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Abstract
Unsupervised domain adaptation (UDA) assumes that source
and target domain data are freely available and trained to-
gether to reduce the domain gap. Considering the data pri-
vacy, it is impractical in real scenarios. Hence, it draws our
eyes to optimize the network in the target domain without
labeled source data. To explore this direction in object detec-
tion, for the first time, we propose a source data-free domain
adaptive object detection (SFOD) framework via modeling it
into learning with noisy labels. A straightforward method is
to leverage the pre-trained network from the source domain
to generate the pseudo labels for target domain. However, it
is difficult to evaluate the quality of pseudo labels since no la-
bels are available in target domain. In this paper, self-entropy
descent (SED) is a metric proposed to search an appropri-
ate confidence threshold for reliable pseudo label generation.
Nonetheless, completely clean labels are still unattainable.
After an experimental analysis, false negatives are found to
dominate in the generated noisy labels. Undoubtedly, false
negatives mining is helpful for improvement, and we ease
it to false negatives simulation through data augmentation
like Mosaic. Extensive experiments conducted in four adap-
tation tasks have demonstrated that the proposed framework
can easily achieve state-of-the-art performance. From another
view, it also reminds the UDA community that the labeled
source data are not fully exploited in the existing methods.

Introduction
Convolutional neural networks have improved object de-
tection performance (Ren et al. 2015; Liu et al. 2016) but
rely on large quantities of manual annotated training data.
This limits the ability to generalize when facing new envi-
ronments or data distributions where the object appearance,
scene type or weather are various. It attracts us to study how
to transfer the pre-trained model from a label-rich source
domain to an unlabeled target domain without supervision.

Various unsupervised domain adaptive methods had been
proposed to tackle this problem, whether using domain-
invariant features for alignment (Chen et al. 2018; Saito et al.
2019; He and Zhang 2020; Xu et al. 2020), or narrowing the
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Figure 1: The comparison between conventional UDA ob-
ject detection and our proposed source data-free domain
adaptive object detection.

distribution of the domain in the image space (Liu, Breuel,
and Kautz 2017; Hoffman et al. 2018; Hsu et al. 2020),
or using pseudo label techniques by measuring the simi-
larity between two domains (C.Chen et al. 2019; Q.Wang
and T.Breckon 2020). These methods assume that the data
distribution of labeled source domain and unlabeled tar-
get domain is related but different (Sugiyama and Storkey
2007) and needing access freely to both source and target
domain samples. However, this assumption will encounter
challenges in practical application.

Some classification methods (Li et al. 2020; Kim, Hong,
and Cho 2020; Peng et al. 2020) about source data-free have
made good progress, but there is still a blank in the source
data-free unsupervised domain adaptive object detection.
This paper proposes a simple yet effective approach to solve
the above problems named source data-free domain adap-
tive object detection (SFOD), which decouples the domain
adaptation process by leveraging a pre-trained source model.
The key idea is to train the target model with reliable pseudo
labels in a self-learning manner. The natural question is how
to evaluate the quality of pseudo labels for object detection
and learn with noisy labels. In the classification task, the to-
tal number of samples is fixed. It is challenging in the ob-
ject detection task, since the negative samples are countless
and various, and lots of hard positive samples are difficult
to box out and mixed with negative samples. Only relying
on a small number of reliable samples cannot achieve good
performance. A method is to directly filter out the bounding
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Figure 2: The pipeline of the proposed source data-free domain adaptative object detection (SFOD). The given supervision
signals are only provided by the pre-trained model from source domain during adaptation.

boxes into positive and negative parts according to an ap-
propriate confidence threshold. Although there unavoidably
are some false positive and false negative samples (namely
noisy labels in object detection), the target model can still
be optimized following the ’wisdom of the crowd’ princi-
ple. However, an appropriate confidence threshold is diffi-
cult to search since no metric is available for supervision. It
would harm the performance if confidence threshold is too
high or too low due to the messier noisy labels. This inspires
us to search for an appropriate confidence threshold to make
a trade-off between the positive effect brought by true pos-
itives and the negative effect brought by false positives and
false negatives.

