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Abstract

The clustering ensemble technique that integrates multiple
clustering results can improve the accuracy and robustness of
the final clustering. In many clustering ensemble algorithm-
s, the co-association matrix (CA matrix), which reflects the
frequency of any two samples being partitioned into the same
cluster, plays an important role. However, generally, the CA
matrix is highly sparse with low value density, which may
limit the performance of an algorithm based on it. To handle
these issues, in this paper, we propose a growing tree mod-
el (GoT). In this model, the CA matrix is firstly refined by
the shortest path technique so that its sparsity will be mitigat-
ed. Then, a set of representative prototype examples is dis-
covered. Finally, to handle the low value density of the CA
matrix, the prototypes gradually connect to their neighbor-
hood, which likes a set of trees growing up. The rationality of
the discovered prototype examples is illustrated by theoretical
analysis and experimental analysis. The working mechanism
of the GoT is visually shown on synthetic data sets. Experi-
mental analyses on eight UCI data sets and eight image data
sets show that the GoT outperforms nine representative clus-
tering ensemble algorithms.

Introduction
Data clustering is an interesting unsupervised technique in
machine learning (Vega-Pons and Ruiz-Shulcloper 2011;
Zhou 2019), which aims to partition a data set into homo-
geneous groups or clusters based on the similarity between
samples. The clustering ensemble technique has drawn
much attentions due to its ability of improving clustering
effectiveness and robustness. The clustering ensemble tech-
nique discovers the group structure of data through combin-
ing multiple diverse clustering results without involving the
original data set (Strehl and Ghosh 2003). Due to the flexi-
ble process, clustering ensemble technique has been widely
applied in many challenging tasks, such as high dimension-
al data clustering (Li et al. 2018), large-scale data clustering
(Yu et al. 2019), temporal data clustering (Yang and Chen
2010), image segmentation (Zhang et al. 2008), etc.

Given a set of clustering results, the frequency that two
samples appear in the same cluster is used to measure the
relation between two samples. All the pairwise frequencies
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form the co-association matrix (also known as CA matrix).
For a set of clustering results Π = {π1, π2, . . . , πl} on a data
set with n samples U = {x1, x2, . . . , xn}, the CA matrix is

CA = {aij}n×n, (1)

where

aij =
1

l

l∑
b=1

I
(
cb(xi), c

b(xj)
)
, (2)

and

I
(
cb(xi), c

b(xj)
)

=

{
1, cb(xi) = cb(xj)

0, cb(xi) 6= cb(xj).

To obtain a consensus clustering π∗, the CA matrix is u-
tilized by a large number of clustering ensemble techniques.
However, some limitations of the CA matrix may affect the
performance of clustering ensemble methods based on it.
The limitations mainly come from two aspects:

• High Sparsity. The CA matrix is highly sparse, which
makes most of the samples’ relations can not be reflect-
ed.

• Low Value Density. A higher co-association value offers
more reliable information, while most of the elements of
the CA matrix are small values.

To show the above limitations, we utilize the example in
(Huang, Lai, and Wang 2016). They generate 10 base clus-
tering results on the MNIST handwritten digits data set and
construct the CAmatrix. Firstly, we show the fraction of the
zero value in the CA matrix in Figure 1 (a). From Figure
1 (a), it is easy to see that this CA matrix contains a large
number of zero values, which indicates a highly sparse ma-
trix. Figure 1 (b) shows the low value density limitation by
showing the relations between the ratio and accuracy of co-
association values. The accuracy of a co-association value
is the proportion of the links with the co-association value
that makes a correct decision. As shown by Figure 1 (b), a
higher co-association value obtains a higher accuracy val-
ue, while a lower co-association value obtains a higher ratio,
which means that the CA matrix contains many unreliable
information.

The sparsity of the CA matrix means that a number of
sample pairs have no relation. As a result, the clusters may
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Figure 1: The distribution of the co-association values of the
CA matrix for the MNIST dataset

be broken up, and then the prototype of each cluster is hard
to be discovered. The low value density of the CA matrix
means that it can not offer sufficient reliable global structure
information. Then directly discovering the group structure
inherent in the CA matrix may limit the ensemble perfor-
mance.

