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Abstract

Subset selection in Contextual Bandits (CB) is an important
task in various applications such as advertisement recommen-
dation. In CB, arms are attached with contexts and thus cor-
related in the context space. Proper exploration for subset se-
lection in CB should carefully consider the contexts. Previ-
ous works mainly concentrate on the best one arm identifi-
cation in linear bandit problems, where the expected rewards
are linearly dependent on the contexts. However, these meth-
ods highly rely on linearity, and cannot be easily extended to
more general cases. We propose a novel Bayesian approach
for subset selection in general CB where the reward func-
tions can be nonlinear. Our method provides a principled way
to employ contextual information and efficiently explore the
arms. For cases with relatively smooth posteriors, we give
theoretical results that are comparable to previous works. For
general cases, we provide a calculable approximate variant.
Empirical results show the effectiveness of our method on
both linear bandits and general CB.

Introduction
Subset selection (Soare, Lazaric, and Munos 2014) is an im-
portant task in decision-making. In this paper, we consider
the subset selection task in a contextual bandit (CB) setting,
where we have some featured arms, and the goal is to iden-
tify an optimal subset of arms by interacting with them and
gaining observations. Practical problems like advertisement
recommendation (Li et al. 2010) fall into this category. For
example, a new advertiser might wish to identify a set of cus-
tomers who are most probable to be interested in her adver-
tisements. The goal is to conduct this subset selection with
as few as possible interactions with the arms.

Formally, assume that we are facing a set of N arms (de-
noted by [N ] = {1, 2, ..., N}) where each arm is attached
with a context. Each time, we choose a subset of arms as an
action set and obtain a corresponding reward observation.
Our goal is to identify the optimal target set with a maxi-
mum expected reward based on the observations. We denote
the sets of action sets and target sets as I and Z respec-
tively. In this paper, we focus on the pure exploration setting
for subset selection problems. That is, the training process
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focuses on gaining information for identifying the optimal
target set.1

Recent works for pure exploration in CB mainly concen-
trate on single-arm identification for Linear Bandits (LB),
where arm contexts and environment parameters are repre-
sented as vectors and the expected reward for each arm is
the inner product of its context and the environment vec-
tor. Frequentist methods (Soare, Lazaric, and Munos 2014;
Xu, Honda, and Sugiyama 2018) on LB construct confi-
dence bounds to estimate the uncertainty of the expected
rewards of arms. Comparing with Bayesian methods, fre-
quentist methods are usually conservative and empirically
less efficient (Eckman and Henderson 2018; Branke, Chick,
and Schmidt 2007), since they require all confidence bounds
to be small enough.

The Bayesian framework provides a way to handle un-
certainty explicitly by maintaining a posterior distribution
for parameters, which makes it possible to characterize
the probability of being optimal directly. For example,
BayesGap (Hoffman, Shahriari, and Freitas 2014) uses a
posterior distribution to characterize the environment pa-
rameters in LB. When turning to choosing arms, it still con-
structs bounds for each arm and chooses the best one. How-
ever, it fails to exploit the contextual information for arm se-
lection. For example, consider the three-arm LB with arms
featured as x1 = (1, 0), x2 = (1, 0.1) and x3 = (0, 1) and
environment parameter (1, 0.1) (Xu, Honda, and Sugiyama
2018). Then the key is to identify the optimal one between
x1 and x2. For this problem, pulling x3 can be more effi-
cient in distinguishingx1 andx2 than pulling either of them.
Therefore, in CB, arms with low rewards might be informa-
tive in exploration.

These best arm identification methods on LB cannot be
extended to general CB subset selection for two reasons: (1)
their constructions of confidence bounds highly rely on the
linear property, and (2) their arm selection rules for best arm
identification cannot be directly applied for general prob-
lems with I and Z .

Considering the above issues, we propose Bayesian Re-
sample Explore (BRE), a novel Bayesian method for sub-

1There is another setting considering regret, where the goal is to
improve the average performance over the whole training process.
Thus the trade-off between exploitation and exploration is needed.
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set selection in CB. Instead of using a posterior to esti-
mate the reward upper bounds and find optimal arms as in
BayesGap, we use a more flexible re-sampling method to
find two near-optimal sets. Then we take actions to try to dis-
tinguish the two sets. Two new selection rules are designed
to make use of the context correlations among arms. Our
Bayesian method can be applied to both fixed-confidence
and fixed-budget settings. For fixed-confidence problems,
we use the posterior distributions to give a Monte Carlo stop-
ping rule, which is empirically more efficient than bound-
related stopping rules. We further provide a non-asymptotic
sample complexity analysis for cases where posteriors are
relatively smooth. An approximate variant is also presented
for problems where posteriors are hard to calculate. We also
reduce BRE to LB to compare with baseline methods. Em-
pirical results validate the efficiency of BRE. Specifically,
BRE outperforms previous methods like BayesGap and Lin-
GapE (Xu, Honda, and Sugiyama 2018) on LB. 2

