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Abstract

Two-dimensional PCA (2DPCA) is an effective approach
to reduce dimension and extract features in the image do-
main. Most recently developed techniques use different error
measures to improve their robustness to outliers. When cer-
tain data points are overly contaminated, the existing meth-
ods are frequently incapable of filtering out and eliminat-
ing the excessively polluted ones. Moreover, natural systems
have smooth dynamics, an opportunity is lost if an unsu-
pervised objective function remains static. Unlike previous
studies, we explicitly differentiate the samples to alleviate
the impact of outliers and propose a novel method called
Self-Paced 2DPCA (SP2DPCA) algorithm, which progresses
from ‘easy’ to ‘complex’ samples. By using an alternative op-
timization strategy, SP2DPCA looks for optimal projection
matrix and filters out outliers iteratively. Theoretical analysis
demonstrates the robustness nature of our method. Extensive
experiments on image reconstruction and clustering verify the
superiority of our approach.

Introduction
Finding effective representation from high-dimensional data
such as images and videos is a long-standing problem in
the fields of machine learning, pattern recognition, and data
mining (Kang et al. 2020a; Ma et al. 2020). PCA is a widely
used technique for dimension reduction and feature extrac-
tion (Jolliffe 2011; Kang et al. 2020b). Numerous variants
have been proposed over the past several decades (Peng et al.
2020; Liao et al. 2018; Nie, Yuan, and Huang 2014; Kang,
Peng, and Cheng 2015; Gao et al. 2020). To apply them in
two-dimensional data analysis, we need to convert the in-
put matrix into one-dimensional long vector, which loses the
spatial structure information embedded in pixels of image
(Peng et al. 2019; Gao et al. 2019).

To leverage the inherent spatial structure, 2DPCA was
proposed to directly process 2D data. Yang et al. pro-
posed 2DPCA for face classification by directly calculat-
ing image covariance matrix (Yang et al. 2004). After that,
many 2DPCA methods have been derived. For example,
`1-norm is adopted to suppress outliers in 2DPCA-L1 (Li
2010; Luo et al. 2016; Ju et al. 2015), sparsity constraint
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is further imposed in 2DPCAL1-S (Wang and Wang 2013),
nuclear-norm is also used to measure the reconstruction er-
ror (N2DPCA) (Zhang et al. 2015), a nongreedy algorithm
is proposed in 2DPCA-L1-nongreedy (Wang et al. 2015),
F2DPCA measures the distance in spatial dimensions with
F-norm (Wang and Gao 2017). With respect to squared F-
norm, an F-norm based model is more efficient in mitigating
the sensitivity to outliers. Moreover, F-norm can retain the
rotational invariance, a desired property of PCA. Therefore,
a number of 2DPCA variants are based on F-norm (Li et al.
2017b; Wang et al. 2017). Compared to traditional PCA,
2DPCA has shown competitive performance. However, they
fail to extract complicated structures and lack robust gener-
alizable performance (Liao et al. 2018).

Recently, Zhou et al. proposed generalized centered
2DPCA with `2,p-norm (G2DPCA) (Zhou et al. 2019).
G2DPCA finds robust projection matrices by using the vari-
ations between each row of the projected matrix and em-
ploying the power p of the `2,1-norm. It demonstrates bet-
ter recognition accuracy and lower reconstruction error than
many state-of-the-art 2DPCA methods, such as F2DPCA
(Wang and Gao 2017), 2DPCA-L1 (Li 2010), 2DPCAL1-
S (Wang and Wang 2013), N2DPCA (Zhang et al. 2015),
Angle-2DPCA (Gao et al. 2018), 2DPCA-L1-nongreedy
(Wang et al. 2015). However, when certain data points are
overly contaminated, the existing methods are frequently in-
capable of filtering out and eliminating the excessively pol-
luted ones. Furthermore, natural systems have smooth dy-
namics, an opportunity is lost if an unsupervised objective
function remains static.