In this paper, a metric named self-entropy descent (SED)
is proposed to search the confidence threshold. Prediction
uncertainty can be quantified as self-entropy, i.e., H(x) =
−
∑
p(x) log(p(x)). The lower the self-entropy the more

confident the prediction. Here we search the confidence
threshold from the higher score to the lower score. Mean-
while, we use the generated pseudo label to fine-tune the
pretrained model and then evaluate the self-entropy of the
dataset after training. Note that the noisier the labels, the
more difficult to fit the labels. Therefore, as the confidence
threshold decreases, when the mean self-entropy descends
and hits the first local minimum, we select it as an appro-
priate confidence threshold for reliable pseudo label genera-
tion. We design a toy experiment to prove the reasonability
of this solution. We have to admit the generated pseudo la-
bels are still noisy. Specifically, there exist false positives
and false negatives in the generated pseudo labels. Through
an experimental analysis, false negatives are found to domi-
nate in the noisy labels, such as small and obscured objects.
Hence, to alleviate the effects from false negatives, false
negatives mining is proposed to solve this problem. And
we ease this solution to false negatives simulation via data

augmentation like Mosaic (Bochkovskiy, Wang, and Liao
2020), since it can exploit the easy positive samples to simu-
late false negative samples. We believe more label denoising
techniques can further boost the performance, and we leave
this as our future work.

The main contributions of this work are summarized as
follows. (i) To the best of our knowledge, this is the first
work on source data-free unsupervised domain adaptative
object detection. (ii) We innovatively model the source data-
free UDA into a problem of learning with noisy labels and
make it solvable. (iii) Our framework can achieve delectable
performance without using source data and surpass most of
the other source data based UDA methods.

Related Works
Domain Adaptive Object Detection
The proposal of DA-Faster (Chen et al. 2018) has made
progress in the UDA object detection task, which aligns both
the image and instance levels in a domain adversarial man-
ner. After that, the following works SW-Faster (Saito et al.
2019), Region-level Alignment (Zhu et al. 2019), CR-DA-
DET (Xu et al. 2020), AT-Faster (He and Zhang 2020), and
style transfer based method (Hsu et al. 2020) were proposed
one after another to push this direction forward. However,
the existing methods require both labeled source data and
unlabeled target data, while our proposed source data-free
one is more practical in real scenarios.

Domain Adaptation without Source Data
Considering data privacy and data transmission, some
source data-free domain adaptative classification methods
have been proposed (Li et al. 2020; Kim, Hong, and Cho
2020). However, there is still a blank in source data-free un-
supervised domain adaptive object detection.
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Figure 3: A toy example to capture the relation between
noisy labels and mean self-entropy. Noise degree denotes
the ratio of positive samples mixed into negative set (-) and
the ratio of negative samples mixed into positive set (+). Two
local minimums appearing in two ends of the curve are re-
sulted from strong sample imbalance.

Figure 4: An appropriate confidence threshold to split pos-
itive and negative objects is searched from the higher score
to the lower score with the metric of SED.

Learning with Noisy Labels
The current research about learning with noisy labels fo-
cuses on relatively simple classification tasks. Earlier work
used an instance-independent noise model, where each class
was confused with other classes (Mnih and Hinton 2012;
Natarajan et al. 2013; Patrini et al. 2017). Recently, some
methods focus on label noise prediction (Vahdat 2017; Veit
et al. 2017; Ren et al. 2018; Jiang et al. 2018). However,
the noisy labels setting in these researches is ideal, where
the noisy labels and true labels are manually set. Moreover,
there are few methods about learning with noisy labels de-
signed for object detection. (Khodabandeh et al. 2019) is
the one easing the object detection problem into image clas-
sification, but it cannot solve the situation when the objects
are hard to box out.