Related Work
Multi-Armed Bandit Problems
Multi-armed bandits (MAB) are the simplest bandit prob-
lems where arms have independent reward distributions.
Kalyanakrishnan et al. (2012) provide LUCB, a frequentist
solution for subset selection in MAB based on the classi-
cal UCB algorithm (Auer, Cesa-Bianchi, and Fischer 2002).
Russo (2016) proposes a Bayesian method to solve the best
arm identification in MAB. It modifies the famous regret
minimization method Thompson Sampling (TS) (Thompson
1933) by assigning a probability to pull sub-optimal arms.
Expected-Improvement (EI) (Henderson and Nelson 2006)
is another Bayesian method for MAB, but it is less efficient
than the TS-based method (Russo 2016). Some other works
consider the fixed budget problem, such as the optimal-
computing-budget allocation (OCBA) (Chen et al. 2000).
Methods in MAB do not consider the correlation of arms
and directly applying them to CB would lead to inefficiency.

Pure Exploration in LB
Many works concentrate on the pure exploration in Linear
Bandits and attempt to exploit the arm correlation. Soare,
Lazaric, and Munos (2014) construct the stopping condi-
tion for LB with the vectors of arms and propose some pre-
defined arm selection strategies. Xu, Honda, and Sugiyama
(2018) improve the pre-defined methods to a fully adaptive
method via using arm correlation to choose actions. How-
ever, these frequentists’ methods still suffer from a conser-
vative stopping rule as they treat upper bounds of rewards
independently and require uniform tightness for all bounds.
For Bayesian methods, BayesGap (Hoffman, Shahriari, and
Freitas 2014) characterizes the posterior distribution of the
environments and gives a fixed-budget solution, but it ig-
nores the exploration potential of sub-optimal arms.

Problem Formulation
Consider the task of subset selection in contextual bandits
(CB) with N arms. Each arm i ∈ [N ] has a feature vector
xi ∈ Rmx with dimension mx ∈ N+. Suppose that there

exists an unknown environment parameter θ∗ ∈ Rmθ where
mθ ∈ N+. At each time step, the algorithm can choose one
or more arms and gains corresponding observations. For-
mally, define a set I that is composed of some subsets of
[N ]. Each time, a set I ⊆ [N ] from I is chosen and an im-
mediate reward rI will be returned. Here rI might be either a
scalar or a vector, and there might be noise added to rI . The
expectation of rI is a function of θ∗ and all xi for i ∈ I ,
denoted as E[rI ] = f(I, θ∗). The goal of the problem is to
identify an optimal subset from some candidate subsets. We
denote Z , composed of some subsets of [N ], as the set of all
candidate subsets. A target function g(Z,θ∗) is given which
maps each Z ∈ Z and θ∗ into a value. The goal is to choose
a set Z∗ ∈ Z which satisfies Z∗ = argmaxZ∈Z g(Z,θ∗).
For convenience, we call sets in I as action sets and sets in
Z as target sets. Denote mI = |I| and mZ = |Z|.

Note that the observation function f and the target func-
tion g are not assumed to be the same, although in most ex-
isting works they are. In some practical problems, the testing
environment might be a bit different from the training envi-
ronment. The formulation here with functions f and g can
easily distinguish the training and testing rewards.

There exist two settings for the subset selection problems:
(1) the fixed-budget setting where the number of interactions
is fixed; (2) the fixed-confidence setting where the algorithm
doesn’t stop until it guarantees a probability to be correct.
Our work focuses on the fixed-confidence setting, following
the ranking and selection problems (Kim and Nelson 2006).
The good selection goal is used for recommendation, which
aims to find a setZ such that, g(Z,θ∗) > g(Z∗,θ∗)−ε, with
a probability no less than 1− δ, for given ε and δ values.

The key for solving the subset selection problems is to
choose proper actions so as to efficiently collect informa-
tion about the unknown parameter θ∗ and to distinguish the
optimal Z∗ with other sets in Z .

The contextual information in CB can be exploited in two
ways. The first is to improve the estimation for θ∗ with ob-
servations from all time steps, since the environment param-
eters are shared. It is natural to use the Bayesian framework
to estimate the uncertainty of θ∗. This is also the key idea
for BayesGap in LB. The second way is to use contexts to
help choose action sets, since arms are correlated by con-
texts. This is the point that BayesGap ignores.

Linear Bandits: If we pull one of the arm at each time
step, we denote the action set as Iarm := {{i}}Ni=1. If
f(I, θ∗) = g(I, θ∗) =

∑
i∈I x

i>θ∗ for any I ∈ Iarm,
this reduces to the Linear Bandit problem (LB).

Explore-K: If Z is composed of sets with K arms,
this corresponds to Explore-K problems proposed in
(Kalyanakrishnan and Stone 2010). Denote ZK := {Z ⊆
[N ] : |Z| = K} as the set of target sets for Explore-K.

Bayesian Framework
We now present a Bayesian framework for CB. We assume a
prior distribution on the unknown environment parameters,
which can be a non-informative prior if we do not have in-
ductive bias.

