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Abstract

Generative Adversarial Networks (GANs) have shown im-
pressive gains in image synthesis. GAN inversion was recent-
ly studied to understand and utilize the knowledge it learns,
where a real image is inverted back to a latent code and can
thus be reconstructed by the generator. Although increasing
the number of latent codes can improve inversion quality to
a certain extent, we find that important details may still be
neglected when performing feature composition over all the
intermediate feature channels. To address this issue, we pro-
pose a Prior multi-Subspace Feature Composition (PmSFC)
approach for high-fidelity inversion. Considering that the in-
termediate features are highly correlated with each other, we
incorporate a self-expressive layer in the generator to discover
meaningful subspaces. In this case, the features at a channel
can be expressed as a linear combination of those at other
channels in the same subspace. We perform feature compo-
sition separately in the subspaces. The semantic differences
between them benefit the inversion quality, since the inversion
process is regularized based on different aspects of semantic-
s. In the experiments, the superior performance of PmSFC
demonstrates the effectiveness of prior subspaces in facili-
tating GAN inversion together with extended applications in
visual manipulation.

Introduction
Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) have achieved considerable success in high-fidelity
image synthesis and downstream applications, e.g., data aug-
mentation (Wu et al. 2019; Zhang et al. 2020), image pro-
cessing (Li et al. 2020; Liu et al. 2020), and so on. A state-
of-the-art GAN-based generative model, such as BigGAN
(Brock, Donahue, and Simonyan 2019), PGGAN (Karras
et al. 2018) and StyleGAN (Karras, Laine, and Aila 2019;
Karras et al. 2020), typically has a high capacity, and the
training procedure depends on large-scale training data. To
reduce data dependence, a few works explore how to utilize
a well-trained generic generator for various tasks (Wang et al.
2020; Shen et al. 2020).

GAN inversion is a promising way to understand and uti-
lize the generative capability of a well-trained network. The
goal is to reverse a target image back to a status in the latent
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Figure 1: An example to illustrate the capability of the pro-
posed approach to leverage the discovered subspaces over
GAN’s intermediate feature channels for high fidelity inver-
sion and visual manipulation.

space. The obtained latent code is decoded into an image,
which is expected to approximate the target image to as ac-
curate an extent as possible. As reported in (Gu, Shen, and
Zhou 2020), the expressiveness of a single latent code is
less satisfactory for the case where the target image is out
of the distribution of the GAN’s training data. To address
this issue, multiple latent codes are used, and the correspond-
ing intermediate feature maps are combined to improve the
inversion performance. However, we find that a number of
intermediate feature channels are not necessarily important
for some aspects of semantics, and feature composition over
all the channels may thus lead to reduced emphasis on the
corresponding details.

Some recent works (Bau et al. 2018; Shen et al. 2020)
discover that the feature maps at an intermediate layer of the
generator in a GAN are highly correlated with each other, and
they work together to control certain semantics. As shown in
Figure 1, we consider that GAN inversion can benefit from
this correlation, since the inversion process can be regularized
separately based on different aspects of semantics. Toward
this end, we apply subspace clustering over GAN’s inter-
mediate feature channels. The grouped channels compose
meaningful subspaces, which are associated with different
visual concepts. We infer latent codes in each subspace, and
the resulting separate feature composition serves to enhance
the inversion performance.

More specifically, we propose a Prior multi-Subspace fea-
ture composition (PmSFC) approach for improving GAN
inversion. To explore the degree of correlation among GAN’s
intermediate feature channels, we divide the generator of a
well-trained GAN into two subnetworks by an intermedi-
ate layer, and insert a self-expressive layer between them
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Figure 2: An overview of the proposed PmSFC model for GAN inversion. There are two stages: prior subspace discovery
and multi-subspace feature composition. To explore the degree of correlation among GAN’s intermediate feature channels, a
self-expressive layer is incorporated between two subnetworks Gl

1 and Gl
2 of a generator. The self-expressiveness property of the

channels is leveraged to construct the affinity matrices, and then spectral clustering is adopted to group them into R subspaces.
Multiple latent codes are used for feature composition in each subspace. The inversion process benefits from the semantic
differences among the subspaces. All the latent codes {zr}Rr=1 and composition weights {wr}Rr=1 are jointly optimized, and the
generator {Gl

