nie et al. 2013), active learning via neighborhood
reconstruction (ALNR) (Hu et al. 2013), joint active learning
and feature selection (Li et al. 2019). Given the fact that in-
trinsic structures of data are often complex (e.g., nonlinear-
ity) in practice, a few nonlinear works have been proposed to
handle such a case, including the manifold adaptive exper-
imental design (MAED) algorithm (Cai and He 2011) and
deep unsupervised active learning (DUAL) (Li et al. 2020a).
They usually nonlinearly map original inputs into a latent
space, where a linear model is utilized to select samples. In
this paper, we focus on linear unsupervised active learning,
because of its simplicity but effectiveness.

Most of the above linear unsupervised algorithms select
representative samples relying on the reconstruction loss
minimization in the original space. However, in practice,
data are often approximately drawn from low-dimensional
subspaces embedded in an arbitrary high-dimensional space.
Obviously, it is not necessary to reconstruct all entries of
one observation well under such a case. In contrast, if fea-
tures of the observations are noisy, reconstructing them even
degrades model performance, resulting in a suboptimal so-
lution. Thus, it will be beneficial to sample selection, if we
can learn and leverage subspace structures of data during
training. We take Figure 1 as an example to illustrate the
main idea behind our method. Figure 1 (a) is the 2-D exhi-
bition of data matrix from the Extended Yale Face B dataset
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Figure 1: Illustration of our basic idea. (a) Each row de-
notes one sample with an original 1024-dimensional vec-
tor. (b) Feature representations learnt by a subspace learning
method, LSR (Lu et al. 2012), using the original inputs. (c)
The selected samples obtained by a typical active learning
method, TED (Yu, Bi, and Tresp 2006), using the original
space. (d) An ideal sample selection result obtained by our
method using the learnt feature representations. Red lines in
Figure 1 (c) and (d) denote the samples are selected.

(Georghiades, Belhumeur, and Kriegman 2001). We use the
first 5 subjects, where the first 50 frontal face images for
each subject are used in this example. In Figure 1 (a), each
row denotes one sample with a 1024-dimensional feature
vector. The samples of the first 50 rows are from one sub-
ject, i.e., belonging to the same category, and those of the
second 50 rows are from the second subject, and so on. From
Figure 1 (a), we can observe the first three subjects show
similar input patterns, while they are actually drawn from
different subspaces as shown in Figure 1 (b). If directly se-
lecting samples in the original space, the result is not good,
as shown in Figure 1 (c). In Figure 1 (c), we show five top-
ranked samples selected by a typical active learning method,
TED (Yu, Bi, and Tresp 2006), where three samples come
from the first subject, and there is no sample selected from
the third and fourth subjects. If training a classifier based
on the selected five samples, the classification performance
will be inferior, because of some subjects not selected. An
ideal sample selection is demonstrated in Figure 1 (d), ob-
tained through using the learnt representations in Figure 1
(b), rather than the original space in Figure 1 (a). In Figure
1 (d), the five top-ranked samples cover all subjects, which
is good for downstream classification tasks.

In light of these, this paper proposes a novel unsupervised
Active Learning model based on Subspace Learning, called

ALSL. ALSL intends to learn subspace structures of data
and perform sample selection in a unified framework. To
reach the goal, we devise two different strategies and pro-
pose two corresponding formulations to select samples with
and under low-rank sample representations respectively. In
the first formulation, we attempt to learn a reconstruction co-
efficient matrix to minimize the reconstruction loss of origi-
nal inputs, while simultaneously require the coefficient ma-
trix to be low-rank and row-sparse, such that the samples can
be selected with low-rank representations. Different from
the first formulation still minimizing the reconstruction loss
of original inputs, the proposed second formulation aims to
learn low-rank structures of data, and then select represen-
tative samples to best approximate the learnt low-rank rep-
resentations, so as to further suppress noise. Finally, we de-
velop a simple but effective procedure to solve the above
two optimization problems. Extensive experiments are per-
formed on multiple tasks usually requiring high annotation
costs, and experimental results on five publicly available
datasets demonstrate the efficacy of the proposed models.