To combat aforementioned drawbacks, we propose a
novel approach based on self-paced learning. Inspired by
human learning, self-paced learning (Kumar, Packer, and
Koller 2010) was developed to train a model from ’easy’
samples to ’complex’ samples. This has been shown to
be beneficial in alleviating outlier issue (Jiang et al. 2018;
Zhang et al. 2018), and thus improves the generalization
ability. In practice, data always include both ’easy’ and
’complex’ samples. It would be interesting to introduce
self-paced learning mechanism into 2DPCA. We explicitly
model the complexity of samples and propose Self-Paced
2DPCA (SP2DPCA). A smoothed weighting scheme is uti-
lized to dynamically evaluate the easiness of samples, so that
SP2DPCA learns the clean data gradually, and simultane-
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ously prevent outliers from undermining the training pro-
cess.

Related Works
For L 2D points Ai ∈ Rm×n(i = 1, · · · , L), traditional
2DPCA seeks a projection matrix V ∈ Rn×k by solving
(Yang et al. 2004)

min
VTV=Ik

L∑
i=1

‖(Ai −M)− (Ai −M)VVT‖2F, (1)

where Ik ∈ Rk×k is an identity matrix, then Y = AV. Its
solution corresponds to the eigenvectors of the first k largest
eigenvalues of covariance matrix

∑
i(Ai)

T (Ai). It can be
seen that the solution is dominated by the squared large
distance. Consequently, the objective function is sensitive
to outlying measurements. 2DPCA-L1 proposes to use `1-
norm to enhance its robustness (Wang et al. 2015; Li 2010).
However, `1-norm based 2DPCA loses the rotational invari-
ance property. To address this problem, G2DPCA adopts a
general `2,p-norm and preserves the structural information
of data samples (Zhou et al. 2019). However, it works only
in the row direction.

In (Zhang, Nie, and Li 2017a), robust 2DPCA with opti-
mal mean (R2DPCA) is developed to alleviate outliers and
project image from right and left simultaneously. This prob-
lem can be formulated as following

min
U,V,M

L∑
i=1

∥∥Ai −M−UUT(Ai −M)VVT
∥∥

F

s.t. UTU = Ik1 ,V
TV = Ik2 ,

(2)

where M ∈ Rm×n, U ∈ Rm×k1 , and V ∈ Rn×k2 . M
represents the mean matrix, U and V denote the projection
matrices. Compared to other 2DPCA methods, the optimal
mean M is automatically achieved, rather than traditional
data preprocessing. Additionally, R2DPCA conducts a bi-
lateral dimension reduction. To improve the robustness, F-
norm is applied in (2). Capped version of (2) is also pro-
posed to tackle the outliers that are extraordinarily huge for
certain samples. In particular, if the loss is very large for cer-
tain sample, it will be replaced by a threshold ε, another in-
troduced parameter. Some other methods with F-norm have
also been proposed (Li et al. 2017b; Wang et al. 2017; Hu
et al. 2018).

In fact, outliers have different magnitudes. Intuitively, we
can assign a smaller weight to a sample with larger out-
liers. In such a way, we promote the robustness of model.
Furthermore, human beings often learn from simple exam-
ples of learning task, then introduce complex samples step
by step. This ensures us to capture the intrinsic patterns of
samples with high confidence, and thus reduces the impact
of outliers. This learning scheme is the so-called self-paced
learning which first attempts to train a model on ’easy’ sam-
ples and then gradually involves ’complex’ samples (Kumar,
Packer, and Koller 2010).

It has been shown that self-paced learning is more robust
to hard examples like outliers and noisy points than other

models (Meng, Zhao, and Jiang 2017). A number of tasks
have benefited from it, such as matrix factorization (Zhao
et al. 2015), multi-view clustering (Xu, Tao, and Xu 2015;
Jiang et al. 2018), classification (Li et al. 2017a), multi-task
learning (Li et al. 2017a). Most of these applications lie in
supervised learning domain.

Most existing 2DPCA techniques intend to reduce out-
liers by designing different norms. They fail to explicitly dif-
ferentiate difficult and easy samples. SP-PPCA (Zhao et al.
2020) eliminates the impact of outliers by introducing the
self-paced learning mechanism into PPCA. However, it is
not capable of directly dealing with two-dimensional data.
Besides, it assigns samples binary weights instead of real-
valued weights, which seems unreasonable since noise is
usually non-homogeneously distributed in the data. In this
paper, we seek to bridge the gap between 2DPCA and self-
paced learning. Putting it differently, at a high level, we
introduce self-paced learning to improve the robustness of
2DPCA.