1, G
l
2} are frozen during training.

as shown in Figure 2. The self-expressiveness property of
the channels can be captured during feature reconstruction.
Due to the incorporation of sparsity regularization, the lay-
er’s weights can be used to compute the affinities among
the channels. Further, we adopt spectral clustering to group
the channels, and those in each cluster compose a subspace.
Instead of the whole feature space, image inversion is per-
formed in multiple subspaces. In each subspace, we assign
multiple latent codes and compose the corresponding inter-
mediate features. A nonlinear transformation is applied to
the composition weights. The resulting features are further
combined and decoded for measuring the consistency with
the target image. Since the subspaces may associate with dif-
ferent semantics, the proposed approach is able to focus on
various aspects of details. We conduct extensive experiments
to verify the effectiveness and superiority of our PmSFC
model. In addition to GAN inversion, we also investigate the
applicability of PmSFC to a variety of image enhancement
tasks.

The main contributions of this work are summarized as fol-
lows: (1) We utilize the degree of correlation among GAN’s
intermediate feature channels to improve its inversion perfor-
mance. (2) We incorporate a self-expressive layer in the gener-
ator of a well-trained GAN to capture the self-expressiveness
property, and discover meaningful subspaces via spectral clus-
tering over the channels. (3) There are semantic differences
among the subspaces, and different latent codes are thus used
together to perform separate feature composition. All the
latent codes and composition weights are jointly optimized.
(4) Due to the aforementioned improvement techniques, the
semantic knowledge learnt by a GAN can be selectively uti-
lized for the inversion task, and better performance can also
be achieved on extended image enhancement tasks.

Relative Work
GAN-based Generative Models
GANs have shown superior capability of synthesizing realis-
tic images from latent codes to match the real data distribu-
tion. To address the issue of training instability, Wasserstein
distance, Lipschitz constraint and other useful techniques
have been incorporated into the GAN training process (Ar-
jovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017; Wei
et al. 2018). On the other hand, there are a number of works
focusing on synthesis quality. Brock et al. (Brock, Donahue,
and Simonyan 2019) proposed a BigGAN model, in which
larger networks and batches were adopted. The resulting
model was capable of synthesizing high-resolution images
from complex and large scale datasets. Karras et al. (Karras
et al. 2018) progressively increased the capacity of the gen-
erator and discriminator, such that the training process can
focus on increasingly finer scale details. They also proposed
a style-based generator architecture to study latent space dis-
entanglement (Karras, Laine, and Aila 2019). Different from
traditional generators, a latent code was mapped to an inter-
mediate feature space. To associate with high-level attributes,
the resulting vector was used for adaptive instance normal-
ization at different convolutional layers. By incorporating
additional conditions into the generative process, GANs can
also be trained for conditional image synthesis (Mirza and
Osindero 2014; Nguyen et al. 2017; Miyato and Koyama
2018; Gong et al. 2019).

GAN Inversion
GANs typically have no means of inverting the mapping. To
investigate what information are captured by latent codes,
GAN inversion have been recently studied. Given a real im-
age, the objective is to infer a latent code to recover the image
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to as accurate an extent as possible. Donahue et al. (Donahue,
Krahenbuhl, and Darrel 2017) proposed a bidirectional GAN
to enable inverse mapping. In addition to a standard GAN
framework, a separate encoder is incorporated to explicitly
learn the reverse mapping. Similarly, Dumoulin et al. (Du-
moulin et al. 2017) proposed to jointly train an encoder and
a GAN for inversion. Abdal et al. (Abdal, Qian, and Wonka
2019, 2020) formulated an embedding method to project real
images into the latent space of StyleGAN, and various seman-
tic image editing operations were further applied. Perarnau et
al. (Perarnau et al. 2016) proposed an invertible conditional
GAN for image editing. The semantics can be manipulated by
modifying the latent codes. Bau et al. (Bau et al. 2019a,b,c)
investigated various strategies of inverting GANs with deeper
architectures, and performed image manipulation via a layer-
wise inversion method. In (Zhu et al. 2020), a domain-guided
encoder was trained not only to encode real images, but to
also compete with a domain discriminator to ensure that the
reconstructed images are as realistic as possible. To avoid out-
of-domain inversion, a semantic regularizer was also applied
in the model.