Related Work
In this section, we review linear unsupervised active learning
algorithms which are the most related to our method.

Linear unsupervised active learning intends to utilize a
linear model to choose representative samples to be la-
belled in an unsupervised manner. An earlier approach is the
transductive experimental design (TED) (Yu, Bi, and Tresp
2006), the core idea of which is to select a sample subset
to best approximate the whole dataset through optimizing a
least square loss function plus a ridge regularization term.
Later, (Yu et al. 2008) extends TED to a convex formu-
lation by replacing the cardinality constraint by a sparsity
regularization. Moreover, (Shi and Shen 2016) further ex-
tends TED to simultaneously select representative and di-
verse samples. Recently, RRSS proposed in (Nie et al. 2013)
utilizes a structural sparsity regularization to select samples,
and a robust sample representation strategy to mitigate the
issue of outliers. However, the complexity of this method is
very high when the number of samples is large, which is of
order O(n4). To solve this issue, (FY et al. 2015) proposes
an accelerated version to RRSS. ALNR (Hu et al. 2013)
aims to incorporate the neighborhood relation of samples
into the reconstruction process, so as to make the nearest
neighbors of one sample contribute more to the reconstruc-
tion of the sample. More recently, a unified framework for
simultaneously active learning and feature selection is pro-
posed in (Li et al. 2019), called ALFS, demonstrating that
both tasks are beneficial to each other. Most of the above lin-
ear methods concentrate on sample selection in the original
feature space, ignoring the case that data are often approx-
imately drawn from low-dimensional subspaces embedded
into a high-dimensional space.

Proposed Method
Let X = [x1,x2, . . . ,xn] ∈ Rd×n be a collection of data
points drawn from a union of multiple low-dimensional sub-
spaces, where d is the dimension of each sample, and n is the
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number of samples. Our goal is to perform sample selection
and subspace learning simultaneously, making the selected
sample subset S ∈ Rd×k more representative. k denotes
the number of the selected samples. Before introducing our
method, we first summarize the notations and the definition
of norms used in this paper.

Vectors are written as boldface lowercase letters and ma-
trices are written as boldface uppercase letters. For an arbi-
trary matrix A ∈ Rn×m, we use ai, aj , and aij to denote
its i-th row, j-th column, and (i, j)-th entry, respectively.
The Frobenius norm of the matrix A is defined as ||A||F =√∑n

i=1

∑m
j=1 a

2
ij , and the `2,1-norm of the matrix A is

defined as ||A||2,1 =
∑n
i=1

√∑m
j=1 a

2
ij =

∑n
i=1 ||ai||2.

||A||∗ denotes the nuclear norm of A, defined as ||A||∗ =∑
i σi, where σi is the i-th singular value of A. The sup-

norm of a matrix A is defined as ||A||∞ =
∑n
i=1 ||ai||∞ =∑n

i=1(max1≤j≤m |aij |). The Euclidean inner product be-
tween two matrices is < A,B >= tr(ATB), where AT is
the transpose of a matrix and tr(·) is the trace of a matrix.

Formulation I: Active Learning with Low-Rank
Representation
Following previous approaches, we still adopt the strategy
of minimizing the overall reconstruction loss in the original
space to select the most representative samples. To this end,
we take advantage of the following objective function:

min
Q∈Rn×n

||X−XQ||2F + η||Q||`, (1)