Self-Paced 2DPCA
Inspired by the success of self-paced learning, we explic-
itly consider the complexity of samples and introduce hu-
man learning mechanism into 2DPCA to further enhance its
robustness. In general, our framework can be written as

min
Θ,wi

L∑
i=1

wi`i(Θ) + f(wi, ζ), (3)

where `i(Θ) denotes certain 2DPCA loss function with vari-
able Θ, wi is the weight for the i-th sample, and f(wi, ζ)
represents the self-paced regularizer controlled by the age
parameter ζ. Specifically, ζ determines the samples to be
selected in each learning stage so that more examples are
gradually incorporated during training.

Note that (3) is quite general for many different 2DPCA
models. In this paper, we take R2DPCA as an example to
demonstrate the advantage, i.e.,

`i(M,U,V) =
∥∥Ai −M−UUT(Ai −M)VVT

∥∥
F
.

Finally, our proposed Self-Paced 2DPCA (SP2DPCA) can
be formulated as

min
U,V,M,wi

L∑
i=1

wi

∥∥Ai −M−UUT(Ai −M)VVT
∥∥

F

+ ζ(wi log wi −wi) s.t. UTU = Ik1 ,V
TV = Ik2

(4)

A number of formulations for f(wi, ζ) have been de-
signed in the literature. For simplicity, we adopt the follow-
ing definition (Jiang et al. 2018)

f(wi, ζ) = ζ(wi log wi −wi). (5)

To simulate the human learning process, the weights of
’complex’ examples should be assigned to almost zero at
the beginning. As the learning process goes on, ’complex’
examples are gradually included to train by assigning higher
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weights. Eventually, all examples are involved in training
and the weights are expected to be identical and non-zero.
This is ensured by minimizing

∑
i wi log wi (i.e., maximiz-

ing the entropy). Furthermore, minimizing −
∑
i wi is to

avoid merely incorporating ’easy’ samples by suppressing
the sparsity of wi.

Combining Eqs.(4) and (5), we can obtain the closed-form
solution for wi by setting the first-order partial derivative of
(4) with regard to wi to zero, i.e.,

w∗i = e−`i/ζ . (6)

It is easy to see that wi always outputs values between zero
and one, so Eq.(6) assigns samples the probabilities of being
’easy’. ζ controls the speed of change of the weight w.r.t. the
loss. The samples can be considered as ’easy’ when its loss
is less than ζ; otherwise, they are ’complex’. Hence, more
’complex’ samples become ’easy’ as ζ increases. Without
loss of generality, we ignore the subscript i. It can been seen
that, w∗ is monotonically decreasing w.r.t. ` and it holds that
lim
`→0

w∗ = 1 and lim
`→∞

w∗ = 0. This suggests that easy

examples are preferred by the model due to their smaller
losses. Additionally, limζ→0 w∗ = 0 and limζ→∞w∗ ≤ 1,
i.e., w∗ is monotonically increasing w.r.t. ζ. This indicates
that more samples are included to train a mature model as ζ
increases.

Optimization
By optimizing model (4), we probabilistically measure the
complexity of samples. To solve this multiple variables
problem, we use alternating optimization, i.e., we solve a
single variable while fixing others.
Step 1: Update wi for each sample as Eq.(6).
Step 2: Update U, V and M. Following (Zhang, Nie, and
Li 2017b), problem (4) can be equivalently reformulated as

min
U,V,M

L∑
i=1

di

∥∥Ai −M−UUT(Ai −M)VVT
∥∥2

F

s.t. UTU = Ik1 ,V
TV = Ik2 ,

(7)

where di = wi

2
∥∥Ai−M−UUT(Ai−M)VVT

∥∥
F

.