Denote the chosen action set and the corresponding re-
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ward at time step t as It and rt respectively. Denote this
pair as dt = (It, rt) for conciseness. With the information
Dt = {ds}ts=1, we attain a posterior distribution pt(θ):

pt(θ) :=p(θ|Dt) =
p(Dt|θ)p0(θ)

p(Dt)
∝

t∏
s=1

p(ds|θ)p0(θ). (1)

We consider a probability of good selection goal (PGS)
(Eckman and Henderson 2018). Formally, for parameter θ,
denote the event that set Z (Z ∈ Z) is the ε-optimal set un-
der θ as Eε(Z;θ). That is, if Eε(Z;θ) is true, then ∀Z ′ ∈ Z ,
g(Z,θ) ≥ g(Z ′,θ) − ε. At time step t, the posterior pt en-
codes the belief for the possible distribution over θ∗. Thus
the probability that Z is the ε-optimal target set is defined
as

Pεt (Z) =
∫
θ

I[Eε(Z;θ)]pt(θ)dθ. (2)

Here I[·] denotes the indicator function.
The goal of the algorithm is to recommend a target set af-

ter some number of interactions with the environment. Fol-
lowing Kaufmann, Cappé, and Garivier (2016), a Bayesian
subset selection algorithm can be divided into three rules:

Action set selection rule: At time step t > 0, with poste-
rior pt−1(θ), the algorithm selects one action set from I.

Stopping rule: The algorithm stops at time step τ , if there
exits a set Zτ ∈ Z such that Pετ (Zτ ) > 1− δ.

Recommendation rule: When the algorithm stops at time
step τ , we recommend the set argmaxZ∈Z Pετ (Z).

There are three main advantages for the Bayesian frame-
work. Firstly, the posterior distribution naturally character-
izes the uncertainty of the environment parameters. For com-
plex f or g functions, the construction of upper confidence
bounds can be hard in frequentist’s methods, while the pos-
terior calculation simply follows the Bayes theorem. Further,
many approximate inference methods can be applied for cal-
culating posteriors with complex likelihood.

Secondly, frequentist’s methods usually suffer from worse
empirical performance because their stopping rule requires
all bounds to be tight enough. Bayesian methods, in con-
trast, consider the joint distribution. This empirical gap can
be shown from the comparison between UCB1 and TS in
MAB (Chapelle and Li 2011).

The third appealing advantage comes from the posterior
PGS guarantee. Current frequentist-based selection proce-
dures require the fixed-confidence δ to be given and they
need to guarantee high probability correctness for any con-
figuration, making them conservative. Bayesian methods
only use δ for the stopping rule and can be adaptive and
sample efficient (Eckman and Henderson 2018).

However, two main challenges arise in implementing a
Bayesian subset selection algorithm. The first is how to con-
struct the subset selection rule with pt so as to efficiently ex-
plore the environment. It is still not clear how we make use
of pt and context information to enlighten exploration. The
other challenge is how to identify the stopping time since
the exact probability Pεt can be hard to calculate or even
intractable. Below we propose Bayesian Re-sample Explo-
ration (BRE), a Bayesian approach to solve these challenges.

Method
We first propose the action set selection rule and the corre-
sponding stopping rule. Then we introduce the whole BRE
and theoretical results.

Action Set Selection Rule
The key for action set selection is to choose proper sets so as
to separate Z∗ with other target sets. Following the idea of
Thompson Sampling (TS) (Russo et al. 2018), for time step
t, a sampled θt from the posterior distribution pt−1 is used to
find its corresponding optimal target set Zt. However, Zt is
not enough for exploration guidance. Russo (2016) in MAB
uses a re-sample technique to assign a probability to choose
sub-optimal arms. Inspired by this, we re-sample to find an-
other potentially optimal target set. Since concentrating on
the optimal one target set will allocate too many resources on
the estimated optimal one, we turn to find two near-optimal
candidate sets for exploration. The reason for choosing two
sets is that the comparison between two candidates is easy to
conduct. For more than two candidates, it is not straightfor-
ward to define an optimization target. Formally, we repeat-
edly sample θ′t until another potential optimal target set Z ′t
is found such that g(Z ′t,θ

′
t) > g(Zt,θ

′
t) + ε.

Denote the indices Zt and Z ′t as it and jt. For any i, j ∈
[mZ ], we define a new value

κij(θ) = g(Zi,θ)− g(Zj ,θ). (3)

Denote κ̂ijt as the expectation of κij(θ) over pt−1 and de-
fine κt(θ) = κitjt(θ) if κ̂itjtt ≥ 0 and κt(θ) = κjtit(θ)
otherwise. Denote κ̂t as the posterior mean for κt(θ).

The goal for time step t turns to be increasing the proba-
bility of the event κt(θ) > 0. Below we propose two selec-
tion rules: (1) a general selection rule for general CB prob-
lems; (2) a ratio-based action selection rule for problems un-
der specific assumptions.