where η ≥ 0 is a tradeoff parameter. In (1), the first term
aims to minimize the reconstruction loss, where Q is the re-
construction coefficient matrix. The second terms ||Q||` is a
certain norm of Q used as a regularization term. Since we
attempt to select the k most representative samples, the cor-
responding reconstruction coefficients on these k selected
samples should have larger weights, and those of other n−k
samples should have as small weights as possible. In an ex-
treme case, if all entries of one row of Q are zeros, then the
corresponding sample will be not selected as an representa-
tive one, as it has no any contribution to reconstructing other
samples. Thus, Q should be row-sparse, since the row of
matrix Q reflects the impact of the corresponding sample on
reconstructing other samples. To make Q row-sparse, ||Q||`
can be replaced by ||Q||2,1 or the sup-norm ||Q||∞. Here
we use ||Q||2,1 in this paper. In principle, ||Q||∞ can also
be applied. Actually, the matrix Q plays two roles in (1):
First it is a reconstruction coefficient matrix whose column
contains the weights of a linear combination of all samples
for reconstructing the corresponding sample; Second it is a
self-representation matrix. Each column qi ∈ Rn in Q can
be taken as a new feature representation of xi, where X is
regarded as a new dictionary.

As aforementioned, the data are often drawn from low-
dimensional subspaces embedded in a high-dimensional
space. Thereby, we force Q to be low-rank, and propose to
minimize the following objection function:

min
Q∈Rn×n

||X−XQ||2F + η||Q||2,1 + λrank(Q), (2)

where λ ≥ 0 is a tradeoff parameter. rank(·) denotes the
rank of a matrix. Minimizing the third term aims to make the
learnt Q low-rank, so as to recover the low-rank structure
from the given observation matrix X. However, the above
problem is in general NP-hard, a common practice is to re-
place the rank of Q by its nuclear norm ||Q||∗ (Recht, Fazel,
and Parrilo 2010), which leads to a convex formulation as:

min
Q∈Rn×n

||X−XQ||2F + η||Q||2,1 + λ||Q||∗, (3)

where ||Q||∗ is a convex envelope of the rank function.

Formulation II: Active Learning under Low-Rank
Representation
In (3), although the proposed formulation can reach the goal
of performing unsupervised active learning with low-rank
sample representation, but the reconstruction loss is still di-
rectly built upon the original input matrix X for selecting k
representative samples. In many cases, the observations of-
ten contain many noisy features, due to the low-dimensional
subspace structure. If we reconstruct each entry of one ob-
servation well, this might severely bring in the noise during
training and thus degrade the model performance. As afore-
mentioned, we know that the original inputs can be taken as
a dictionary, and the reconstruction coefficients can be re-
garded as new feature representations of samples. If adding
a subspace learning based regularizer on the reconstruction
coefficients, e.g., a low-rank constraint, we can obtain the
intrinsic low-rank representation of data. Motivated by this
point, we propose to jointly learn a low-rank representation,
and select k representative samples under the new low-rank
representations, instead of the original inputs. To this end,
we propose another new formulation as:

min
Q,Z∈Rn×n

||X−XQ||2F + λ||Q||∗

+ µ||Q−QZ||2F + η||Z||2,1, (4)
where µ ≥ 0 is a tradeoff parameter.

In (4), the first two terms aim to learn a low-rank rep-
resentation Q, while the last two terms attempt to select
the k most representative sample to best approximate the
learnt low-rank representation Q. By jointly optimizing
these terms, the proposed formulation can perform unsuper-
vised active learning under low-rank representation, mak-
ing the selected samples more representative. Compared (4)
with (3), the main differences are that there is an additional
reconstruction loss term in (4) and imposing the `2,1-norm
constraint on different subjects, enabling (4) to perform sam-
ple selection under new low-rank representation. Through
such changes, the performance of the model can be further
improved.

Finally, we utilize Q to select k most representative sam-
ples for the first formulation, and use Z for the second for-
mulation. To be specific, we can sort all the data points by
the l2-norm of the rows of Q or Z in descending order, and
select the top k samples as the most representative ones.

Optimization Procedure
The objection function (3) is convex, while it is non-convex
in (4). thus (3) and (4) have a globally and locally optimal

8334



solutions respectively. To solve them, we employ the alter-
nating direction method of multipliers (ADMM) (Boyd et al.
2011) to separate the joint problem into easier sub-problems,
which could converge to a minimum (Boyd et al. 2011; Ha-
jinezhad et al. 2016) Because of space limitation, we mainly
introduce how to optimize (4) using ADMM. The procedure
for solving (3) is similar.