In this paper, we focus on tackling the limitations of the
CA matrix. To handle the sparsity of the CA matrix, we
draw into the shortest path technique to refine the CA ma-
trix. To handle the low value density limitation of the CA,
we propose a growing tree model for clustering ensemble.

In the proposed growing tree model, a set of prototype
samples are firstly discovered based on the refined CA ma-
trix, which are treated as trees’ roots. Then the trees’ roots
grow up through connecting to the samples in the data set. D-
ifferent from the traditional connecting process that connects
each sample to its nearest prototype, we gradually connec-
t the samples around the prototypes and expand the proto-
types set. Firstly, the tree roots connect to the samples which
have strong relation with them. Then, the assigned samples
form new leaf nodes and connect to the samples which have
strong relation with them. This process is repeated until all
samples in the data set have been connected to the trees. In
this process, high co-association values play important role.

The main contributions of this paper are summarized as
follows:

• The shortest path technique is introduced to mitigate the
sparsity of the CA matrix.

• A prototype example discovering method is developed
and its rationality is illustrated by theoretical analysis and
experimental analysis.

• A growing trees algorithm is proposed to handle the low
value density limitation of the CA matrix. Combining
prototype example discovering method and growing trees
algorithms, a growing tree model (GoT) is developed to
integrate multiple clustering results.

• The working mechanism and effectiveness of the growing
tree model are illustrated by experimental analyses.

The remained of this paper is organized as follows. We
firstly introduce the related work. Then the approach of han-
dling the sparsity of CA matrix and discovering prototype
examples are described. Following that, the growing tree
model is described. Finally, the experimental results are re-
ported.

Related Work
In the CA matrix-based clustering ensemble algorithms, the
CA matrix is generally treated as two types of expressions:
pairwise similarity matrix and graph matrix.

If the CAmatrix is treated as a pairwise similarity matrix,
many clustering algorithms based on the pairwise similarity
matrix can be utilized to generate a consensus clustering re-
sult. The generally used clustering algorithm is the hierarchi-
cal type clustering. Fred and Jain (Fred and Jain 2005) first
introduced the definition of the CA matrix and proposed an
evidence accumulation clustering ensemble method, which
extracted the consensus clustering by hierarchical cluster-
ing. Following that, Huang et al. (Huang, Lai, and Wang
2015) proposed a weighted evidence accumulation cluster-
ing. Zheng et al. (Zheng, Li, and Ding 2014) proposed a
framework for hierarchical clustering ensemble. The main
technique used in the clustering ensemble method based on
the sample’s stability that proposed in (Li et al. 2019) is also
a hierarchical clustering.

If the CA matrix is treated as a graph matrix, the clus-
tering ensemble problem can be handled by solving a graph
partition problem. The generally used graph partition meth-
ods include METIS graph partition package (Karypis and
Kumar 1998), normalized cut algorithm (N-cut) (Shi and
Malik 2000), and T-cut algorithm (Li, Wu, and Chang
2012). Strehl and Ghosh (Strehl and Ghosh 2003) proposed
three graph-based clustering ensemble methods, which are
Cluster-based Similarity Partitioning Algorithm (CSPA),
Hyper-Graph Partitioning Algorithm (HGPA), and Meta-
CLustering Algorithm (MCLA). The graph partition meth-
ods used by CSPA and HGPA are METIS and HMETIS,
respectively. Yu et al. (Yu et al. 2015) utilized affinity prop-
agation algorithm with different distance measures and at-
tributes to generate base clustering results, and used the N-
cut algorithm to generate a consensus clustering on the CA
matrix. In (Huang, Lai, and Wang 2015), Huang et al. pro-
posed two novel consensus functions, in which the graph
partition with multi-granularity link analysis (GP-MGLA)
function utilized the T-cut algorithm to generate the clus-
tering result. Yu et al. (Yu, Wong, and Wang 2007) applied
the consensus clustering method based on N-cut graph parti-
tion to discover cancer from microarray data. Tao et al. (Tao
et al. 2019) learnt low-rank representation (LRR) for theCA
matrix and developed a robust spectral ensemble clustering
method.