Source free Domain Adaptive Object Detection
The assumption of unsupervised domain adaptive object de-
tection is that the data of labeled source domain Ds ={(
xis, y

i
s

)}Ns

i=1
and unlabeled target domain Dt =

{
xit
}Nt

i=1
are available freely in training step to minimize the discrep-

Figure 5: In a cross-domain dataset, KITTI to Cityscapes,
the ratio of true positives and false positives to the entire
ground truth are counted in different confidence intervals.
The confidence of target domain data is directly predicted
by the pre-trained model from source domain. False nega-
tives (0.0<), which are difficult to box out even when the
confidence threshold is set to zero, are found to dominate in
the noisy labels.

ancy between them. Unlike this learning paradigm, source
data-free UDA aims to optimize the network only through
the unlabeled target domain Dt =

{
xit
}Nt

i=1
. The only su-

pervision signal is given by the pre-trained model θs from
source domain instead of directly using source domain data.

Pseudo Labels Optimization via SED
A toy example: How to evaluate the quality of pseudo la-
bels? In this section, a toy example on two categories of
MNIST dataset representing the positive and negative sam-
ples, called MNIST-2, is presented. To study how to evalu-
ate the quality of pseudo labels, we build different datasets
based on MNIST-2 through mixing different proportions of
positive samples into the negative part or mixing different
proportions of negative samples into the positive part and
use LeNet (Lecun et al. 1998) to train these datasets. For
simplicity, the mixing proportion is also named as noise de-
gree. And a notion named mean self-entropy is introduced to
capture the uncertainty of the prediction of the entire dataset
after training which can be formulated as follows:

H (Dt) = −
1

Nt

Nt∑
i

(
1

nc

nc∑
c

pc
(
xit
)
log
(
pc
(
xit
)))

(1)

where nc refer to the class number, and pc
(
xit
)

denotes the
prediction probability of class c, respectively.

Unsurprisingly, as shown in Figure 3, the noise degree
is positively correlated with mean self-entropy. The noisier
the labels, the more difficult to fit the labels, which leads to
larger mean self-entropy. Note that two local minimums in
two ends of the mean self-entropy curve are resulted from a
strong sample imbalance. Ideally, the cleanest label assign-
ment will lead to the lowest mean self-entropy. Considering
both situations, it indicates a reliable label assignment when
mean self-entropy descends and hits the local minimum.

Self-entropy descent: how to generate reliable pseudo la-
bels in object detection? When it comes to object detec-
tion, the negative samples are countless and various. Based
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Figure 6: Mosaic visualization with pseudo labels.

on the clue in the above section, we search an appropri-
ate confidence threshold from the higher score to the lower
score to split positive and negative samples for training
and stop when the mean self-entropy descends and hits the
FIRST local minimum. We name it as Self-entropy descent.

The unlabeled target domain Dt =
{
xit
}Nt

i=1
and the

source domain’s pre-trained model θs are available freely.
So pseudo labels y (xt) and the corresponding confidence
p (xt) can be obtained as follows:{

y
(
xit
)
, p
(
xit
)}Nt

i=1
=
{
F
(
xit | h, θs

)}Nt

i=1
(2)

where h is a confidence threshold for pseudo label genera-
tion, and F represents Faster-RCNN (Ren et al. 2015) de-
tector. Faster-RCNN is the first anchor-based object detec-
tion method, where the detector has an encoder network as
a feature extractor, a Region Proposal Network (RPN) and
Region of Interest (ROI) classifier.

Specifically, the confidence p (xt) is the output of softmax
in the classification branch. And the pseudo label y (xt) is
determined by the argmax of foreground class probability.
If this score is greater than the given confidence threshold
h, the corresponding box will be assigned as the class la-
bel with the max score; otherwise, it will be assigned as
the background class. To train the target domain data with
pseudo labels, the loss function is formulated as:

Ldet = Lrpn + Lcls + Lreg (3)

whereLrpn,Lcls, andLreg denotes the region proposal loss,
region classification loss and the bounding-box regression
loss. As for region proposal and bounding boxes regression,
we directly use the bounding boxes predicted by the pre-
trained model from the source domain as ground-truth for
training. As claimed by (Borji and Iranmanesh 2019), the
location error is much weaker than classification error in ob-
ject detection task.