In order to solve (4), we first introduce two auxiliary vari-
ables W and T to convert (4) into the following equivalent
objective function:

min||X−XQ||2F +λ||W||∗+µ||Q−QZ||2F +η||E||2,1
s.t.Q = W,Z = E. (5)

The augmented Lagrangian function of problem (5) is

Lρ1,ρ2(Q,Z,W,T,Λ1,Λ2) := ||X−XQ||2F + λ||W||∗
+ µ||Q−QZ||2F + η||E||2,1 + 〈Λ1,Q−W〉

+
ρ1

2
||Q−W||2F + 〈Λ2,Z−E〉+

ρ2

2
||Z−E||2F , (6)

where Λ1 and Λ2 are Lagrange multipliers. ρ1 and ρ2 are
constraint violation penalty parameters.
Solver for W: Removing irrelevant terms to W from (6), it
becomes:

minλ||W||∗ +
ρ1

2
||Q−W +

Λ1

ρ1
||2F . (7)

The problem (7) can be solved by the singular value
thresholding (Cai, Candes, and Shen 2010), and it has a
closed form solution:

W = UMS λ
ρ1

(ΣM)VT
M, (8)

where Sτ (x) = sgn(x) ·max(|x| − τ, 0) is the soft thresh-
olding operator. UMΣMVT

M is the singular value decom-
position (SVD) of the matrix M, where M = Q + Λ1

ρ1
.

Solver for E: E is the minimizer of

min η||E||2,1 +
ρ2

2
||Z−E +

Λ2

ρ2
||2F . (9)

The above optimization problem can be solved by the fol-
lowing lemma (Yang et al. 2009):

Lemma 1. For any κ, ν > 0, and g ∈ Rq , the minimizer of

min
t∈Rq

κ‖t‖2 +
ν

2
‖t− g‖22,

is given by

t =

{
(1− κ

ν‖g‖2 )g, ‖g‖2 > κ
ν

0, ‖g‖2 ≤ κ
ν .

Thus, we can obtain the solution of ( 9) as

Ei =

{
(1− η

ρ2‖vi‖2 )vi, ‖vi‖2 > η
ρ2

0, ‖vi‖2 ≤ η
ρ2
,

(10)

where vi = (Z + Λ2

ρ2
)i. Ei denotes the i-th row of E, i =

1, · · · , n.

Solver for Z: the sub-problem about Z can be written as

min µ||Q−QZ||2F +
ρ2

2
||Z−E +

Λ2

ρ2
||2F . (11)

Taking the gradient of (11) with respect to Z, and setting
it to zero, we can easily obtain the closed-form solution of
Z as:

Z = (2µQTQ + ρ2I)
−1(2µQTQ + ρ2E− Λ2). (12)

Solver for Q: when other variables are fixed, Q can be ob-
tained by minimizing the following objective function:

||X−XQ||2F +µ||Q−QZ||2F +
ρ1

2
||Q−W+

Λ1

ρ1
||2F . (13)

Since (13) is convex in terms of Q, the optimal solution
can be found by differentiating (13) and setting the deriva-
tive to zero. This implies

(2XTX + ρ1I)Q + 2µQ(I− Z)(I− ZT )

= 2XTX + ρ1W − Λ1. (14)

For writing conveniently, let M = 2XTX + ρ1I, N =
2µ(I − Z)(I − ZT ), and H = 2XTX + ρ1W − Λ1, then
the Eq. (14) can be written as

MQ + QN = H. (15)

Since M and N are symmetric and positive semi-definite,
we have {

M = UΣ1U
T

N = VΣ2V
T ,

(16)

where U and V are both orthogonal. Σ1 and Σ2 are two
diagonal matrices.