General selection rule For a general CB problem, withZt
and Z ′t chosen at time step t, we assume that action set I is
chosen and reward rI is returned. Then the posterior distri-
bution p(θ|Dt−1, (I, rI)) can be calculated. Recall that we
use the PGS setting where an error of ε is tolerable. Hence
the probability of κt(θ) > −ε becomes

Ep(θ|Dt−1,(I,rI))[I[κt(θ) > −ε]]. (4)

Notice that here the calculation of p(θ|Dt−1, (I, rI)) explic-
itly exploits the context information.

More specifically, the influence of each action set on the
posteriors can be estimated using the context-related likeli-
hood. Thus we can find the action set that is most informa-
tive for exploration.

Actually, rI is not observable before actual actions, so we
take expectation over the marginal distribution p(rI |Dt−1).
Therefore, the estimation for κt after choosing I is

Vt(I) := Ep(rI |Dt−1)Ep(θ|Dt−1,(I,rI ))[I[κt(θ) > −ε]]. (5)

The general subset selection rule at time step t is

It = argmax
I∈I

Vt(I). (6)
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Further, when Vt(I) is hard to calculate or even in-
tractable, it might be possible to find a lower bound instead.
Then the action set selection rule turns to maximize the
lower bound term. One convenient construction of a lower
bound is the posterior variance. Formally, consider a distri-
bution p(θ) and we have

Ep(θ)[I[κt(θ) > −ε]] ≥Ep(θ)
[
I[|κt(θ)− κ̂t| < κ̂t + ε]

]
=1− Ep(θ)

[
I[|κt(θ)− κ̂t| ≥ κ̂t + ε]

]
≥1− Varp(κt(θ))

(κ̂t + ε)2
≥ 1− Varp(κt(θ))

ε2
.

The first inequality holds by adding κ̂t to both sides; the
second inequality holds with the Markov inequality. Now
we propose another general action set selection rule

It = argmin
I∈I

Ep(rI |Dt−1)Varp(θ|Dt−1,(I,rI ))(κt(θ)). (7)

Ratio-based selection rule If the posteriors enjoy some
nice properties, another ratio-based selection rule with nice
theoretical guarantees can be given.

First we define some notations for assumptions. For t > 0,
denote nt(I) to be the number of times that set I ∈ I has
been chosen. Denote the probability simplex in Rm as Σm

and then we define a vectorwt ∈ ΣmI where its kth element
wt,k = nt(Ik)/t. For clarity, bold letters represent vectors.

Intuitively we expect the posterior for κt converges as t
grows. Hence we define a variance proxy function:
Definition 1. For i, j ∈ [mZ ] and i 6= j, function hij(t,w)
is called a variance proxy function if it satisfies
• hij(t1,wt1) ≤ hij(t2,wt2) if t1 ≥ t2;
• there exits a w̃ij and a decreasing function γij(t) such

that for t > 0, hij(t, w̃ij) ≤ γij(t).
Based on hij , we give two assumptions below.

Assumption 1. Up to time step t, with posterior pt for θ,
with a probability no less than 1 − δ′, for any i, j ∈ [mZ ]
and i 6= j, assume that there is a function ζij(δ′) such that

|κ̂ijt − κ
ij(θ∗)|/

√
hij(t,wt) ≤ ζij(δ′). (8)

Assumption 2. At time step t, with posterior pt for θ, for
any i, j ∈ [mZ ] and i 6= j, for some ε′ > 0 and a non-
increasing function `ij(ε′), assume that

p(|κij(θ)− κ̂ijt |/
√
hij(t,wt) > ε′) ≤ 2 exp(−ε′2/2); (9)

p((κij(θ)− κ̂ijt )/
√
hij(t,wt) > ε′) ≥ `ij(ε′). (10)

Assumption 1 indicates that the prior distribution is cho-
sen such that the posteriors can converge to the true values.
Note that we only assume the existence of w̃ and exact con-
struction depends on concrete problems. For problems with
nice properties, there are many simple choices for w̃, as we
will show in a later section. Assumption 2 requires the pos-
terior to converge neither too fast nor too slow. Simple prob-
lems like Gaussian stochastic bandits or linear bandits can
easily satisfy the assumptions.

With above assumptions, we propose a ratio-based action
set selection rule:

It = argmin
k∈[mI ]:w̃

ij
k
>0

nt−1(Ik)

w̃ijk
. (11)

The key idea is to make the action set ratios close to w̃ij ,
which is firstly used in the linear bandit algorithm Lin-
GapE (Xu, Honda, and Sugiyama 2018). We extend it to
CB with variance proxy function hij to characterize the con-
verge property.

Stopping Rule
Usually, probability Pεt (Z) can be hard to calculate. Some
work in MAB (Branke, Chick, and Schmidt 2007) uses the
Slepian’s inequality (Slepian 1962) to derive a lower bound
of posterior PGS. This lower bound is constructed over arm
pairs. However, since arms in contextual bandits share the
same environment parameter, it would be better to directly
consider Pεt (Z), rather than pair-wise bounds.