After fine-tuning the pre-trained model with the pseudo-
labels generated by a given confidence threshold, we use the
updated model θt to evaluate the mean self-entropy H (Dt)
of the target datasets.

θt = Train({xit, yit}|θs) (4){
−, p̂

(
xit
)}Nt

i=1
=
{
F
(
xit | h, θt

)}Nt

i=1
(5)

H (Dt) = −
1

Nt

Nt∑
i

(
1

nc

nc∑
c

p̂c
(
xit
)
log
(
p̂c
(
xit
)))

(6)

According to the SED policy, we search the confidence
threshold from the higher to the lower score, and early stop
when H (Dt) descends and hit the first local minimum.

hoptimal = argmin
h

H (Dt) (7)

False Negatives Simulation
Although we search for an appropriate confidence threshold
via SED, we have to admit the generated pseudo labels are
still noisy. Label denoise techniques can be applied to clean
the labels and boost performance. In an object detection task,
the noisy labels behave as false positives and false nega-
tives. We count the true positives and false positives in each
confidence interval in several publicly-released datasets. As
shown in Figure 5, false positives only account for a rel-
atively small proportion. And surprisingly, more than 50%
positive samples are difficult to box out even though we
set the confidence threshold close to zero, which behave as
false negatives during training. Therefore, in this paper, we
mainly focus on false negatives mining for labels denoising.

Through visualization, most false negatives are small and
obscured objects mixed with true negatives, which are very
difficult to mine back into the positive part. The domain gap
between the source domain and target domain increases the
difficulty of detecting hard examples. Hence, we ease this
solution to false negatives simulation by exploiting true pos-
itives. Data augmentation is a good way to augment the de-
tected positives into hard ones to simulate the small and ob-
scured objects. It can suppress the negative effects of false
negatives. In this work, Mosaic augmentation (Bochkovskiy,
Wang, and Liao 2020) is selected for false negatives simu-
lation since it can generate small-scale and blocked objects
by exploiting true positives while not harming the true neg-
atives. Mosaic is the improvement of CutMix (Yun et al.
2019) via mixing four training images, which allows the
detection of objects outside their normal context. The two
main steps in Mosaic are random scaling and random cut-
ting. The hard objects with different scales can be simu-
lated by using the simple objects that have been detected
in the target domain via using random scaling. Meanwhile,
the blocked objects with the only visible part of the structure
can be simulated to a certain extent by random cutting. Mo-
saic data {(x̃, ỹ)} can be formulated by the target domain
data {(xA, yA) , (xB , yB) , (xC , yC) , (xD, yD)} as follows:

x̃ =

[
MA � s (xA) MB � s (xB)
MC � s (xC) MD � s (xD)

]
∈ RW×H (8)

ỹ = (λ, λ) · s (yA) + (λ, 1− λ) · (s (yB) + v)
+(1− λ, λ) · (s (yc) + u)
+(1− λ, 1− λ) · (s (yD) + (u, v))

(9)

where W and H represent the size of training images,
{MA,MB ,MC ,MD} ∈ {0, 1}s(W )×s(H) denotes a group
of binary masks, (u, v) is the 2D translation, s (·) and λ rep-
resent random scaling function and random cutting factor.
Figure 6 displays some Mosaic images. We believe more ef-
fective false negatives mining or false negatives simulation
methods can bring further performance boost.
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Figure 7: The curves of mean self-entropy and the corresponding AP or mAP vary with confidence threshold in four adaptation
tasks. It can nearly search the best mAP via SED.