Plugging (16) into (15), we can obtain

UΣ1U
TQ + QVΣ2V

T = H

⇒Σ1U
TQ + UTQVΣ2V

T = UTH

⇒Σ1U
TQV + UTQVΣ2 = UTHV. (17)

Let S = UTQV, then (17) can be rewritten as

Σ1S + SΣ2 = UTHV

⇒Sij =
(UTHV)ij

(Σ1)ii + (Σ2)jj
, i, j = 1, · · · , n. (18)

Actually, we have (Σ1)ii > 0 and (Σ2)jj ≥ 0, thus the
denominator in (18) is greater than zero. After obtaining S,
we can obtain Q by:

Q = USVT . (19)

The updating rule for Λ1,Λ2: The Lagrange multipliers
Λ1,Λ2 can be updated by:{

Λ1 ← Λ1 + ρ1(Q−W)

Λ2 ← Λ2 + ρ2(Z−E).
(20)

We list the key steps for solving (4) in Algorithm 1. The
procedure for solving (3) is similar to that in Algorithm 1.
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Algorithm 1: Optimization Procedure for Solving
Formulation II

Input: The matrix X ∈ Rd×n, tradeoff parameters;
Initialization: Q0 = W0 = Z0 = E0 = 0,
Λ0

1 = Λ0
2 = 0, ρ1 = ρ2 = 10−6,maxρ = 106,

τ = 1.1, ε = 10−3, t = 0;
while not converged do

1. Fix the other variables and update W by (8);
2. Fix the other variables and update E by (10);
3. Fix the other variables and update Z by (12);
4. Fix the other variables and update Q by (19);
5. Update the multiplier Λ1 and Λ2 by (20);
6. Update the parameter ρ1, ρ2 by
ρi = min(τρi,maxρ), i = 1, 2;

7. Check the convergence conditions:
‖Q−W‖∞ < ε, ‖Z−E‖∞ < ε,
|L

t+1−Lt
Lt | < ε, where Lt is the value of the

augmented Lagrangian function (6) for the t-th
iteration;

8. t← t+ 1;
end
Output: Z.

Convergence and Computational Complexity
Analysis
It is easy to proof that Algorithm 1 will converge to a lo-
cal optimum based on (Hajinezhad et al. 2016). Because
of space limitation, we omit the proof. Please refer to (Ha-
jinezhad et al. 2016) for the details.

Moreover, we analyze the computational complexities of
Algorithm 1. The main computation costs in Algorithm 1
stem from updating W,E,Z, and Q. For updating W, it
typical needsO(n3) because of referring to SVD of an n×n
matrix. The complexity is of order O(n2) for updating E. It
costs O(n3) for updating Z, since it needs several matrix
multiplications and an inverse operation of a matrix. As for
Q, it requires O(n3 + n2d). Thus, the total complexity of
Algorithm 1 in each iteration isO(n3+n2+n3+n3+n2d) =
O(n3+n2d). We know ALFS is of orderO(n3+n2d+d2n+
d3) and RRSS needs O(n4) in each iteration, where n is the
number of samples and d is the dimension of samples. Thus,
our method has lower complexity than ALFS and RRSS.

Experiment
In this section, we evaluate the performance of the proposed
formulations on five publicly available datasets across differ-
ent tasks including facial age estimation, video action recog-
nition, medical image classification and wine quality predic-
tion. It is usually much more time-consuming and expensive
to manually label samples for these tasks.

Datasets
We evaluate the proposed methods on two video action
recognition datasets HMDB51 (Kuehne et al. 2011) and
UCF50 (Reddy and Shah 2013), one facial age estimation

datasets UTKFace (Zhang, Song, and Qi 2017), one med-
ical image dataset HAM10000 (Tschandl, Rosendahl, and
Kittler 2018), and one wine quality dataset (Cortez et al.
2009). HMDB51 is composed of 6,766 realistic video clips
from 51 action categories. UCF50 contains 6,681 realistic
youtube videos associated with 50 action categories. For
each video, we extract a 512-dimensional feature vector to
represent each frame, and then use the average of all frames
as the feature representation of the video. UTKFace consists
of over 20,000 face images with annotations of age. The age
spans range from 0 to 116 years old, which are divided into
eight ranges: 0-9, 10-19, ..., 60-69, and 70+ for age group
estimation. We randomly select 200 images from each class,
in order to avoid the effect of class imbalance.