As the generative models are typically differentiable,
Creswell and Bharath (Creswell and Bharath 2019) used gra-
dient descent methods to determine the latent code without
explicitly learning a separate mapping from the data space
back to latent space. In addition to the pixel-level reconstruc-
tion loss, Zhu et al. (Zhu et al. 2016) included a perceptual
loss in the latent code optimization process. To prevent the
reconstructions from getting stuck, Lipton and Tripathi (Lip-
ton and Tripathi 2017) used a stochastic clipping strategy to
modify gradients. In (Ma, Ayaz, and Karaman 2018), Ma et
al. theoretically analyzed the invertibility of GANs. In par-
ticular, the latent code can be effectively deduced from the
network output for the case where a low-complexity GAN is
used. The target image may be significantly different from
GAN’s training data, and the reconstruction quality is thus
limited by the expressiveness of a single latent code. Gu et
al. (Gu, Shen, and Zhou 2020) proposed a multi-code GAN
prior (mGANprior)-based inversion method, in which a tar-
get image was associated with multiple latent codes. At an
intermediate layer, the corresponding features are composed
with channel weights. In the above case, the generators in
GANs are fixed, and the coupled discriminators are not in-
volved during inversion. To deal with complex real-world
images, Pan et al. (Pan et al. 2020) fine-tuned a pre-trained
generator in the inversion process. In addition, the coupled
discriminator was also used to construct a feature matching
loss to guide the generator.

Differences from the existing works. The most related
method to this work is mGANprior. Both mGANprior and the
proposed PmSFC infer multiple latent codes by minimizing
the standard inversion loss, without any re-training or modifi-
cation of GANs. However, there are fundamental differences
between them. mGANprior performs feature composition
over all intermediate feature channels, while our PmSFC
discovers meaningful prior subspaces and performs separate
feature composition in each subspace. Furthermore, to the
best of our knowledge, it is the first attempt to explore the
self-expressiveness property of the channels and compose

subspaces in a GAN. Inclusion of GAN prior subspaces en-
sures that the inversion process focuses on various aspects of
details.

Revisit mGANprior
We recap the multi-code GAN prior model (Gu, Shen, and
Zhou 2020) since it serves as the baseline for the proposed
approach. The goal of GAN inversion is to recover an arbi-
trary input x by finding an appropriate latent code z. The
reconstruction quality can be improved by optimizing multi-
ple latent codes, along with combining their corresponding
intermediate feature maps. More specifically, let l denote an
index of intermediate layer, and the lth layer splits a genera-
tor G into two subnetworks: Gl

1 and Gl
2. The objective is to

determine a set of latent codes z = {z1, z2, · · · , zK} and a
set of weighting vectors w = {w1, w2, · · · , wK} for image
reconstruction as follows:

x̃ = Gl
2

( K∑
k=1

Gl
1(zk)� wk

)
, (1)

where the dimension of wk is the same as the number of
channels, and the operation � represents channel-wise mul-
tiplication. To ensure the consistency between the original
input and the reconstruction at both low and high levels, the
optimization problem is defined as follows:

min
z,w
‖x− x̃‖22 + ‖V (x)− V (x̃)‖1, (2)

where V denotes a pre-trained network for feature extraction.

Proposed Method
In order to analyze the relationship among the intermediate
feature channels of G, we incorporate an additional self-
expressive layer between Gl

1 and Gl
2. We aim to discover a

number of meaningful subspaces, in which each channel can
be represented as a linear combination of other channels. To
facilitate GAN inversion, our strategy is to perform feature
composition in different subspaces, such that the inversion
process is regularized based on different aspects of semantics.