By setting the first-order derivative of Eq.(7) with respect
to M to zero, we obtain

M =

∑L
i=1 diAi∑L

i=1 di

+ UNVT, (8)

where N is an arbitrary constant matrix. Plugging Eq.(8)
back into Eq.(7) and canceling out the redundant term, we
get

min
U,V

L∑
i=1

di

∥∥Ai − Ā−UUT(Ai − Ā)VVT
∥∥2

F

s.t. UTU = Ik1 ,V
TV = Ik2 .

(9)

where A =
∑L

i=1 diAi∑L
i=1 di

. From Eq.(9), we can see that our
objective function is independent of coefficient matrix N.

Thus, the optimal mean can be simplified as Ā by setting N
to be Null matrix.

Then, we can reformulate Eq.(7) as

max
U,V

L∑
i=1

diTr
(
UT(Ai −M)VVT(Ai −M)TU

)
s.t. UTU = Ik1 ,V

TV = Ik2 ,

(10)

where Tr(·) represents the trace of a matrix.
Denote P1 =

∑L
i=1 di(Ai −M)VVT(Ai −M)T,

P2 =
∑L

i=1 di(Ai −M)TUUT(Ai −M), problem (10)
is equivalent to

U = arg max
UTU=Ik1

Tr(UTP1U) (11)

and
V = arg max

VTV=Ik2

Tr(VTP2V). (12)

They can be solved by the SVD of the matrix P1 and P2,
respectively.
Furthermore, for a given ζ, w changes quickly only in a spe-
cific interval, which is very important for ’complex’ sam-
ples. Therefore, we introduce a parameter c to bring the loss
of each sample into the quickly changing interval for a given
ζ. In addition, we divide each loss by the max loss to better
control the range scaling.

`i :=
c · `i

max{`1, `2, . . . , `L}
. (13)

The impact of c is also discussed in the experiments. The
complete procedures for SP2DPCA are outlined in Algo-
rithm 1. The code of our implementation is published 1.

Theoretical Analysis
We show that the alternative optimization strategy used in al-
gorithm 1 is actually the Majorize–Minimize (MM) scheme,
which ensures its convergence. Then we analyze the prop-
erty of our objective function which reveals the robustness
of SP2DPCA.

Let’s define Fζ(`) as the integration of w∗(`, ζ) w.r.t. `:

Fζ(`) =

∫ `

0

w∗(`, ζ)d` = ζ(1− e
`
ζ ). (14)

Now we consider the optimization strategy for our objec-
tive function. Our objective function (4) is hard to be ana-
lyzed since it involves three variables. In fact, SP2DPCA is
minimizing a much more simplified loss where the weight
w is eliminated.

Theorem 1. Given fixed ζ, our proposed optimization
for solving Eq.(4) is equivalent to the majorization-
minimization algorithm (MM) for solving

min
L∑
i=1

Fζ(`i(M,U,V)). (15)

1https://github.com/sckangz/SP2DPCA.
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Algorithm 1 SP2DPCA
Input:

Dataset Ai ∈ Rm×n, (i = 1, 2, . . . , L);
Reduced dimension F = k1 × k2;
Self-paced learning parameters ζ > 0 and c > 0;

Output:
Projection matrix U ∈ Rm×k1 , V ∈ Rn×k2 ;

1: Initialize VVT = In, UUT = Im, W =
∑

i Ai/L;
2: while not converge do
3: For each training sample, calculate `i by Eq.() and normal-

ize `i by Eq.(13);
4: For each training sample, calculate wi by Eq.(6);
5: while not converge do
6: di =

wi

2

∥∥Ai−M−UUT(Ai−M)VVT
∥∥

F

;

7: M←
∑L

i=1 diAi∑L
i=1

di
;

8: P1←
∑L

i=1 di(Ai −M)VVT(Ai −M)T;
9: Update the columns of U with the k1 left singular vector

of P1 corresponding to the k1 largest singular values;
10: P2←

∑L
i=1 di(Ai −M)TUUT(Ai −M);

11: Update the columns of V with the k2 left singular vector
of P2 corresponding to the k2 largest singular values;

12: end while
13: end while

Proof. Denote Qζ(U,V,M|U∗,V∗,M∗) as the first order
Taylor expansion of Fζ(`(U,V,M)) at `(U∗,V∗,M∗).
For the sake of simplicity, we denote `(U∗,V∗,M∗) as
`(p∗) and `(U,V,M) as `(p).