Compared Methods and Experimental Protocol
We compare with some related unsupervised active learn-
ing algorithms, including RRSS (Nie et al. 2013), ALNR
(Hu et al. 2013), ALFS (Li et al. 2019). In addition, we
also compare with a popular matrix column subset selec-
tion algorithm, DCS (Papailiopoulos, Kyrillidis, and Bout-
sidis 2014) which can be used for sample selection. There
are two variants about our method, ALSL W and ALSL U,
meaning that performing sample selection with and under
low-rank sample representations, respectively. To evaluate
the effectiveness of the proposed method, we train a SVM
classifier using the selected samples, and evaluate its accu-
racy using the unseen samples. The parameters λ, µ and η in
our algorithm are searched from {0.001, 0.01, 0.1, 1, 10}. In
the experiment, we repeat every test case 5 times, and report
the average result and standard deviation.

Experimental Results
General Performance: The results are listed in Table 1,
2, 3, 4, and 5. ALSL U consistently outperforms all other
methods on the five datasets. For instance, when setting the
number of queries to 100 on the UCF50 dataset, ALSL U
obtains a 13% improvement over DCS that achieves the
second best performance. This illustrates the strategy for
selecting samples to best approximate the low-rank repre-
sentations is effective. ALSL W has a comparable perfor-
mance with other baselines. This is because ALSL W aims
to reconstruct the original inputs, leading to struggling with
noise.
Ablation Study: We study the effectiveness of our compo-
nents on the two image datasets. The experimental setting is
as follows: We only perform sample selection with subspace
learning, i.e., setting λ = 0 in (3), shorten as AL. The ex-
perimental results are reported in Table 6. ALSL W is better
than AL, indicating that learning low-rank sample represen-
tations is good for sample selection. ALSL U achieves supe-
rior performance over ALSL W, which demonstrates that se-
lecting samples to reconstruct the low-rank representations
can better suppress noise.
Effectiveness of Joint Learning: In (4), we propose a joint
framework to perform subspace learning and sample selec-
tion simultaneously. Someone may argue that whether we
can first learn a low-rank representation Q by the first sec-
ond terms of (4), and then select samples to best approximate
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#Num. ALFS ALNR DCS RRSS ALSL W ALSL U
50 0.184±0.007 0.131±0.016 0.127±0.011 0.150±0.018 0.218±0.024 0.242±0.018

100 0.196±0.024 0.160±0.018 0.133±0.015 0.214±0.018 0.243±0.010 0.273±0.015
150 0.259±0.011 0.183±0.014 0.153±0.015 0.233±0.009 0.285±0.035 0.301±0.022
200 0.299±0.024 0.190±0.011 0.221±0.018 0.275±0.017 0.303±0.018 0.317±0.003
250 0.318±0.019 0.213±0.014 0.260±0.015 0.302±0.015 0.326±0.013 0.351±0.023
300 0.331±0.024 0.200±0.013 0.295±0.011 0.317±0.019 0.340±0.026 0.374±0.004
350 0.351±0.014 0.254±0.022 0.315±0.017 0.352±0.011 0.356±0.028 0.380±0.010
400 0.355±0.024 0.265±0.012 0.328±0.021 0.349±0.024 0.368±0.017 0.392±0.004
450 0.371±0.015 0.297±0.012 0.355±0.027 0.379±0.009 0.376±0.013 0.398±0.014

Table 1: Quantitative results in terms of accuracy of different active learning methods on the UTKFace dataset.