Explore GAN Prior Subspaces
We flatten each feature map of Gl

1(z) into a vector, and stack
all the vectors into columns of a matrix F (z). To explore
self-expressiveness characteristics of the feature channels, a
coefficient matrix S is learnt to ensure that F (z) = F (z)S,
and we thus define a reconstruction loss as follows:

LrecF = Ez∼p0
[‖F (z)− F (z)S‖22], (3)

where p0 denotes a prior distribution of latent codes. We
find that minimizing LrecF is not enough to ensure semantic
consistency after decoding F (z) and F (z)S. Small recon-
struction errors in the intermediate feature space may lead to
significant visual differences. To avoid this situation, we de-
fine another reconstruction loss in the data space as follows:

LrecD = Ez∼p0
[‖Gl

2(Gl
1(z))−Gl

2(T (F (z)S))‖22], (4)

where T (·) denotes a transformation to reverse the flattening
operation, such that the output has the same dimensions as
the original feature maps.
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On the other hand, S is expected to have a block-diagonal
structure to some extent, such that the encoded subspaces will
be more separable. After including a sparsity regularizer on
S, the optimization of the self-expressive layer is formulated
as follows:

min
S
LrecF + λLrecD + µ‖S‖1,

s.t. diag(S) = 0,
(5)

where λ and µ are weighting factors for adjusting the relative
importance of the corresponding terms. Note that there is a
trivial solution (S = I), and we thus require that diag(S) =
0. The self-expressive layer can be implemented via the full
connection of size C × C without applying bias and non-
linear activations, where C denotes the number of channels
and each feature channel is taken as a node. Based on the
resulting S, we construct an affinity matrix A as A = (|S|+
|ST |)/2, and apply the spectral clustering algorithm (Ng,
Jordan, and Weiss 2002) to determine a set of subspaces over
the intermediate feature channels. We outline the training
procedure of the proposed subspace discovery approach in
Algorithm 1.

Multi-Subspace Feature Composition
We partition the intermediate feature channels into R sub-
spaces for GAN inversion, and the resulting subspaces can
be represented by m = {m1,m2, · · · ,mR}, where mr ∈
{0, 1}C denotes a binary indicator vector for the rth sub-
space. The component mr(c) is set to either 1 or 0, which
corresponses to whether the cth feature channel is selected or
not.

To reconstruct the original image x, we assign multiple
latent codes zr = {zr1 , zr2 , · · · , zrK} for each subspace, and
each latent code zrk is also associated with a weighting vector
wr

k. In the rth subspace, we combine the intermediate features
as follows:

fr =

∑K
k=1(mr �Gl

1(zrk))� σ(wr
k)∑K

k=1 σ(wr
k)

, (6)

where σ denotes the activation function tanh(·) to regular-
ize the weights into the range of (−1, 1). We consider that
different subspaces are associated with different visual con-
cepts, and image reconstruction can thus be improved when
combining the corresponding feature maps composed in the
subspaces. Toward this end, the original image is approximat-
ed as follows:

x̂ = Gl
2(re-order(f1,f2, . . . ,fR)), (7)

where re-order(·) represents an operation to place the fea-
ture maps according to the inherent channel order of Gl

1. To
ensure the consistency between the original and reconstructed
images at both pixel-level and perceptual-level, we formulate
the corresponding optimization problem as follows:

min
{zr}Rr=1,{wr}Rr=1

‖x− x̂‖22 + ‖V (x)− V (x̂)‖1. (8)

Although Eq.(2) and Eq.(8) are similar in form, there is a
significant difference between mGANprior and the proposed

Algorithm 1 Pseudo-code of subspace discovery over GAN’s
intermediate feature channels.

1: Initialize: Pre-trained generator {Gl
1, G

l
2}, self-

expressive layer S, number of subspaces R, learning
rate ς , and number of training iterations Γ.

2: for t = 1 to Γ do
3: Randomly sample latent code z ∼ p0, and feed it to

Gl
1 to obtain the intermediate feature maps Gl

1(z).
4: Flatten the feature maps and convert them to a data

matrix F (z).
5: Convert F (z)S back to the form of feature maps, and

decode them via Gl
2.

6: Optimize S by using Adam:
S ← Adam(∇S(LrecF + λLrecD + µ‖S‖1), S, ς).