Although a number of CA matrix-based clustering en-
semble approaches have been proposed, there is still room
for improving the clustering ensemble performance, which
is arisen by handling the two limitations of the CA matrix.

Discovering Prototypes Based on the Refined
Pairwise Relation Matrix

One major limitation of the sparsity of CA matrix is that the
clusters may be broken up and thus the prototype for each
cluster is hard to be discovered. Prototypes are helpful for
discovering the underlying structure of a data set. In order to
discover a set of reasonable prototype samples from a set of
base clustering results, in this section, we first refine the CA

8350



matrix to mitigate its sparsity and then calculate the tenden-
cy that a sample to be a prototype sample. In addition, we
verify the rationality of the discovered prototype samples by
experimental analysis and theoretical analysis.

Refining Pairwise Relations
We introduce the concept of shortest path distance to refine
the CA matrix. The CA matrix can be treated as a graph, in
which the nodes are the data samples and the edge weight-
s are the co-association values. In an undirected graph, the
shortest path distance is a path from one source node to the
destination node with the minimum sum of weight.

To utilize the shortest path distance, the weight should be
transformed into a distance. To obtain a distance dij between
xi and xj , the transformation for co-association value aij
can be performed by dij = 1− aij . Then, a distance matrix
(DM ) is obtained as DM = {dij}n×n.

By applying any shortest path algorithm on theDM , a re-
fined distance matrix will be obtained, which is simply noted
asRM = {pij}n×n. In the following realization, we simply
apply the Dijkstra’s algorithm (Dijkstra 1959).

For matrix DM = {dij}n×n and its refined distance ma-
trix RM = {pij}n×n, it is true that pij ≤ dij . Then, the
sparsity of the CA matrix will be mitigated by transforming
to theRM . Thus, theRM may be beneficial for discovering
a set of prototype samples.

Discovering Prototype Examples
To discover representative prototype examples, we follow-
ing the idea in (Rodriguez and Laio 2014) that the tendency
of a sample to be a prototype sample contains two factors,
which are local density and representative capacity. In what
follows, we introduce a method to measure the tendency of a
sample to be a prototype sample based on a set of clustering
results.

Based on a set of base clustering results, the density of
sample xi is measured by:

ρi =
1

l

l∑
b=1

1

n
|cb(xi)|, (3)

where |cb(xi)| is the number of samples in the cluster that
contains xi in the bth clustering result.

The representative capacity of xi is:

δi = min
j:ρj>ρi

{pij}. (4)

For the sample which has the maximal local density, its rep-
resentative capacity is the maximal distance value in the
RM , i.e. δ = max{pij}.

The tendency of xi to be a prototype sample is defined as:

ri = ρiδi. (5)

For a density set with many equal values, the above ap-
proach will generate many equal representative values in a
local area. Using these representative values may not iden-
tify prototype examples for all local areas. To handle this
problem, if ρj = ρi, we set

ρj = ρj − ε, (6)

Algorithm 1 Discovering prototype examples

INPUT: Π = {π1, π2, . . . , πl}, k.
OUTPUT: Z = {z1, z2, . . . , zk}.
Process:

1: Constructing the co-association matrix CA based on
Formula 1.

2: Utilizing a shortest path technique to generate the re-
fined distance matrix RM = {pij}n×n.

3: Calculating local density of each sample by Formula 3.
4: for i = 1 to n do
5: Calculating representative value ri of sample xi by

Formula 5.
6: end for
7: for i = 1 to n do
8: Updating local density by Formula 6.
9: end for

10: Selecting the samples with top k maximal representa-
tive values to form the prototype examples set Z =
{z1, z2, . . . , zk}.

where ε is a small value.
One can discover k prototype examples Z =
{z1, z2, . . . , zk} by selecting the samples with top k tenden-
cy values. The algorithm of discovering prototype examples
is shown as Algorithm 1.