#Num. ALFS ALNR DCS RRSS ALSL W ALSL U
50 0.227±0.015 0.204±0.020 0.126±0.013 0.191±0.018 0.256±0.019 0.271±0.020

100 0.233±0.014 0.232±0.015 0.127±0.010 0.227±0.011 0.276±0.018 0.295±0.015
150 0.274±0.020 0.253±0.022 0.206±0.020 0.239±0.014 0.285±0.019 0.328±0.020
200 0.302±0.012 0.284±0.010 0.259±0.010 0.280±0.019 0.295±0.019 0.331±0.013
250 0.344±0.016 0.301±0.023 0.268±0.015 0.287±0.013 0.302±0.011 0.355±0.018
300 0.359±0.011 0.312±0.015 0.311±0.010 0.319±0.010 0.318±0.020 0.374±0.017
350 0.368±0.021 0.335±0.020 0.339±0.014 0.326±0.014 0.334±0.015 0.399±0.019
400 0.379±0.017 0.358±0.010 0.357±0.010 0.346±0.015 0.351±0.011 0.402±0.019
450 0.393±0.018 0.352±0.019 0.359±0.014 0.369±0.019 0.360±0.010 0.407±0.020

Table 2: Quantitative results in terms of accuracy of different active learning methods on the HAM10000 dataset.

#Num. ALFS ALNR DCS RRSS ALSL W ALSL U
50 0.117±0.010 0.111±0.018 0.115±0.017 0.122±0.015 0.108±0.020 0.159±0.011

100 0.154±0.017 0.143±0.011 0.182±0.028 0.157±0.021 0.159±0.020 0.207±0.012
150 0.208±0.009 0.180±0.006 0.214±0.014 0.208±0.010 0.207±0.010 0.243±0.010
200 0.220±0.016 0.208±0.013 0.254±0.007 0.226±0.023 0.234±0.022 0.269±0.012
250 0.266±0.012 0.247±0.027 0.277±0.014 0.281±0.015 0.257±0.025 0.294±0.007
300 0.279±0.020 0.276±0.016 0.302±0.015 0.290±0.019 0.277±0.014 0.318±0.008
350 0.314±0.012 0.300±0.010 0.324±0.012 0.327±0.014 0.302±0.022 0.344±0.007
400 0.326±0.018 0.313±0.014 0.341±0.016 0.330±0.010 0.323±0.013 0.368±0.003
450 0.352±0.009 0.333±0.009 0.367±0.009 0.364±0.009 0.339±0.008 0.377±0.009

Table 3: Quantitative results in terms of accuracy of different active learning methods on the HMDB51 dataset.

#Num. ALFS ALNR DCS RRSS ALSL W ALSL U
50 0.142±0.016 0.152±0.020 0.186±0.017 0.185±0.018 0.130±0.008 0.249±0.010

100 0.237±0.017 0.242±0.022 0.246±0.017 0.240±0.010 0.246±0.003 0.377±0.011
150 0.340±0.015 0.310±0.014 0.297±0.011 0.345±0.014 0.335±0.010 0.450±0.010
200 0.389±0.019 0.370±0.024 0.404±0.021 0.374±0.011 0.406±0.006 0.511±0.008
250 0.476±0.010 0.422±0.012 0.449±0.012 0.441±0.013 0.450±0.018 0.565±0.010
300 0.525±0.015 0.468±0.012 0.482±0.017 0.469±0.023 0.488±0.008 0.607±0.005
350 0.564±0.011 0.510±0.015 0.522±0.012 0.495±0.013 0.512±0.012 0.641±0.017
400 0.597±0.013 0.542±0.017 0.551±0.009 0.506±0.023 0.555±0.007 0.667±0.009
450 0.628±0.008 0.581±0.017 0.580±0.006 0.532±0.013 0.598±0.007 0.684±0.014

Table 4: Quantitative results in terms of accuracy of different active learning methods on the UCF50 dataset.
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#Num. ALFS ALNR DCS RRSS ALSL W ALSL U
50 0.447±0.007 0.428±0.009 0.448±0.024 0.472±0.002 0.451±0.012 0.474±0.007