Qζ(p|p∗) = Fζ(`(p
∗)) + w∗(`(p∗), ζ)(`(p)− `(p∗)).

According to (Meng, Zhao, and Jiang 2015), it holds that

Fζ(`(p)) ≤ Qζ(p|p∗) = Fζ(`(p
∗))+

w∗(`(p), ζ)(`(p)− `(p∗)). (16)

From the above equation, we know that Qζ(p|p∗) is a sur-
rogate function of Fζ(`(p)) for minimizing Fζ(`(p)).

To see that the optimization for minimizing our objective
function (4) is actually the MM algorithm for minimizing∑L
i=1 Fζ(`i(p)), we firstly derived the following equation

based on Eq. (16):

Fζ(`i(p)) ≤ Q(i)
ζ (p|p∗) = Fζ(`i(p

∗))+

w∗(`i(p), ζ)(`i(p)− `i(p∗)),
(17)

where the subscription i represents the i-th sample.
Next, let’s look at how MM algorithm works on min-
imizing

∑L
i=1 Fζ(`i(p)) under the surrogate function∑L

i=1Q
(i)
ζ (p|p∗).

Majorization step: Denote pt as the t-th iteration
learning parameter. The majorization step is to obtain
each Q

(i)
ζ (p|pt) (i = 1, 2, . . . , L) by calculating each

w∗(`i(p
t), ζ):

w∗(`i(p
t), ζ) = arg min

wi

wi`i + f(wi, ζ), (18)

which is the same as the step 1 in Section that we got Eq.
(6) by fixing pt in Eq. (4).

Minimization step: Then the minimization step is to up-
date our learning parameter pt based on Q(i)

ζ (p|pt) (i =
1, 2, . . . , L) that we calculated in majorization step:

pt+1 = arg min
p

L∑
i=1

Q
(i)
ζ (p|pt)

= arg min
p

L∑
i=1

Fζ(`i(p
t)) + w∗(`i(p

t), ζ)(`i(p)− `i(pt))

= arg min
p

L∑
i=1

w∗(`i(p
t), ζ)`i(p).

This is exactly the same as step 2 in Section that we got our
learning parameter p under fixed w in Eq. (5).

Then it is obvious that the MM algorithm ap-
plied on

∑L
i=1 Fζ(`i(p)) under the surrogate function∑L

i=1Q
(i)
ζ (p|p∗) is equivalent to our optimization proposed

to solve Eq. (5).

Now Theorem 1 provides a new perspective on under-
standing our algorithm. The alternating optimization used
in our algorithm is substantially the well-known MM algo-
rithm. According to MM theory, the convergence of our al-
gorithm is guaranteed. Moreover, with the surrogate func-
tion Fζ(`), we can show that our algorithm is robust to hard
samples.
Theorem 2. Suppose that min

k
`k > Y and Y <∞, for any

pair of different samples (i, j) in training dataset:∣∣∣Fζ(`i)− Fζ(`j)∣∣∣ ≤ e−Y/ζ∣∣∣`i − `j∣∣∣. (19)

Proof. Denote a = min{`i, `j}, b = max{`i, `j}. From
Lagrange’s mean value theorem, we know that ∃ξ ∈ [a, b],
s.t.

Fζ(`i)− Fζ(`j) =
∂Fζ(`)

∂`

∣∣∣
`=ξ

(`i − `j) = e−ξ/ζ(`i − `j).

Then it can be easily derived that∣∣∣Fζ(`i)−Fζ(`j)∣∣∣ ≤( sup
`∈[a,b]

∣∣e−`/ζ∣∣)∣∣∣`i−`j∣∣∣ ≤ e−Y/ζ∣∣∣`i−`j∣∣∣.
We know from Theorem 2 that compared with `(·) (i.e., the
original loss), Fζ(`(·)) is more robust toward hard instances
equipped with large loss. In detail, let i be a hard instance
and j an easy one. Since e−Y/ζ < 1, the loss difference∣∣∣Fζ(`i) − Fζ(`j)

∣∣∣ in SP2DPCA is much smaller than the

original loss difference
∣∣∣`i−`j∣∣∣. Therefore, Fζ(`(·)) is more

robust in the sense that it is less sensitive toward large loss.