Analysis About Discovering Prototype
To show the superiority of discovered prototype examples
based on the RM , we first conduct a simple experiment to
visually compare the prototype examples that are discovered
based on the DM and RM . Then, we theoretically analyse
the discovered prototype examples on the assumption of two
clusters with uniform distribution.

Based on the DM , δ is calculated as:

δDMi = min
j:ρj>ρi

{dij}. (7)

Here, we denote the δ based on RM as δRM . Embedding
δDM or δRM into the Algorithm 1, a set of prototype exam-
ples can be discovered.

To visually compare the prototype examples discovered
based on the DM and RM , we employ four synthetic data
sets, the distributions of which are shown by Figure 2. For
each data set, we generate 50 base clustering results based
on multiple k-means algorithm with random initial centers.
In each base clustering result, the number of clusters is set
as min{

√
n, 50}, where n is the number of samples in the

data sets.
Figure 3 and Figure 4 show a concrete result base on the

same clustering results set. In Figure 3 and Figure 4, the
red stars represent the discovered prototype examples. From
Figure 3 and Figure 4, it can be seen that the DMs con-
tain more than 2 black blocks on the four synthetic data sets,
while the RMs contain clear 2 black blocks. As the DM
shows, the clusters are broken up. The corresponding RM
shows that the broken clusters are connected. Then, reason-
able prototype examples are discovered based on the RM .
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Figure 2: The four synthetic data sets
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Figure 3: The experimental results based on the DM matrix

In what follows, we analyse the prototypes that are dis-
covered based on the DM and RM with three assumptions,
which are:

1. Clusters c1 and c2 are two clusters with uniform distribu-
tion. c1 is denser than c2.

2. For samples xi and xj , the co-association value aij is the
fraction of their common

√
n nearest neighbor (

√
nNN ).

3. The samples in different clusters have no common√
nNN neighbor.

We analyse the discovering prototypes on three data
points xi, xj and xk, in which xi and xj come from cluster
c1 and have no common

√
n nearest neighbors, xk comes

from c2. With the above assumptions, the following results
will be obtained.

Discovery 1. Based on the DM , the two discovered proto-
type examples come from the same cluster.

Proof. Due to xi, xj ∈ c1 and xk ∈ c2, we have ρi = ρj >
ρk.

Without loss of generality, we assume xi is selected as the
sample with the maximum density. Based on Formula 6, it
holds that ρi > ρj > ρk.

With the conditions, it is easy to obtain aik = 0, ajk = 0,
and aij = 0. Then, with d = 1 − a, we have dij = 1,
dik = 1, djk = 1.

The δDM for samples xi, xj , xk are calculated as:

δDMi = max{dij , dik, djk} = 1;

δDMj = dij = 1;

δDMk = min{dik, djk} = 1.

Rings Target Squares Lines

Figure 4: The experimental results based on the RM matrix

It is true that δDMi = δDMj = δDMk . Then, based on for-
mula rDM = ρδDM , we have rDMi > rDMj > rDMk .

The two selected prototype examples are xi and xj , which
come from the same cluster.

Based on theRM , the discovered prototype examples can
represent the clusters very well, which is shown by the fol-
lowing property.

Property 1. Based on the RM , the two discovered proto-
type examples come from different clusters.

Proof. The same as the proof of Discover 1, we can obtain
ρi > ρj > ρk.

Due to xi, xj ∈ c1, then in the DM , there exists a path
p(i, j) that the distance d between any pair of adjacent nodes
in p(i, j) is 0. Therefore, pij = 0.

Combining {xi, xj} ∈ c1, xk ∈ c2, and ∀xe ∈ c1, ∀xf ∈
c2, def = 1, we have pik = 1, pjk = 1.