100 0.441±0.018 0.443±0.011 0.466±0.010 0.453±0.010 0.417±0.023 0.498±0.009
150 0.471±0.017 0.479±0.005 0.477±0.010 0.475±0.024 0.490±0.008 0.507±0.015
200 0.475±0.011 0.479±0.024 0.494±0.017 0.481±0.024 0.499±0.013 0.510±0.007
250 0.502±0.017 0.490±0.018 0.503±0.009 0.495±0.013 0.501±0.011 0.516±0.006
300 0.505±0.017 0.498±0.013 0.504±0.026 0.496±0.014 0.500±0.015 0.521±0.006
350 0.509±0.018 0.504±0.017 0.515±0.014 0.503±0.023 0.509±0.013 0.526±0.006
400 0.511±0.017 0.508±0.017 0.517±0.019 0.503±0.013 0.511±0.011 0.528±0.001
450 0.517±0.013 0.511±0.024 0.519±0.016 0.512±0.023 0.519±0.019 0.534±0.006

Table 5: Quantitative results in terms of accuracy of different active learning methods on the Wine Quality dataset.

(a) UTKFace

# Num. AL ALSL W ALSL U
50 0.130±0.013 0.218±0.024 0.242±0.018

100 0.223±0.016 0.243±0.010 0.273±0.015
150 0.237±0.026 0.285±0.035 0.301±0.022
200 0.264±0.027 0.303±0.018 0.317±0.003
250 0.265±0.013 0.326±0.013 0.351±0.023
300 0.293±0.018 0.340±0.026 0.374±0.004
350 0.322±0.016 0.356±0.028 0.380±0.010
400 0.331±0.016 0.368±0.017 0.392±0.004
450 0.335±0.014 0.376±0.013 0.398±0.014

(b) HAM10000

# Num. AL ALSL W ALSL U
50 0.156±0.036 0.256±0.019 0.271±0.020

100 0.196±0.009 0.276±0.018 0.295±0.015
150 0.201±0.010 0.285±0.019 0.328±0.020
200 0.207±0.032 0.295±0.019 0.331±0.013
250 0.254±0.019 0.302±0.011 0.355±0.018
300 0.272±0.021 0.318±0.020 0.374±0.017
350 0.271±0.016 0.334±0.015 0.399±0.019
400 0.290±0.023 0.351±0.011 0.402±0.019
450 0.321±0.022 0.360±0.010 0.407±0.019

Table 6: Ablation study of the proposed methods.

Q using the last two terms in (4). To verify the effectiveness
of joint learning, we compare ALSL U with the results us-
ing two separate steps. The results are listed in Table 7. It
is obvious that ALSL U achieves better performance, stem-
ming from the coupling effect of active learning and sub-
space learning, as verified in (Li et al. 2019).
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Figure 2: Parameter Study on the Wine Quality dataset.

Parameter Study: We also study the parameter sensitivities
of our method on the Wine Quality dataset. In the experi-

(a) HMDB51

#Num. Separate Steps ALSL U
50 0.101±0.022 0.159±0.011

100 0.168±0.020 0.207±0.012
150 0.204±0.018 0.243±0.010
200 0.238±0.016 0.269±0.012
250 0.251±0.016 0.294±0.007
300 0.282±0.016 0.318±0.008
350 0.305±0.012 0.344±0.007
400 0.316±0.021 0.368±0.003
450 0.326±0.020 0.377±0.009

(b) UCF50

#Num. Separate Steps ALSL U
50 0.107±0.022 0.249±0.010

100 0.166±0.020 0.377±0.011
150 0.234±0.018 0.450±0.010
200 0.299±0.016 0.511±0.008
250 0.357±0.016 0.565±0.010
300 0.395±0.016 0.607±0.005
350 0.441±0.012 0.641±0.017
400 0.480±0.021 0.667±0.009
450 0.523±0.020 0.684±0.014

Table 7: Effectiveness verification of joint learning on the
HMDB51 and UCF50 datasets.

ment, the number of the selected samples is set to 50. The
results of ALSL W are shown in Figure 2. Our method is
not sensitive to the three parameters with wide ranges.

Conclusion

In this paper, we proposed a subspace learning based
model for unsupervised active learning. To leverage sub-
space learning, we proposed two formulations to perform
sample selection with and under low-rank sample represen-
tations respectively. Experimental results on multiple tasks
demonstrated their effectiveness. Moreover, we can come to
the conclusion that selecting samples by approximating low-
rank representations of data can obtain best performance.
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