Hence based on the re-sample technique in above selec-
tion rules, we can use Monte Carlo estimations instead of
accurate calculation. Samples from the posterior pt can be
used to estimate Pεt (Z) and check the stopping condition.
This approximation is much easier than the exact calcula-
tion, at the cost of an extra sampling error.

Formally, assume that at time step τ , we have sampled
θτ for c times, and Zτ is ε-optimal for c′ times. This process
can be considered as sampling c data points from a Bernoulli
distribution with a probability Pετ (Zτ ) to get 1. Then with
the Azuma’s inequality, for ε′ > 0, we have:

P
(
c′/c− Pετ (Zτ ) > ε′

)
≤ exp(−2cε′2). (12)

We choose exp(−2cε′2) = δ1 and c′/c − ε ≥ 1 − δ2. We
can choose δ1+δ2 = δ. Therefore our stopping rule satisfies
that when BRE stops, with a probability 1−δ1,Pετ (Zτ ) is no
less than 1−δ2. For proper c, we can find a corresponding c′
as our stopping condition. For simplicity we choose c′ = c
and we have

c = ln(1/δ1)/(2δ
2
2). (13)

If we stop, we recommend Zτ as the optimal set.

Bayesian Re-sample Exploration
Now we are ready to present Bayesian Re-sample Explo-
ration (BRE) in detail. With a prior over θ, we maintain the
posterior distribution pt(θ) using observations up to time
step t. Then at time step t, we follow the action set selec-
tion rule to choose It. If the stopping rule is satisfied at τ ,
we stop and recommend Zτ as the optimal target set. Fur-
ther, BRE can be simply applied in the fixed-budget setting
by using the action set selection rules.

If Assumptions 1 and 2 are satisfied, we can use Eq. (11)
to choose action sets and call this method BRE-R. If the
Eq. (6) or (7) is used, we call this method as BRE-G. The
algorithm framework for BRE-G is given in Algorithm 1.

Stopping Guarantee of BRE
Recall that our stopping rule is based on the Monte Carlo
estimations. The error of BRE involves the Bayesian part

8387



Algorithm 1 Bayes Re-sample Explore

1: Input: Prior p0(θ), c
2: t = 0, Terminal = False
3: while Terminal is False do
4: t← t+ 1, num = 1, OptSet = {}
5: while |OptSet| < 2 and num < c do
6: Sample θt from pt−1(θ)
7: Zt = argmaxZ∈Z g(Z,θt)
8: num+ = 1
9: OptSet = OptSet ∪ Zt

10: end while
11: if |OptSet| == 2 then
12: Calculate κt and solve It with selection rules
13: Choose action set It and get observation rt
14: Use (It, rt) to update the posterior pt(θ)
15: else
16: Teminal = True
17: end if
18: end while
19: Recommend Zt

from the posterior distribution and the frequentist part from
the Monte Carlo sampling process. Therefore we consider an
expected posterior PGS to characterize both errors together
and give a guarantee of stopping for BRE.

Theorem 1. For θ∗ sampled from p0, with c chosen as
Eq. (13), BRE stops at τ . Then with a probability 1− δ1

Eθ∗
[
I[E(Zτ ;θ∗)]

]
> 1− δ2. (14)

This theorem is exactly our designed stopping rule.

Sample Complexity for BRE-R
A non-asymptotic analysis of general problems is hard. Fre-
quentist’s upper-bound analysis is not suitable for sample-
based methods. Analysis involving sample randomness
is needed. With some techniques from Xu, Honda, and
Sugiyama (2018) and Agrawal and Goyal (2013), below we
propose our novel theoretical results for BRE-R.

Recall that Assumptions 1 and 2 are assumed to be sat-
isfied. Denote that i∗ to be the index of Z∗ and ` =
argmini∈[mZ ],i6=i∗ `

i∗i(ζi
∗i(δ/3)). Then we define

F ijk =
1

2
+w̃ijk γ

ij−1

max(|κij(θ∗)|+ ε, κi
∗j(θ∗), κi

∗i(θ∗))2(
ζi∗i(δ/3) +

√
2 ln(12m2

Z/δ)
)2

 .

Theorem 2. If the problem satisfies Assumptions 1 and 2,
then with a probability no less than 1− δ, the stopping time
τ for BRE-R is upper bounded by

max


4
∑

k∈[mI ]
max

i,j∈[mZ ]:i 6=j
F ijk

`(1− δ) ,
16K ln(2mI/δ)

`2(1− δ) ,
8 ln(2/δ)

(1− δ)2

 .

(15)

Here the term 1/`/(1− δ) characterize the extra samples
caused by the Monte Carlo stopping process.

The key of BRE-R is to choose action sets such that their
ratios are close to w̃ij . In Thm. 2, value F ijk characterizes
the needed number of action set Ik to distinguish the (i, j)
pair according to w̃ij . It can be seen that the sample com-
plexity is in negative correlation with κi

∗i(θ∗) and κi
∗j(θ∗).