The δRM of samples xi, xj , xk are:

δRMi = max{pij , pik, pjk} = 1;

δRMj = pij = 0;

δRMk = min{pik, pjk} = 1.

It is true that δDMi = δDMk > δDMj . Based on formula
rRM = ρδRM , we have rDMi > rDMk > rDMj .

Then, xi and xk are selected as the prototype examples,
which come from different clusters.

The above experimental analysis and theoretical analysis
have shown the advantage of the prototype examples dis-
covered based on the RM . With the discovered prototype
examples, we then propose a growing tree method to assign
the samples in the data set.

The Proposed Growing Tree Model
After discovering a set of prototype samples, most
prototype-based algorithm assigns other samples to its near-
est prototype based on a distance or similarity measure. The
low value density of the CA matrix may affect the effective-
ness of the assignment process. To handle this challenge, we
propose a growing tree model, which takes the advantages
of the reliable information.
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Algorithm 2 Growing Trees

INPUT: CA = {aij}n×n, Z = {z1, z2, . . . , zk}.
OUTPUT: F = {t1, t2, . . . , tk}.
Process:

1: Initial F = {t1, t2, . . . , tk}, in which ti = {zi}, i =
1, 2, . . . , k.

2: while
∑k
i=2 |ti| < n do

3: Calculating the margin of each sample by Formula 8.
4: Selecting the samples to be assigned by Formula 9.
5: Assigning the selected samples by Formula 10.
6: Updating the tree graph with Formula 11.
7: end while

In the growing tree model, each prototype sample is treat-
ed as a root. Then, the root gradually grows to trunks and
leaves, which are the data samples. Suppose the obtained
prototype examples set is Z = {z1, z2, . . . , zk}. We first
built a forest with k trees F = {t1, t2, . . . , tk}, in which
each tree is rooted by a prototype sample. In the beginning,
each tree only has one node, which is the prototype sample
ti = {zi}. Then, a tree will grow by reaching its near sam-
ples gradually.

Have obtained a set of trees F = {t1, t2, . . . , tk}, the
samples that F reaches to should have a high confidence
level to be correctly assigned. To quantify this confidence
level, the margin of sample xi is introduced, which is the d-
ifference between its most intimate tree and second intimate
tree:

m(xi) = ot(xi, tp∗)− max
p′ 6=p∗,tp′∈F

ot(xi, tp′), (8)

where p∗ = argp maxtp∈F ot(xi, tp), and ot(xi, tj) =
maxxb∈tj{a(xi, xb)}.

With the margins set, we can select the samples to be as-
signed into the tree structure F with a threshold th:

{xi|m(xi) > th}. (9)
The threshold th can be learned by Otsu’s algorithm (Otsu
1975).

The assignment of sample xi is handled by assigning it to
its nearest tree and linking it to its nearest node:

v(xi) = tj (10)
wherej = argj maxtj∈F ot(xi, tj).

If sample xi is assigned to tree tj , tj will be expanded by:
tj = tj ∪ {xi} (11)

After an assignment step, the size of the trees in the forest
will increase, and the number of the samples that are not as-
signed is reduced. To generate the final clustering ensemble
result, we can iteratively execute the assignment step until
all samples are assigned to the forest. The iterative assign-
ment forms the growing tree algorithm, which is shown as
Algorithm 2.

Combining Algorithm 1 and Algorithm 2, we develop the
growing tree model for clustering ensemble (using GoT for
short). In the forest F = {t1, t2, . . . , tk} that is obtained by
Algorithm 2, each tree t is corresponding to a cluster in the
ensemble result π = {c1, c2, . . . , ck}.

Algorithm 3 The Growing Tree Model (GoT)

INPUT: Π = {π1, π2, . . . , πl}, k.
OUTPUT: π∗.
Process:

1: (Z,CA)← Algorithm 1 (Π, k).
2: (F )← Algorithm 2 (Z,CA).
3: Generating clustering result π∗ based on F .