7: end for
8: Construct an affinity matrix A = (|S|+ |ST |)/2.
9: Apply spectral clustering with A.

10: Compose R subspaces, and represent them via binary
vectors m.

11: Return m.

model. The former directly learns a set of latent codes and
weighting factors in the intermediate feature space, while
we explore the meaningful subspaces followed by jointly
optimizing the associated latent codes and weighting factors.
Inclusion of these subspaces ensures more emphasis on d-
ifferent aspects of semantics, which benefits the inversion
quality.

Applicability to Unsupervised Image Enhancement
Image reconstruction is a fundamental application of the pro-
posed subspace-based GAN inversion approach. Based on a
well-trained GAN, our model can be further applied to multi-
ple extended tasks, including image colorization, inpainting
and super-resolution. In these tasks, a given image x is to be
processed for restoration or enhancement. When inputting x,
our model is required to output an image x̂ with the desired
properties. After adopting the corresponding post-processing
for x̂, the resulting image should be visually close to x. There-
fore, in the unsupervised case, the proposed inversion model
can be trained by minimizing the difference between the
output and the original image, and the corresponding opti-
mization problem is formulated as follows:

min
{zr}Rr=1,{wr}Rr=1

‖x− P(x̂)‖22, (9)

where P denotes the post-processing function for a specific
task, e.g., graying for colorization and downsampling for
super-resolution. The training procedure for these tasks is the
same as that for image reconstruction.

Experiments
Extensive experiments are conducted to evaluate the proposed
PmSFC model on a variety of datasets, including CelebA-HQ
(Karras et al. 2018) and LSUN (Yu et al. 2015). These dataset-
s are widely used for image synthesis. In this section, we first
introduce the implementation details and experiment con-
figurations. Next, we analyze the effectiveness of subspace
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Figure 3: (left) The plots of the loss functions used for training
the self-expressive layer. (right) Visualization of the affinity
matrix between channels.

discovery over GAN’s intermediate feature channels, and
also seek insights regarding what visual concepts are associ-
ated with them. Further, we compare the proposed approach
with the main competing inversion methods on various tasks.

Experimental Setup
All the experiments are based on a pre-trained PGGAN. Un-
less otherwise indicated, we divide the generator in PGGAN
into two subnetworks by the 3rd layer. For prior subspace
discovery, the size of full connection in the self-expressive
layer is 512 × 512. We train the layer for 3000 iterations
using the Adam optimizer (Kingma and Ba 2015) with learn-
ing rate of 0.0001 and momentum parameters (0.9, 0.999).
To reach a balance among the terms in the overall training
loss, the weighting factors λ and µ in Eq.(5) are set to 10
and 1, respectively. For the inversion and extended tasks, the
settings are the same as above, but the number of iterations
increases to 7000.

Evaluation protocol. There are several metrics for quan-
titatively assessing the reconstructed image quality. The Peak
Signal-to-Noise Ratio (PSNR), Structure SIMilarity (SSIM)
(Wang et al. 2004) and Naturalness Image Quality Evaluator
(NIQE) (Mittal, Soundararajan, and Bovik 2012) are used to
measure the low/mid-level similarity between the original and
reconstructed images. A high-level metric is the Learned Per-
ceptual Image Patch Similarity (LPIPS) (Zhang et al. 2018a),
which is more consistent with human perception.

Subspace Discovery
In this experiment, PGGANs are pre-trained on CelebA and
LSUN, respectively. We adopt a self-expressive layer to cap-
ture the self-expressiveness property of intermediate feature
channels. In Figure 3 (left), we plot the values of the loss
functions LrecF and LrecD during training. The reconstruc-
tion loss in both feature and data spaces is rapidly reduced.
The result indicates that the features at one channel can be
effectively reconstructed by those at other channels with-
out incurring changes in semantics. We also visualize the
affinities between channels in Figure 3 (right), and a block-
diagonal structure can be observed. Based on the affinity, we
apply spectral clustering to determine a set of subspaces, and
investigate what visual concepts are associated with them.
Specifically, we specify a subspace, and exchange the cor-
responding feature maps of the paired images. The second

Figure 4: Examples of exchanging feature maps in the sub-
spaces associated with different attributes: expression (top
left), age (top right), color (bottom left), and weather (bottom
right). In each example, diagonal images are the inversion
results.

subnetwork Gl
2 is used to decode the resulting features. As

shown in Figure 4, we find that the obtained subspaces con-
trol meaningful attributes, such as expression, age, color and
weather. Note that we discover subspaces over intermediate
feature channels without a disentangling process, since the
generator is frozen during training.