Experiment
Experimental Setting
Our proposed method SP2DPCA is compared with a number
of state-of-the-art methods, including 2DPCA (Yang et al.
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Figure 1: The first row shows some EYaleB images. The sec-
ond row shows the corresponding noisy images.

2004), 1-D RPCA with optimal mean (denoted by RPCA-
OM) (Nie, Yuan, and Huang 2014), G2DPCA (p = 2) (Zhou
et al. 2019), F2DPCA (Wang and Gao 2017), R2DPCA and
capped R2DPCA (Zhang, Nie, and Li 2017b). We do not
compare with SP-PPCA (Zhao et al. 2020) since its source
code is not provided yet.

Four benchmark image databases, including ORL,
MNIST, AR and EYaleB, are utilized in the experi-
ments. For each dataset, we randomly select 20% im-
ages and place a 1/4 size occlusion. Following the com-
parison methods, half of the images are used for training
and the rest is left for testing. Some sample images are
shown in Fig.1. For SP2DPCA, the optimal parameters are
searched in the range ζ = {50, 100, 200, 500, 1000} and
c = {300, 500, 1000, 3000, 5000} and the best results are
recorded correspondingly. We stop the algorithm when the
loss value does not change much.

Since 2DPCA, G2DPCA and F2DPCA perform one-side
dimension reduction, we first reduce the dimension to m ×
k2. Next, we apply them once again on the reduced samples
to obtain size k1 × k2. For one-dimensional method RPCA-
OM, we reduce the length of vector fromm·n to k1 ·k2. This
guarantees that all reduced data have the same dimension.

Evaluation on Reconstruction
Following previous work, we use the following reconstruc-
tion error to measure the reconstruction quality:

e =
1

n

n∑
i=1

‖xo
i − xr

i ‖F (20)

where n is the number of clean testing images, xo
i is the i-th

original clean image in the test set and xr
i is the correspond-

ing reconstructed image. Table 1 lists reconstruction error
versus different reduced dimensions of seven methods on
four databases. As it can be seen that our method obtains the
best performance in all cases. In particular, SP2DPCA out-
performs R2DPCA and capped R2DPCA by a large margin.
Note that, our method is based on R2DPCA by introduc-
ing the self-paced learning mechanism. Our improvements
over the most recent G2DPCA method are very impressive.
F2DPCA also generates good performance in many cases.
However, G2DPCA, F2DPCA, and R2DPCA can not pro-
duce dominanting performance as ours. This strongly veri-
fies the benefit of adopting self-paced learning, which im-
proves the robustness by a totally different mechanism. In
many cases, RPCA-OM outperforms 2DPCA, which is be-
cause RPCA-OM computes the mean automatically and re-
duces the effect of outliers.

1 2 3 4 5
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Figure 2: Convergence
curve of SP2DPCA on
ORL dataset.
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Figure 3: Mean reconstruc-
tion error versus outliers
rate on ORL dataset

Figure 4: Reconstructed images Reconstructed images
(k1 = k2 = 20) of ORL dataset. The first row shows im-
ages in the test set. The following rows show the correspond-
ing reconstructed by SP2DPCA (Ours), R2DPCA, capped
R2DPCA, F2DPCA, RPCA-OM, 2DPCA, G2DPCA, re-
spectively.

To experimentally illustrate the robustness of our method,
we show the effect of outliers rate on the reconstruction
error in Fig. 3. We can see that our method is less in-
fluenced by the increase of outliers than the most recent
G2DPCA method. This result indicates the robustness of our
method. We also test the average running time of R2DPCA,
capped R2DPCA and our method on four databases, which
is 10.66s, 11.10s, 10.44s respectively. Our boost in effi-
ciency could be attributed to the fast convergence of our al-
gorithm. Take ORL as an example, we show that our method
indeed converges quickly in Fig.2.

