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Abstract

Relying on the diverse graph convolution operations that have
emerged in recent years, graph neural networks (GNNs) are
shown to be powerful to deal with high-dimensional non-
Euclidean domains, such as social networks or citation net-
works. Despite the tremendous human efforts been taken
to explore new graph convolution operations, there are a
few attempts to automatically search operations in GNNs.
The search space of GNNs is significantly larger than that
of CNNs, because of diverse components in the message-
passing of GNNs. This, therefore, prevents the straightfor-
ward application of classical NAS methods for GNNs. In this
work, we propose a novel dynamic one-shot search space
for multi-branch neural architectures of GNNs. The dynamic
search space maintains a subset of the large search space
along with a set of importance weights for operation candi-
dates in the subset as the architecture parameters. After each
iteration, the subset is pruned by removing candidates with
low importance weights and is expanded with new operations.
The dynamic subsets of operation candidates are not uniform
but is individual for each edge in the computation graph of
the neural architecture, which can ensure the diversity of op-
erations in the final architecture is as competitive as direct
search in the large search space. Our experiments of semi-
supervised and supervised node classification on citation net-
works, including Cora, Citeseer, and Pubmed, demonstrate
that our method outperforms the current state-of-the-art man-
ually designed architectures and reaches competitive perfor-
mance to existing GNN NAS approaches with up to 10 times
of speedup.

Introduction
Although standard deep feature learning methods, e.g. Con-
volutional Neural Networks (CNNs), are successful in tack-
ling grid-like structures (LeCun et al. 1998; Krizhevsky,
Sutskever, and Hinton 2012), such as images, videos, and
voices, they fail to learn features on high-dimensional non-
Euclidean domains, such as molecular structures, social net-
works, and citation networks, which are typically described
by graph structures. To learn graph features from such do-
mains, Graph Neural Networks (GNNs) (Gori, Monfardini,
and Scarselli 2005; Scarselli et al. 2008) have emerged. In
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recent years, GNNs have been demonstrated to be promis-
ing to handle graph-structured data, which have increasingly
attracted the interest of researchers.

The development of GNNs is a generalization of CNNs
from low-dimensional regular grids to high-dimensional
irregular grids (Defferrard, Bresson, and Vandergheynst
2016). There are two different categories of approaches to
defining a GNN. The spectral-based approaches (Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2016;
Bianchi et al. 2019) utilize graph Fourier transform and de-
fine graph convolutional operators in the spectral domain,
and the spatial-based approaches (Veličković et al. 2017;
Hamilton, Ying, and Leskovec 2017) define localized mes-
sage passing rules to aggregate feature information between
neighboring nodes.

Architectures of popular GNNs are often manually de-
signed, which requires tremendous prior knowledge and
intensive experiments. The automation of neural architec-
ture design has been popular for CNNs and RNNs and is
widely known as Neural Architecture Search (NAS). There
are a few attempts of applying RL-based NAS approaches
to design GNNs. GraphNAS (Gao et al. 2020) and AGNN
(Zhou et al. 2019) propose to search for GNNs from the
spatial perspective. The message passing process consists
of several operators, typically including correlation coeffi-
cient calculation and aggregation. The type and hyperparam-
eters for those operators are searched, and a chain-structured
network is constructed by stacking obtained message pass-
ing layers. This kind of approaches corresponds to macro
search in NAS for CNNs (Elsken, Metzen, and Hutter 2018).
GraphNAS (Gao et al. 2020) also proposes a micro search
approach. In the micro setting, hierarchical computational
graphs of fixed operations, e.g. GCN (Kipf and Welling
2016) or GAT (Veličković et al. 2017), is searched as the
basic building blocks. Such blocks are then stacked to build
a GNN.

However, there are several drawbacks to such RL-based
NAS methods. Firstly, RL-based NAS usually needs to
build, train, and evaluate various neural architectures indi-
vidually from scratch, which is extremely time-consuming.
A common technique to reduce such search costs in NAS
for CNNs is parameter sharing (Pham et al. 2018). How-
ever, Zhou et al. (2019) points out that the parameter sharing
mechanism for CNNs is unstable for heterogeneous GNNs
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and should be constrained. Secondly, in the micro Graph-
NAS setting, the RL controller is trained to select from only
12 fixed operations and their connection patterns (Gao et al.
2020), which leads to a huge gap of candidates number com-
paring to the macro setting.