GAN Inversion
We further evaluate the proposed PmSFC model on the GAN
inversion task. mGANprior serves as a state-of-the-art inver-
sion method. In addition to mGANprior, we also compare
the proposed approach with a number of recent inversion
methods, including InvertGenNet (Ma, Ayaz, and Karaman
2018), GenVisMani (Zhu et al. 2016) and InvertLayers (Bau
et al. 2019b).

On each dataset, the methods are applied to reconstruct the
given images via a pre-trained PGGAN. For a quantitative
comparison, all the methods are tested on 300 randomly se-
lected images. The setting is the same as (Gu, Shen, and Zhou
2020). For PmSFC, we group intermediate feature channels
into 6 subspaces, and assign 5 latent codes for each one. D-
ifferent from mGANprior which combines all feature maps,
each subspace is only associated with a subset of them, and
the number of parameters in PmSFC is thus smaller than that
in mGANprior. Table 1 summarizes the performance compar-
ison of the competing methods in terms of LPIPS and PSNR.
The results of other competing methods are obtained from the
existing literature, and our experimental settings are compati-
ble with them. The proposed PmSFC model achieves lower
LPIPS and higher PSNR scores than other inversion meth-
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Figure 6: An example of interpolation path visualization: (top row) mGANprior and (bottom row) PmSFC. PmSFC produces a
smooth transformation along the interpolation path, while mGANprior fails.

Figure 5: Visual comparison of mGANprior and our PmSFC
in GAN inversion.

CelebA Bedroom Church

Method LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑
InvertGenNet 0.5797 19.17 0.5897 17.19 0.5339 17.15
GenVisMani 0.6992 11.18 0.6247 11.59 0.5961 11.58
InvertLayers 0.5321 20.33 0.5201 18.34 0.4789 17.81
mGANprior 0.4432 23.59 0.1578 25.13 0.1799 22.76

PmSFC 0.4068 27.88 0.1300 27.59 0.1501 29.67

Table 1: Comparison of the proposed PmSFC model and
competing methods on the GAN inversion task.

ods. On CelebA, PmSFC surpasses mGANprior by about 4
percentage points in LPIPS. Figure 5 shows a number of the
inverted images by mGANprior and our PmSFC. Note that
mGANprior is implemented in our configuration according to
the open-source code. The zoomed-in regions highlight that
the capability of PmSFC to restore more details of the target
images. The results suggest that inclusion of subspaces over
GAN’s intermediate feature channels enhances the inversion
performance.

Model Analysis
Interpolation. We also conduct an interpolation experiment
on CelebA to highlight the advantage of using multiple GAN
subspaces. For the paired face images, our PmSFC model is
used to infer the corresponding latent codes and then obtain
the feature maps after feature composition. We apply linear
interpolation to construct an interpolation path between the
feature maps of paired images. Figure 6 shows a number of
resulting images by decoding the interpolated feature maps

Figure 7: An experiment to investigate the impact of the
hyper-parameters, the number of subspacesR and the number
of latent codes K, on the inversion performance.

along the path. There is an abrupt change in the generat-
ed images of mGANprior, while our PmSFC model is able
to produce continuously changing images. In addition, we
can observe that the interpolated face images have reason-
able structures and realistic appearance. We consider that the
proposed approach is able to find an effective feature compo-
sition, such that the interpolation path stays more closely to
the underlying data structure.