To visually see the reconstruction effect, we present some
reconstructed images in Fig. 4. We can observe that the im-
ages reconstructed by our method are very close to the orig-
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ORL

Dimension 14×14 15×15 16×16 17×17 18×18 19×19 20×20
RPCA-OM 0.3005 0.2141 0.2141 0.2141 0.2141 0.2141 0.2141

2DPCA 0.3037 0.3020 0.3010 0.2966 0.2956 0.2919 0.2905
G2DPCA 0.1594 0.1600 0.1540 0.1455 0.1416 0.1320 0.1253
F2DPCA 0.1684 0.1657 0.1566 0.1522 0.1419 0.1322 0.1322
R2DPCA 0.3622 0.3668 0.3591 0.3619 0.3600 0.3651 0.3598

capped R2DPCA 0.3056 0.4831 0.4646 0.4630 0.4674 0.4641 0.4732
SP2DPCA(Ours) 0.0866 0.0808 0.0765 0.0726 0.0677 0.0620 0.0572

MNSIT

Dimension 14×14 15×15 16×16 17×17 18×18 19×19 20×20
RPCA-OM 0.2774 0.2653 0.2514 0.2407 0.2307 0.2197 0.2088

2DPCA 0.4757 0.4459 0.3755 0.2898 0.2568 0.2173 0.1783
G2DPCA 0.2459 0.2240 0.2075 0.1883 0.1659 0.1508 0.1294
F2DPCA 0.2589 0.2525 0.2368 0.2033 0.2245 0.2636 0.2220
R2DPCA 0.2300 0.2156 0.1967 0.1790 0.1587 0.1365 0.1178

capped R2DPCA 0.2103 0.2051 0.1918 0.1737 0.1546 0.1340 0.1226
SP2DPCA(Ours) 0.1753 0.1572 0.1400 0.1231 0.1083 0.0939 0.0924

EYaleB

Dimension 14×14 15×15 16×16 17×17 18×18 19×19 20×20
RPCA-OM 0.3640 0.3517 0.3285 0.2237 0.1798 0.1615 0.1447

2DPCA 0.4197 0.4187 0.4183 0.4177 0.4091 0.3908 0.3683
G2DPCA 0.2396 0.2345 0.2271 0.2217 0.2109 0.2044 0.1934
F2DPCA 0.2439 0.2454 0.2537 0.2348 0.2509 0.2133 0.1986
R2DPCA 0.2450 0.2417 0.2376 0.2363 0.2362 0.2356 0.2188

capped R2DPCA 0.1936 0.2114 0.2144 0.2135 0.2113 0.2145 0.1967
SP2DPCA(Ours) 0.1646 0.1530 0.1430 0.1344 0.1264 0.1189 0.1111

AR

Dimension 14×14 15×15 16×16 17×17 18×18 19×19 20×20
RPCA-OM 0.2130 0.1876 0.1745 0.1669 0.1590 0.1438 0.1283

2DPCA 0.3004 0.2818 0.2678 0.2625 0.2578 0.2438 0.2406
G2DPCA 0.2271 0.2205 0.2152 0.2091 0.2019 0.1922 0.1855
F2DPCA 0.2271 0.2239 0.2249 0.2188 0.2120 0.2056 0.2027
R2DPCA 0.2499 0.2370 0.2312 0.2300 0.2217 0.2213 0.2184

capped R2DPCA 0.3903 0.3623 0.3268 0.3223 0.3061 0.3072 0.3025
SP2DPCA(Ours) 0.1803 0.1693 0.1562 0.1499 0.1338 0.1240 0.1113

Table 1: Reconstruction error w.r.t different reduced dimensions. The best reconstruction result under each dimension is bolded.