Methods AP of Car
Source only 36.4
DA-Faster (Chen et al. 2018) 38.5
SW-Faster (Saito et al. 2019) 37.9
MAF (Z.He and L.Zhang 2019) 41.0
AT-Faster (He and Zhang 2020) 42.1
Noise Labeling (Khodabandeh et al. 2019) 43.0
DA-Detection (Hsu et al. 2020) 43.9
SFOD (SED) 43.6
SFOD-Mosaic (SED) 44.6
SFOD (Ideal) 43.7
SFOD-Mosaic (Ideal) 44.6
Oracle 58.5

Table 1: Results of adaptation to a new sense, i.e., from
KITTI dataset to Cityscapes dataset.

False negatives simulation is adopted with SED to search
an appropriate confidence threshold for pseudo label gener-
ation. The entire pipeline of SFOD is shown in Figure 2.

Experiments
Experimental Setup
Datasets Five public datasets are utilized in our exper-
iments. (1) KITTI (Geiger, Lenz, and Urtasun 2012) is
a dataset for autonomous driving, which are collected in
different scenes in a city with 7,481 labeled images. (2)
Sim10k (Johnson-Roberson et al. 2017) simulates different
scenes from a computer game Grand Theft Auto V (GTA
V) with 10k images. (3) Cityscapes (Cordts et al. 2016) fo-
cuses on the high variability of outdoor street scenes from

Methods AP of Car
Source only 33.7
DA-Faster (Chen et al. 2018) 38.5
MAF (Z.He and L.Zhang 2019) 41.1
AT-Faster (He and Zhang 2020) 42.1
Noise Labelling (Khodabandeh et al. 2019) 43.0
SFOD (SED) 42.3
SFOD-Mosaic (SED) 42.9
SFOD (Ideal) 42.5
SFOD-Mosaic (Ideal) 43.1
Oracle 58.5

Table 2: Results of adaptation from synthetic to real images,
i.e.,from Sim10k dataset to Cityscapes dataset.

different cities. We transform the instance segmentation an-
notations of 2,975 training images and 500 validation im-
ages into bounding boxes for our experiments. (4) BDD100k
(Yu et al. 2018) includes 100k images. We extract a subset
labeled as daytime, including 36,728 training and 5,258 val-
idation images. (5) Foggy Cityscapes (Sakaridis, Dai, and
Gool 2018) simulates the foggy weather using city images
from Cityscapes with three foggy weather levels and inherit
annotations of Cityscapes.

Implementation Details For a fair comparison, we follow
the same experimental setting as (Xu et al. 2020). The short
size of all training and testing images are resized to a length
of 600 pixels. We use the pre-trained weights of VGG-16
(Simonyan and Zisserman 2015) on ImageNet (Deng et al.
2009) as the backbone of the Faster-RCNN framework. The
detector is trained with SGD with a learning rate of 0.001.
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Methods truck car rider person train motor bicycle bus mAP
Source only 14.0 40.7 24.4 22.4 - 14.5 20.5 16.1 21.8
DA-Faster (Chen et al. 2018) 14.3 44.6 26.5 29.4 - 15.8 20.6 16.8 24.0
SW-Faster (Saito et al. 2019) 15.2 45.7 29.5 30.2 - 17.1 21.2 18.4 25.3
CR-DA-DET (Xu et al. 2020) 19.5 46.3 31.3 31.4 - 17.3 23.8 18.9 26.9
SFOD (SED) 20.4 48.8 32.4 31.0 - 15.0 24.3 21.3 27.6
SFOD-Mosaic (SED) 20.6 50.4 32.6 32.4 - 18.9 25.0 23.4 29.0
SFOD (Ideal) 20.0 46.8 32.1 31.5 - 16.3 25.1 21.8 27.7
SFOD-Mosaic (Ideal) 20.6 50.4 32.6 32.4 - 18.9 25.0 23.4 29.0
Oracle 53.4 53.5 42.8 41.9 - 37.3 38.8 58.1 47.1

Table 3: Results of adaptation to a large-scale dataset, i.e.,from Cityscapes dataset to BDD100k daytime dataset.

The batch size is set to 1. Source domain data are only used
in the pre-trained step.