Impact of hyper-parameters. The proposed inversion ap-
proach mainly benefits from subspaces over GAN’s inter-
mediate feature channels. The number of subspaces R and
the number of latent codes per subspace K control the rep-
resentation capability of intermediate feature composition.
We investigate the impact of different values of R and K on
inversion quality on CelebA. The results shown in Figure 7
demonstrate that the inversion quality can be improved when
the number of subspaces increases, but the relative improve-
ment becomes smaller. In addition, we find that multiple
latent codes can lead to better inversion quality than a single
latent code in all the cases, and the best overall performance
is reached when using 5 latent codes. We consider that our
model with R = 6 and K = 5 can attain a balance between
inversion quality and model complexity.

Extended Applications
As described in the previous section, the proposed GAN inver-
sion approach is capable of performing various unsupervised
image enhancement tasks. On each task, we specify the task-
specific post-processing function P , and our PmSFC model
can be trained according to Eq.(9). The experiment shows
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Figure 8: Visual comparison of mGANprior and our PmSFC
in transforming images from grayscale to color.

Method CelebA Bedroom Church

Grayscale Input 87.33∗ 88.02 85.50

SemPhoMani - 85.41 86.10
DIP - 84.33 83.31
ColHallucination - 88.55 89.13
mGANprior 90.35∗ 90.02 89.43

PmSFC 91.50 91.34 90.44

Table 2: Comparison of the proposed PmSFC model and
competing methods on the image colorization task in terms
of AuC. ∗ indicates our implementation.

the applicability of our PmSFC model to different tasks.
Colorization. The proposed approach is used to transform

a given image from grayscale to color. We follow the set-
ting of (Gu, Shen, and Zhou 2020), and the experiments are
performed on the PGGANs pre-trained on CelebA, LSUN-
Bedroom and LSUN-Church, respectively. By inversion, we
determine the latent codes and weighting vectors associat-
ed with each subspace. The reconstructed image is in color
and is expected to be close to the ground-truth color im-
age. The proposed approach is compared with mGANprior,
SemPhoMani (Bau et al. 2019a), DIP (Ulyanov, Vedaldi,
and Lempitsky 2018) and ColHallucination (Zhang, Isola,
and Efros 2016). Table 2 shows the results of our approach
and competing methods in terms of AuC (the area under
the curve of cumulative error distribution) over the CIELAB
color space excluding the lightness channel (Zhang, Isola,
and Efros 2016). The proposed PmSFC model achieves the
best performance in restoring the color information from the
grayscale input on all the three datasets. Figure 8 shows some
representative colorized images.

Super-resolution. Based on a PGGAN pre-trained on
CelebA, the proposed approach can also be applied to recov-
er a high resolution face image from a given low resolution
one. The training procedure is similar to that of the coloriza-
tion task, and the only difference is to use downsampling as
the post-processing function. The original image is of size

Figure 9: Visual comparison of mGANprior and our PmS-
FC in transforming images from low-resolution to high-
resolution.

Method PSNR↑ LPIPS↓ NIQE↓
DIP 26.87 0.4236 4.66
RCAN 28.82 0.4579 5.70
ESRGAN 25.26 0.3862 3.27
mGANprior 26.93 0.3584 3.19

PmSFC 28.90 0.3450 2.50

Table 3: Comparison of the proposed PmSFC model and
competing methods on the image super-resolution task.

64 × 64 × 3, and we aim to upscale the image to that with
16× resolution. We compare our model with mGANprior,
DIP, RCAN (Zhang et al. 2018b) and ESRGAN (Wang et al.
2018). In Table 3, the results of the competing methods are
listed in terms of PSNR, LPIPS and NIQE. We also visualize
the representative results in Figure 9. Our PmSFC model
is able to produce better-resolved images with more details,
when compared to mGANprior.

Conclusion

In this paper, we explore how to improve feature composition
in an intermediate feature space for GAN inversion. Consider-
ing that the intermediate feature channels are highly correlat-
ed with each other, we incorporate a self-expressive layer into
the generator to capture their self-expressiveness property,
and the affinities among them are thus determined. Spectral
clustering over the channels leads to a number of meaningful
subspaces. We leverage the semantically differences among
the subspaces by performing feature composition in each
of them, and all the parameters are jointly optimized. Ex-
perimental results demonstrate that GAN prior subspaces
benefit the inversion and extended applications. In our future
work, we would investigate whether the proposed inversion
approach preserves the GAN’s latent space.
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