Rings (5) Rings (15) target (10) target (20)

Squares (5) Squares (10) Lines (5) Lines (10)

Figure 5: The processes of GoT on the synthetic data

Experimental Analysis
We execute two types of experiments to evaluate the perfor-
mance of GoT. Firstly, we show the working mechanism of
GoT on two-dimensional synthetic data sets. Then, we com-
pare GoT with other state-of-art clustering ensemble algo-
rithms on UCI benchmark data sets and image data sets. In
the experiment, the base clustering results are generated by
k-means algorithm with random initial centers. The clusters
number of each result is set as min{

√
n, 50}. The ensemble

size is set as l = 50.

The Working Mechanism of GoT
We utilize the above four two-dimensional synthetic data
sets to visually show the working mechanism of GoT.

The processes and ensemble results of the GoT on the four
synthetic data sets are shown by Figure 5. For each data set,
we show three results of special iteration. In each sub-fig,
the discovered prototypes are represented by green stars, the
handled samples are connected with their representative pro-
totype. In Figure 5, the line width is related to the times of
iteration that the corresponding sample is assigned. The ear-
lier assigned samples are connected by a wider line. From
Figure 5, it can be seen that a reasonable prototype exam-
ples set can be discovered for each synthetic data set and
the clusters are expanded from the discovered prototypes to
border prototypes, which likes the growth of trees.

The Effectiveness of GoT
To illustrate the effectiveness of GoT, we compare its perfor-
mance with the other eight representative clustering ensem-
ble methods, which are PTGP (Huang, Lai, and Wang 2016),
PTA (Huang, Lai, and Wang 2016), EAC (Fred and Jain
2005), WTQ (Iam-On et al. 2011), HGPA (Strehl and Ghosh
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Number UCI data sets N D K Image data sets N K Source

1 Iris 150 4 3 MerchData 75 5 Matlab

2 Wine recognition data 178 13 3 jp-office-04 161 8 UIUC Ponce Research group

3 Glass Identification Database 214 9 6 17flowers 1360 17 Oxford Visual geometry Group

4 Ecoli 336 7 8 SceneClass13 3859 13 (Lazebnik, Schmid, and Ponce 2006)

5 LIBRAS Movement Database 360 91 15 Sort 1000pics 1000 10 (Ciocca et al. 2014)

6 Cardiotocography Data Set 2126 40 10 coil-20-proc 1440 20 Columbia University Image Library

7 Image Segmentation data 2310 19 7 Caltech 101 9146 101 (Li et al. 2013)

8 Statlog Landsat Satellite Data Set 6435 36 6 MNIST-test 10000 10 (Lecun et al. 1998)

Table 1: Description of the UCI data sets and image data sets

Data PTGP PTA EAC WTQ HGPA CSPA USENC DREC GoT

1 0.683±0.021 0.328±0.039 0.665±0.042 0.594±0.018 0.853±0.000 0.845±0.000 0.701±0.003 0.861±0.000 0.871±0.000

2 0.729±0.011 0.503±0.017 0.361±0.054 0.754±0.022 0.814±0.000 0.771±0.000 0.807±0.000 0.784±0.002 0.821±0.002

3 0.208±0.001 0.205±0.001 0.261±0.000 0.230±0.001 0.189±0.000 0.181±0.000 0.204±0.000 0.252±0.001 0.272±0.000

4 0.370±0.008 0.412±0.004 0.540±0.008 0.421±0.017 0.332±0.000 0.306±0.000 0.385±0.002 0.375±0.003 0.558±0.006

5 0.283±0.001 0.298±0.000 0.332±0.001 0.286±0.001 0.305±0.000 0.281±0.000 0.322±0.000 0.312±0.000 0.342±0.000

6 0.916±0.007 0.994±0.001 1.000±0.000 0.579±0.017 0.606±0.000 0.543±0.000 1.000±0.000 1.000±0.000 1.000±0.000

7 0.461±0.007 0.492±0.002 0.212±0.000 0.457±0.002 0.485±0.004 0.492±0.001 0.511±0.000 0.484±0.001 0.516±0.000