Comparison Results
Our experiments are carried out in four adaptation tasks.
Figure 7 shows the curves of detection precision and
mean self-entropy under different confidence thresholds for
pseudo label generation. ”Source only” and ”Oracle” are
both tested in target domain validation set, but trained with
labeled source domain training set and labeled target domain
training set, respectively.

Adaptation to A New Sense Different camera setups
(e.g., angle, resolution, quality, and type) widely exist in
the real world, which can cause the domain shift. In this
experiment, we take the adaptation to a new sense task be-
tween two real datasets. The KITTI and Cityscapes datasets
are used as source and target domains, respectively. We
implement our SFOD, DA-Faster (Chen et al. 2018), SW-
Faster (Saito et al. 2019), Noise Labeling (Khodabandeh
et al. 2019), DA-Detection (Hsu et al. 2020), and AT-
Faster (He and Zhang 2020) in this task. In Table 1, the
average precision (AP) on the car category, the only com-
mon object, is compared. When SED is used alone, although
the ideal confidence threshold searched by the labeled target
validation set is not found, the AP is very close to the ideal
one, and our method has surpassed many existing methods
in terms of car detection accuracy. When Mosaic is further
used, the AP can be increased from 43.6% to 44.6% and ex-
ceeds DA-Detection (Hsu et al. 2020) by 0.7%. We can see
that false negatives simulation can ease the negative effect
brought by the false negative noisy labels.

Adaptation from Synthetic to Real Images Another do-
main adaptation scenario is from synthetic data to the real
world. Due to the lack of annotated training data to au-
tonomous driving, synthetic data offers an alternative. Thus,
the source domain is the Sim10k, and the target domain is
the Cityscapes. In this task, we only evaluate the perfor-
mance in annotated cars for which is the only object cate-
gory in both Sim10k and Cityscapes. In Table 2, compared
with DA-Faster (Chen et al. 2018), Noise Labeling (Khod-
abandeh et al. 2019), and AT-Faster (He and Zhang 2020),
our source data-free method can achieve superior or compa-
rable results. However, our source data-free setting is more

challenging than the existing source data-based methods.

Adaptation to Large-Scale Dataset Currently, collecting
large amounts of image data is not difficult, but labeling
those data is still the main problem for supervised learn-
ing methods. In this experiment, we use Cityscapes as a
smaller source domain dataset, BDD100k containing dis-
tinct attributes as a large unlabeled target domain dataset.
Since there is only daytime data in Cityscapes, we select the
labeled daytime data in the three-time periods of BDD100k
as the target domain. We evaluate the mean average preci-
sion (mAP) of detection results on seven categories in both
datasets. As we can see from the baseline and oracle results
in Table 3, resolving such a domain divergence between a
source domain and a target domain is so complicated that
only a handful of approaches (e.g., DA-Faster (Chen et al.
2018), SW-Faster (Saito et al. 2019), and CR-DA-DET (Xu
et al. 2020)) challenge this adaptation task, let alone source
data-free. Even with such a wide range of the domain gap, it
is surprising to see in Figure 7 that the state-of-the-art meth-
ods are improved over a wide range of confidence thresh-
olds. Especially when we use SED or SED+Mosaic, we can
improve the mAP from 26.9% of CR-DA-DET (Xu et al.
2020) to 27.6% and 29.0%.

Adaptation from Normal to Foggy Weather In real-
world applications, object detectors may be used with differ-
ent weather conditions. It is hard to collect and label a large
number of data from every weather condition. To study the
changing environment adaptation from normal weather to a
foggy condition, Cityscapes and Foggy Cityscapes are used
as the source domain and the target domain, respectively.
The comparisons between our SFOD and other UDA object
detection methods (i.e., DA-Faster (Chen et al. 2018), SW-
Faster (Saito et al. 2019), DA-Detection (Hsu et al. 2020),
CR-DA-DET (Xu et al. 2020), and AT-Faster (He and Zhang
2020)) are presented on eight common categories in Table 4.
Compared to 22.3% mAP of the baseline, even using pseudo
labels with label noise trained by SED and Mosaic can still
be improved to 33.5%. However, there is still a certain gap
to achieve the performance of the traditional UDA object de-
tection methods. As a further discussion, we used the same
defogging method like DA-Detection (Hsu et al. 2020) to
improve the image quality of the target domain, and then
studied the performance of SFOD under this condition. As
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Figure 8: Qualitative results. Top: KITTI to Cityscapes. Bottom: Cityscapes to Foggy Cityscapes. Red, green and blue boxes
denote true positives, false negatives and false positives.