Dataset Method Clean Samples Noised Samples

ORL
SP2DPCA with c 0.0572 1.2022

SP2DPCA without c 0.2039 1.2019

MNIST
SP2DPCA with c 0.0924 0.7789

SP2DPCA without c 0.1236 0.7788

EYaleB
SP2DPCA with c 0.1111 1.1033

SP2DPCA without c 0.2039 1.1047

AR
SP2DPCA with c 0.1113 0.9633

SP2DPCA without c 0.2130 0.9623

Table 2: The effect of parameter c on reconstruction error
under clean and noised test samples (reduced to 20×20).

inal images. Though the reconstruction error for R2DPCA,
capped R2DPCA, G2DPCA, and F2DPCA in Table 1 is
not so bad, their image quality is poor in most cases. This
demonstrates that our method is good at preserving the spa-
tial structure of 2D data owing to our self-paced learning
mechanism. By contrast, previous methods just focus on er-
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Figure 5: The effect of ζ of SP2DPCA without c on recon-
struction error under clean and noised samples of EYaleB.

ror minimization, which might not be valid in practice. The
recovered images by 2DPCA have low quality since it lacks
robustness mechanism in its objective function. The recon-
structed images of RPCA-OM are much worse since it loses
spatial information. Some images are totally destroyed and
can not be recognized. The success of SP2DPCA owns to
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Figure 6: The effect of ζ and c of SP2DPCA on reconstruc-
tion error under clean and noised samples of EYaleB.
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Figure 7: Visualization of the weights learned by SP2DPCA
at the 1st and 5th iteration on ORL dataset.
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Figure 8: Clustering accuracy and NMI of original im-
ages and reduced images of AR database (first row) ORL
database (second row). The x-axis represents the reduced di-
mension k1, while the dimension k2 equals k1.

it progresses from easy to hard samples, which leads to our
projection vectors be less influenced by outlying images.

Parameter Analysis
To see the influence of parameter ζ and c, some experiments
are designed. Table 2 lists the reconstruction error of our

method with c and without c (i.e., Eq.(13) is not used.). Dif-
ferent from previous work, we also report the reconstruc-
tion error for noised test samples. We can see that keep-
ing c is helpful for clean data and its influence on noisy
samples is small. The reason could be that noisy items are
presumably all ’complex’, and reweighting is not necessary.
Fig.5a presents the reconstruction error of SP2DPCA with-
out c under different ζ values. It can be seen that a large ζ is
preferred for noisy samples. In general, our performance is
quite stable for a large range of ζ values. Fig.6 presents the
combination effect of ζ and c. It illustrates that SP2DPCA
with c has better performance when small ζ and large c are
used in clean samples cases while large ζ and small c are set
for noised samples.

Furthermore, we visualize the evolution of weights on
ORL data. We display the weights of each sample at the 1st
and 5th iteration of SP2DPCA in Fig. 7. It can be seen that
weights increase as the learning process goes on. Though
most weights in SP2DPCA are quite small at the beginning,
they grow fast. After the 5th epoch, most samples are as-
signed a large weight, i.e., more ’complex’ samples are in-
volved in the learning. Moreover, a few samples still have a
small weight since they are severally corrupted which should
not contribute too much to our final function. This is consis-
tent with our motivation.

Evaluation on Clustering

We further evaluate the benefit of dimension reduction by
conducting clustering experiment. We perform experiments
on two challenging datasets: ORL and AR which have
40 and 120 classes, respectively. After dimension reduc-
tion, k-means clustering algorithm is applied to the lower-
dimensional images. Two popular metrics, Accuracy and
Normalized Mutual Information (NMI), are used to evaluate
the clustering performance. As a baseline, we also include
the clustering results on original images.

Fig.8 presents clustering results under different reduced
dimensions. The superiority of our approach can be clearly
observed. In most cases, dimension reduction methods gen-
erate higher accuracy and NMI than baseline. In some cases,
some techniques obtain lower accuracy and NMI than base-
line, which indicates that they cause information loss during
the dimension reduction process.

Conclusion

In this paper, we make the first attempt to introduce self-
paced learning mechanism into 2DPCA. It is a novel way
to enhance the robustness of 2DPCA. Theoretical analysis
reveals the robustness nature and convergence property of
our method. Extensive numerical and visual experimental
results demonstrate that the proposed approach is more ef-
fective than many other state-of-the-art techniques on image
reconstruction task. Experiments on clustering also show the
superiority of our method on dimension reduction. Hence
our proposed method is very promising for real applications.
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