8 0.528±0.007 0.565±0.003 0.002±0.000 0.480±0.002 0.193±0.002 0.450±0.001 0.551±0.001 0.522±0.003 0.556±0.000

Table 2: The index ARI from ten clustering ensemble methods for the eight UCI data sets

Data PTGP PTA EAC WTQ HGPA CSPA USENC DREC GoT

1 0.751±0.008 0.494±0.029 0.756±0.009 0.693±0.007 0.801±0.000 0.802±0.000 0.775±0.001 0.850±0.000 0.852±0.000

2 0.728±0.007 0.589±0.010 0.470±0.059 0.769±0.008 0.782±0.000 0.763±0.000 0.783±0.000 0.776±0.001 0.805±0.002

3 0.369±0.001 0.372±0.001 0.395±0.000 0.395±0.001 0.336±0.001 0.332±0.000 0.384±0.001 0.417±0.002 0.436±0.001

4 0.550±0.002 0.596±0.001 0.626±0.001 0.584±0.002 0.544±0.000 0.516±0.000 0.575±0.001 0.564±0.001 0.655±0.001

5 0.568±0.000 0.584±0.000 0.618±0.000 0.575±0.001 0.576±0.000 0.554±0.000 0.605±0.000 0.600±0.000 0.620±0.000

6 0.946±0.003 0.998±0.000 1.000±0.000 0.797±0.004 0.823±0.000 0.769±0.000 1.000±0.000 1.000±0.000 1.000±0.000

7 0.628±0.002 0.639±0.000 0.582±0.000 0.604±0.001 0.602±0.002 0.620±0.000 0.645±0.000 0.611±0.001 0.634±0.000

8 0.604±0.002 0.620±0.001 0.028±0.000 0.556±0.001 0.268±0.002 0.539±0.000 0.612±0.000 0.601±0.001 0.624±0.000

Table 3: The index NMI from ten clustering ensemble methods for the eight UCI data sets

2003), CSPA (Strehl and Ghosh 2003), USENC (Huang
et al. 2019) and DREC (Zhou, Zheng, and Pan 2019).

To relieve the influence of different base clustering results
sets on the evaluation of the performance of a clustering en-
semble method, for each data set, we generate 50 ensemble
sets and report the average performance of each compared
method. To evaluate the ensemble result, we employ the
Adjusted Rand Index (ARI) (Hubert and Arabie 1985) and
Normalized Mutual Information (NMI) (Strehl and Ghosh
2003).

Eight real data sets from UCI and eight benchmark im-
age data sets are used in this comparison experiment. The
detailed information about the eight UCI data sets and the
eight image data sets are shown in Table 1.

Following the above experimental settings, the two in-

dices scores from the ten clustering ensemble algorithms for
the eight UCI data sets are obtained. Table 2 shows the aver-
age ARI scores and Table 3 shows the average NMI scores.
In Table 2 and Table 3, the maximum score for each data is
underlined in bold type. As Table 2 and Table 3 shown, for
the eight UCI data sets, the GoT is marked on seven data
sets both from the view of ARI and NMI.

To extract vectorized features from each image in the
eight data sets, we utilize two techniques: the pre-trained
VGG-16 convolutional neural network (Simonyan and Zis-
serman 2014) and T-SNE (Maaten and Hinton 2008) dimen-
sion reduction method. The feature extraction process is out-
lined in Figure 6. Because the image size of MNIST is much
less than 224 × 224, for this data set, we only utilize T-
SNE to obtain 50-dimensional features. Specially, the cluster
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Data PTGP PTA EAC WTQ HGPA CSPA USENC DREC GoT

1 0.734±0.028 0.659±0.029 0.817±0.006 0.682±0.019 0.888±0.000 0.889±0.001 0.859±0.004 0.875±0.000 0.895±0.000

2 0.969±0.005 0.859±0.011 1.000±0.000 0.608±0.020 0.797±0.002 0.722±0.001 1.000±0.000 1.000±0.000 1.000±0.000