The proof divides time steps into two parts. The first part
tries to distinguish all the sub-optimal target sets. The left
part characterizes the extra steps caused by randomness,
leading to the 1/(`(1−δ)) ratio. The complete proof is given
in the Appendix . In LB, this result has a comparable order
on LB with previous state-of-the-art work LinGapE, as dis-
cussed in Appendix .

Approximated BRE
One main difficulty of Bayesian methods is the complex cal-
culation. To solve this, we use variational inference for pos-
terior calculation and influence functions for action set se-
lection. Hence we give an approximating approach, named
BRE-A. Complete derivation is given in Appendix

Instead of exact calculation, we use variational inference
to approximate p(θ|Dt). Let qφ(θ) be an distribution of θ
parameterized by φ. Recall ds = (Is, rs). We solve φ̂t with

φ̂t = argmin
φ

KL[qφ(θ)‖p(θ|Dt)]

= argmin
φ

(KL[qφ(θ)‖p0(θ)] +
t∑

s=1

L(ds, φ)),

where L(ds, φ) := −Eqφ(θ)[log p(rs|θ, Is)]. If p(θ|Dt) lies
in the function class of qφ(θ), qφ̂t(θ) equals to p(θ|Dt).
Otherwise it is the best approximation of p(θ|Dt) from the
distribution family. For convenience, we take φ̂t as the pa-
rameters of the posterior distribution p(θ|Dt).

Now assume that d = (I, rI) is the new observation for
time step t. Then we can solve a φ with d weighted by ε

φ̂εt,I,rI = argmin
φ

(KL[qφ(θ)‖p0(θ)] +
t−1∑
s=1

L(ds, φ) + εL(d, φ)).

With the result of Koh and Liang (2017), we define the
“influence” of choosing action set I on the posterior of θ:

Jθt,I = Ep(rI |Dt−1,I)

 dφ̂εt,I,rI
dε

∣∣∣∣∣
ε=0


=
(
−H|φ=φ̂t

)−1

Ep(rI |Dt−1,I)

[
∇φL((I, r), φ)

∣∣
φ=φ̂t

]
,

where H = ∇2
φ(KL[qφ(θ)‖p0(θ)] +

∑t
s=1 L(ds, φ)) is

the Hessian. Then the influence for the variance of κt(θ)
is defined as:

JV ar(κt),I =Ep(rI |Dt−1,I)

[
dVar(κt(θ))

dε

∣∣∣∣
ε=0

]
(16)

=ĤEp(rI |Dt−1,I)

[
∇φL((I, rI), φ)

∣∣
φ=φ̂t

]
, (17)

where Ĥ =
(
∇φVar(κt(θ))

∣∣
φ=φ̂t

)> (
−H|φ=φ̂t

)−1

.

Now we propose the selection rule for BRE-A:
It = argmin

I∈I
JV ar(κt),I . (18)
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Linear Bandit Example
In this section, we apply BRE to Linear Bandits (LB). In
LB, I = Iarm, i.e., we pull one arm at each time step. For
convenience, we use It to represent selected arms instead of
arm sets. In LB, denote n = mx = mθ. For each arm i,
we have f({i},θ∗) = g({i},θ∗) = xi

>
θ∗. Assume that

rewards are sampled from Gaussian distributions. That is, a
rewards for choosing arm i is sampled from N (xi

>
θ∗, v2)

for some fixed v.
We consider the Explore-K arm problem in LB. That is,

our goal is to find K arms with maximum rewards. For two
target sets Zi and Zj , we define their difference vector as

ξij =
∑
z∈Zi

xz −
∑
z′∈Zj

xz
′
. (19)

Recall that the indices for Zt and Z ′t are denoted as it and
jt. For convenience, we define ξt = ξitjt if κ̂itjtt ≥ 0; ξt =
ξjtit otherwise. Thus we have that κt(θ) = ξ>t θ.

Following Agrawal and Goyal (2013), we consider a prior
N (0, λA0) for θ, where A0 is an n × n identity matrix.
With observation Dt−1 = {I1, r1, ..., It−1, rt−1} up to
t, the posterior distribution pt(θ) is N (θ̃t, v

2A−1t ), where

At = λA0 +
t−1∑
t′=1

xIt′xIt′
> and θ̃t = A−1t

t−1∑
t′=1

xIt′ rt′ .

The marginal distribution over the direction of κt is thus
N (ξ>t θ̃t, v

2ξ>t A
−1
t ξt). Below we give three BRE action set

selection rules for LB.

BRE-R: LB with Gaussian rewards enjoys quite nice
properties. We choose the variance proxy function as

hij(t, w) =v2ξij
>
(
λA0 + t

∑
k∈[N ]

wk ∗ xIixIi
>)−1

ξij . (20)

To construct w̃ij for each ξij . First we solve a∗ with

a∗ =argmin
a∈RN

N∑
k=1

|ak|, s.t. ξij =
N∑
k=1

akx
k. (21)

With γij(t) = v2

t

∑N
k=1 |a∗k| and w̃ijk = |a∗k|/

∑N
k=1 |a∗k|,

we can simply apply Eq. (11) to get BRE-R.
It can be proved that the above constructions satisfy As-

sumptions 1& 2. We defer the assumption check, detailed
derivations, and complexity analysis to Appendix .