Methods defoggy truck car rider person train motor bicycle bus mAP
Source only × 11.6 38.7 31.4 23.6 9.4 17.3 27.4 19.0 22.3
DA-Faster (Chen et al. 2018) × 19.5 43.5 36.5 28.7 12.6 24.8 29.1 33.1 28.5
MAF (Z.He and L.Zhang 2019) × 23.8 43.9 39.5 28.2 33.3 29.2 33.9 39.9 34.0
SW-Faster (Saito et al. 2019) × 23.7 47.3 42.2 32.3 27.8 28.3 35.4 41.3 34.8
DA-Detection (Hsu et al. 2020)

√
24.3 54.4 45.5 36.0 25.8 29.1 35.9 44.1 36.9

CR-DA-DET (Xu et al. 2020) × 27.2 49.2 43.8 32.9 36.4 30.3 34.6 45.1 37.4
AT-Faster (He and Zhang 2020) × 23.7 50.0 47.0 34.6 38.7 33.4 38.8 43.3 38.7
SFOD (SED) × 21.7 44.0 40.4 32.6 11.8 25.3 34.5 34.3 30.6
SFOD-Mosaic (SED) × 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5
SFOD (Ideal) × 22.3 44.0 38.2 31.4 15.1 25.7 34.6 36.8 31.0
SFOD-Mosaic (Ideal) × 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5
SFOD-Defoggy (SED)

√
28.4 50.9 41.6 32.2 15.9 28.1 36.0 40.1 34.2

SFOD-Mosaic-Defoggy (SED)
√

27.9 51.7 44.7 33.2 21.3 28.6 37.3 45.9 36.3
SFOD-Defoggy (Ideal)

√
26.2 50.6 41.8 32.5 24.4 28.7 36.1 40.5 35.1

SFOD-Masoic-Defoggy (Ideal)
√

30.4 51.9 44.4 34.1 25.7 30.3 37.2 41.8 37.0
Oracle × 38.1 49.8 53.1 33.1 37.4 41.1 57.4 48.2 44.8

Table 4: Results of adaptation from normal to foggy dataset, i.e.,from Cityscapes dataset to Foggy Cityscapes dataset.

we can see from Table 4, SFOD performance has been im-
proved by approximately 3% after defogging. Based on the
above phenomenon, it can be concluded that the fog aggra-
vates the label noise in pseudo labels, thus affecting the de-
tection performance.

Discussion and Analysis
In SFOD, the training process with pseudo labels of tar-
get domain data obtained by using the source domain’s
pre-trained model will be disturbed because of noisy la-
bels. Some object detection results are shown in Figure 8,
whether using SED directly to search an appropriate confi-
dence threshold for pseudo label generation or further com-
bining with false negatives simulation, the negative effects
brought by noisy labels can be well suppressed so that more
objects can be detected. Our proposed SFOD achieves com-
parable even superior results to the existing source data
based UDA methods, which means the source domain data
is actually not fully exploited in the existing methods.

Conclusion
In this paper, we propose a new learning paradigm for un-
supervised domain adaptive object detection named SFOD.
The challenge lies in only utilizing a pre-trained model from
the source domain instead of directly using source data to
provide supervision signals. We make it solvable from the
view of learning with noisy labels. Although our method
even surpasses many source data-based methods, we have
to admit that to completely remove noisy labels (false posi-
tives and false negatives) is still very difficult in an unsuper-
vised way. This is a very critical problem in SFOD, and our
work is the first try in this direction and hopes to bring more
inspirations to the UDA community.
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