3 0.373±0.001 0.412±0.001 0.182±0.002 0.351±0.001 0.417±0.000 0.387±0.000 0.401±0.000 0.387±0.000 0.419±0.001

4 0.523±0.003 0.571±0.000 0.431±0.001 0.499±0.004 0.481±0.002 0.550±0.000 0.571±0.000 0.553±0.001 0.599±0.001

5 0.919±0.002 0.855±0.003 0.894±0.002 0.666±0.025 0.933±0.000 0.932±0.000 0.934±0.000 0.935±0.000 0.944±0.000

6 0.891±0.001 0.907±0.000 0.878±0.000 0.442±0.010 0.921±0.001 0.918±0.001 0.912±0.000 0.901±0.001 0.934±0.000

7 0.275±0.000 0.283±0.000 0.329±0.000 0.282±0.000 0.163±0.001 0.096±0.000 0.320±0.000 0.302±0.000 0.398±0.001

8 0.742±0.002 0.738±0.002 0.786±0.000 0.545±0.008 0.144±0.001 0.120±0.002 0.768±0.000 0.755±0.000 0.779±0.002

Table 4: The index ARI from ten clustering ensemble methods for the eight image data sets

Data PTGP PTA EAC WTQ HGPA CSPA USENC DREC GoT

1 0.828±0.008 0.785±0.009 0.868±0.001 0.803±0.005 0.888±0.000 0.897±0.000 0.888±0.001 0.899±0.000 0.906±0.000

2 0.989±0.001 0.945±0.002 1.000±0.000 0.845±0.004 0.897±0.000 0.838±0.000 1.000±0.000 1.000±0.000 1.000±0.000

3 0.563±0.000 0.587±0.000 0.547±0.000 0.544±0.000 0.577±0.000 0.545±0.000 0.577±0.000 0.578±0.000 0.589±0.000

4 0.700±0.000 0.720±0.000 0.697±0.000 0.691±0.001 0.648±0.001 0.686±0.000 0.721±0.000 0.696±0.000 0.730±0.000

5 0.939±0.000 0.916±0.000 0.934±0.000 0.848±0.004 0.938±0.000 0.938±0.000 0.940±0.000 0.940±0.000 0.949±0.000

6 0.961±0.000 0.964±0.000 0.966±0.000 0.844±0.001 0.964±0.000 0.963±0.000 0.973±0.000 0.972±0.000 0.982±0.000

7 0.719±0.000 0.724±0.000 0.736±0.000 0.713±0.000 0.669±0.000 0.646±0.000 0.735±0.000 0.722±0.000 0.744±0.000

8 0.846±0.000 0.830±0.000 0.845±0.000 0.752±0.001 0.511±0.001 0.480±0.003 0.841±0.000 0.850±0.000 0.850±0.000

Table 5: The index NMI from ten clustering ensemble methods for the eight image data sets
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Figure 6: The process of feature extraction for image data

number of base clustering result for the Caltech 101 data is
set as 200.

The experimental results of the ARI score and NMI score
for the image data sets are shown in Table 4 and Table 5,
respectively. It is obvious that the GoT obtains much more
times of the top score than the other algorithms, which illus-
trates the effectiveness of the Got model.

Conclusion
Many clustering ensemble algorithms are based on the CA
matrix. However, the CA matrix is highly sparse and low
value density, which may affect the performance of these al-
gorithms. In this paper, we have introduced the shortest path
technique to mitigate the sparsity of the co-association ma-
trix. In addition, we have proposed a growing tree model
to integrate multiple clustering results. We have theoretical-
ly and experimentally illustrated the rationality of prototype
examples. The working mechanism of the growing tree mod-
el has been visually shown by eight two-dimensional data
sets. The experimental results have shown that the proposed
model is more effective in integrating multiple clustering re-

sults than the other nine representative clustering algorithms
on eight UCI data sets and eight image data sets.
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