BRE-G: For LB, the variance of the posterior pt(θ) is not
influenced by the observed reward rI . We denote ||y||A :=√
y>Ay. Then at time step t, BRE-G selection rule is

It = argmin
i∈[N ]

||ξt||(At+xixi>)−1 , (22)

BRE-A: With the “influence” function calculation, the
BRE-A arm selection rule for time step t turns to be:

It = argmax
i∈[N ]

(ξ>t A
−1
t x

i)2. (23)

A detailed derivation for BRE-A is given in Appendix .
An interesting observation here is that Eq. (23) & (22) can

be connected via the Sherman-Morrison formula:
ξT (A+ xx>)−1ξ = ξTA−1ξ − (ξ>A−1x)2/(1 + x>A−1x).

(24)

Thus we can consider BRE-A as an approximation method
for BRE-G. Notice that we only need to calculate the inverse
matrixA−1t for once using rule (23), while rule (22) needs to
calculate the inverse matrix for each arm. This is extremely
time efficient for problems with large N .

Discussion for LB
Three BRE methods can all be applied to LB directly, as
shown above. Notice that the final selection rules for BRE-G
in LB have similar forms to that in LinGapE, since LinGapE
also employs variance to construct upper confidence bounds.
Although BREs and LinGapE have similar selection rules,
our sample-based optimal-arm choosing and stopping rules
are shown to be more effective empirically.

For current BRE-R, the sample complexity bound has an
order of O(

∑
k maxi6=j w̃

ij
k /(|κij(θ∗)| + ε)2). This bound

is relatively loose comparing to the bound of LinGapE. A
small modification on posterior calculation could improve
the bound to the same order of LinGapE. That is, a vari-
ant of BRE-R has comparable theoretical results with state-
of-the-art frequentist method LinGapE on LB. However, the
empirical performance of this variant is worse than current
BRE-R, since it uses a larger variance. We conjecture that
our current analysis for BRE-R in LB can be further im-
proved. The complete discussion for BRE-R and its variant
in LB is given in Appendix .

Experiments
We evaluate the performance of BRE by comparing with
various baselines. Following (Xu, Honda, and Sugiyama
2018), we design experiments on synthetic data and a real-
data simulated Explore-K problem. We test BRE on LB and
some other general CB problems. Appendix provides de-
tailed implementations for algorithms and further results.

Baseline Methods
Here we introduce the comparison methods in detail.

BRE: We test BRE-G, BRE-R, and BRE-A.
Frequentist methods: For best one arm identification

problems in LB, we use the state-of-the-art LinGapE as the
frequentist baseline. We extend LinGapE to the Explore-K
problem in two ways. For the Explore-K problem, we first
use empirical mean to find K optimal arms subset Zt. Then
we aim to find two arms in Zt and [N ]/Zt respectively that
they have maximum discrepancy and then choose one arm
to distinguish them. Two standards are used to measure the
discrepancy: one uses the ratio of bonus and the estimated
reward, and the other uses the summation of them. We call
them LinGapE-1 and LinGapE-2 respectively. Other meth-
ods such as XY-static are not tested since they are sample
inefficient, as shown in Xu, Honda, and Sugiyama (2018).

Other Bayesian methods: We extend LUCB (Kalyanakr-
ishnan et al. 2012) to the Bayesian framework by sampling
θt from pt−1 and then pulling the Kth and K + 1th opti-
mal arms. We call it BLUCB and use the BRE stopping rule
for it. We further extend BayesGap into the fixed-confidence
setting, with two stopping rules: the BRE stopping rule
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(a) Synthetic Data 1 (b) Synthetic Data 2 (c) Yahoo Linear Data (d) Yahoo General Data

Figure 1: The number of samples for best one arm identification problems

Arms 1 2 3 4 5 6
BRE-G 138 2.8E4 6 13 4 1
BRE-R 128 2.5E4 5 7 10 10
BRE-A 195 3.9E4 5 10 14 5

LinGapE 7.1E3 1.4E6 60 70 47 3
BLUCB 5.0E7 1 3 7 1 5.0E7

BayesGap-B 5.0E7 32 43 40 48 5.0E7
BayesGap-F 5.0E7 421 43 63 39 5.0E7

Table 1: Arms counts for n = 5

and the frequentist stopping rule of LinGapE. We call them
BayesGap-B and BayesGap-F respectively.

We repeat each experiment for 10 times and plot means
and standard deviations. We set a maximum budget: the in-
teraction process will stop after pulling 108 times. For all
experiments, we set δ = 0.05, ε = 0.0 and λ = 1. The
labels of the y axes are all the ”number of samples”.

Experiments on Best Arm Identification
We follow Xu, Honda, and Sugiyama (2018) to design 2
synthetic experiments. We set the reward distribution to be
N (xi

>
θ∗, 1) for each arm i.

Synthetic data 1: We choose N = n + 1 arms, with n
varying from 2 to 10. The first n arms are the canonical base
vectors of Rn and xn+1 = (cos(0.01), sin(0.01), 0, ..., 0).
We set θ∗ = (2, 0, ..., 0). Thus, an algorithm should care-
fully distinguish x1 and xn+1 and should pull x2 frequently.
Fig.1(a) shows the results. Note that we ignore BLUCB,
BayesGap-B and BayesGap-F as they use samples more
than 108. Instead, we give an example of arm counts for n =
5, as shown in Table 1. We can see that our BRE outperforms
other methods. From the table, BLUCB and BayesGaps re-
peatedly pull arms 1 and 6, since they fail to use the arm
correlations to choose arms. Fig.1(a) shows BRE methods
are much faster than LinGapE. Further, LinGapE uses more
samples as n gets larger since it requires all bounds to be
tight, while BRE methods with an n-independent Monte
Carlo stopping rule remain relatively stable.

Synthetic data 2: We choose canonical bases as the
n arms and θ∗ = (ρ, 0, ..., 0). We choose ρ ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. In this case, the correlation of arms
is not very important and algorithms need to explore all arms
independently. Fig. 1(b) shows the results. We can see that
the problem becomes easier as ρ increases. All methods can
efficiently find the optimal arm while BREs still perform

the best. Comparison between BayesGap-F and BayesGap-
B shows that the frequentist stopping rule is indeed empiri-
cally conservative.

Experiments on Subset Selection
We test the subset selection problems on Yahoo! Webscope
Dataset R6A (Chu et al. 2009)2. We set n = 4, N = 15,
K ∈ {1, 2, 3, 4, 5}. We construct data following LinGapE
where the expected reward for arm i is xi>θ∗. The reward is
1 with a probability (xi

>
θ∗+1)/2 and -1 otherwise. We use

Gaussian as the distribution class for variational inference
and choose Gaussian prior for θ. We train BRE-G, BRE-R,
BRE-A, LinGapE-1, LinGapE-2 and BLUCB.

We further vary the target function with: (1) g(Z,θ) =∑
i∈Z exp(xi

>
θ) and, (2) g(Z,θ) =

∑
i∈Z x̃

i
>
θ∗, where

x̃i is a noised vector near xi. We test them with BRE-G and
BRE-A and name the two targets with T1 and T2.

The results are plotted in Fig. 1(c) and 1(d). BRE methods
still can perform the best. For varied target functions, BRE-
G and BRE-A can still efficiently explore the target sets.
Empirically, we observe that the sample number is mostly
influenced by the reward gap between the optimal and the
near-optimal target sets, rather than the size of K. This is
why the K = 4 problem seems to be harder than K = 5.
Further details and discussion are given in Appendix .

Conclusion
We propose a Bayesian approach, BRE, for subset selection
in CB problems. BRE uses samples from posterior distribu-
tions to find two near-optimal sets and chooses action sets
to distinguish the two sets. Further, we use a Monte Carlo
stopping rule to efficiently find the posterior stopping con-
dition. A theoretical analysis for specific cases is given and
we also propose an approximation method for calculation
convenience. We test our method with previous baselines on
synthetic and real data based simulations. Our method out-
performs frequentist methods and other Bayesian methods.
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Chen, C.-H.; Lin, J.; Yücesan, E.; and Chick, S. E. 2000.
Simulation budget allocation for further enhancing the ef-
ficiency of ordinal optimization. Discrete Event Dynamic
Systems 10(3): 251–270.
Chu, W.; Park, S.-T.; Beaupre, T.; Motgi, N.; Phadke, A.;
Chakraborty, S.; and Zachariah, J. 2009. A case study of
behavior-driven conjoint analysis on Yahoo! Front Page To-
day module. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1097–1104.
Eckman, D. J.; and Henderson, S. G. 2018. Guarantees on
the probability of good selection. In 2018 Winter Simulation
Conference (WSC), 351–365. IEEE.
Henderson, S. G.; and Nelson, B. L. 2006. Handbooks in
operations research and management science: simulation,
volume 13. Elsevier.
Hoffman, M.; Shahriari, B.; and Freitas, N. 2014. On cor-
relation and budget constraints in model-based bandit opti-
mization with application to automatic machine learning. In
Artificial Intelligence and Statistics, 365–374.
Kalyanakrishnan, S.; and Stone, P. 2010. Efficient Selection
of Multiple Bandit Arms: Theory and Practice. In Interna-
tional Conference on Machine Learning, volume 10, 511–
518.
Kalyanakrishnan, S.; Tewari, A.; Auer, P.; and Stone, P.
2012. PAC Subset Selection in Stochastic Multi-armed Ban-
dits. In International Conference on Machine Learning, vol-
ume 12, 655–662.
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