In this paper, we propose a novel one-shot graph NAS
with a dynamic search space. We search for micro architec-
tures built with repeated blocks, and we also design the oper-
ation candidates from the message passing perspective. This
results in 224 message passing operation candidates along
with 2 special candidates including none for no connection
and identity for skip-connection, which is around 18 times
larger than the GNN search space of the micro GraphNAS
(Gao et al. 2020) and is around 28 times larger than the CNN
search space of DARTS (Liu, Simonyan, and Yang 2018). In
our one-shot setting, a hyper-network containing all possible
architectures as sub-graphs, each of which is constructed by
the weighted sum of operation candidates. Instead of shar-
ing parameters among operations in different architectures
(Zhou et al. 2019), they are trained in parallel. To tackle the
challenge of discovering an optimal architecture from such
a large number of operations, we turn to maintain a dynam-
ically updated smaller subset of the search space. An archi-
tecture parameter is introduced as the importance weights of
operations in the subset. The subset of search space is itera-
tively pruned by removing operations that have low impor-
tance weights. Only the top-K operations are retained, and
then the subset is expanded with new samples from a queue
of inactive operations for the next iteration. The iteration
ends when there are no more queued candidates. Our experi-
ments of semi-supervised and supervised node classification
on citation networks, including Cora, Citeseer, and Pubmed,
demonstrate that our method outperforms the current state-
of-the-art manually designed architectures and reaches com-
petitive performance to existing GNN NAS approaches with
up to 10 times of speedup.

Related Works
Graph Neural Networks
A great number of GNN architectures have been designed
by researchers, accompanied by their superior performance
in molecules, bioinformatics, social network, and computer
vision graph-structured data processing (Kipf and Welling
2016; Wu et al. 2019; Morris et al. 2019; Li et al. 2019).
Graph Convolutional Network (GCN) introduces a layer-
wise propagation rule, follow which each node’s feature is
updated by aggregating the information from its neighbors
(Kipf and Welling 2016). Based on this GCN method, a
simplified version – Simple Graph Convolution (SGC) –
was proposed to reduce the excess complexity of GCNs by
repeatedly removing the nonlinearities between GCN lay-
ers and collapsing the resulting function into a single linear
transformation (Wu et al. 2019).

One of the inherent limitations of current GNNs iden-
tified by many researchers is related to the feature aggre-
gation scheme (Morris et al. 2019; Klicpera, Bojchevski,
and Günnemann 2018; Hu et al. 2019). Morris et al. (2019)
demonstrated that the standard GCN can be considered as

the neural version of the 1-dimensional Weiseriler-Leman
(WL) algorithm, of which the expressive power is limited
because of the fixed feature construction scheme. K-GNNs
(GraphGCN), based on the k-dimensional WL algorithm,
was proposed to exceed this performance limit. Klicpera,
Bojchevski, and Günnemann (2018) indicated that current
aggregation schemes extract only limited neighbor informa-
tion. Approximated Personalized Propagation of Neural Pre-
diction (APPNP) utilizes the personalized PageRank aggre-
gation scheme (Page et al. 1999) and adds a teleporting to
the root node, enabling the node to leverage the informa-
tion from a larger neighborhood. To address the same lim-
ited receptive field problem, Hierarchical GCN (H-GCN)
constructs a coarsening mechanism to increase the receptive
field and capture the global information. (Hu et al. 2019).
Bianchi et al. (2019) proposed a novel ARMA filter to over-
come the shortage of the original polynomial filter which are
sensitive to the graph signal and structure.

Neural Architecture Search
Neural Architecture Search (NAS), a burgeoning automatic
architecture engineering technique, can construct a complex
and high-performance neural network architecture without
human engaged trial and error. Early NAS algorithms fo-
cus on the macro-architecture search manner. Specifically,
they aim to optimize operations together with their hyper-
parameters in different layers of a chain-structured neural
network simultaneously. Motivated by the repeated motifs
which are the essential components in the high-performing
hand-crafted CNN architecture, NASNet (Zoph et al. 2018)
proposed to search for normal and reduction cells (micro-
architecture) as the building blocks for the final neural net-
work. Searching on cells instead of the whole architecture
can dramatically reduce the size of searching space, acceler-
ating the searching procedure, while proved to have a better
performance (Elsken, Metzen, and Hutter 2018; Zoph et al.
2018).

Early NAS methods usually incorporate reinforcement
learning (RL) into the searching strategy of NAS (Baker
et al. 2016; Zoph and Le 2016; Zhong et al. 2018; Zoph et al.
2018). In the RL-based NAS approaches, the construction
of neural architectures is considered as a Markov decision
process (MDP), and an RL agent is trained to learn the gen-
eration of architectures. The reward for the agent is based
on the estimation of the architecture performance (Elsken,
Metzen, and Hutter 2018). RL-based NAS methods repeat-
edly train discrete architectures from scratch for evaluation,
which is time-consuming.

To reduce the search cost, differentiable NAS approaches
(Liu, Simonyan, and Yang 2018; Dong and Yang 2019) uti-
lize a continuous relaxation of the architecture representa-
tion, allowing to optimize the architecture by using gradi-
ent descend. This strategy outperforms RL-based NAS ap-
proaches with less computation cost (several GPU hours
comparing to thousands of GPU days). Besides direct re-
ducing the training cost, CARS (Yang et al. 2020) proposes
a novel efficient continuous evolutionary approach based on
the historical evaluation. Similarly, PVLL-NAS (Li et al.
2020a) schedules their evaluation with a performance esti-
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mator, who samples neural architectures for both architec-
ture searching and iterative training of the estimator itself.
Another direction benefits from the efficiency of domain
adaptation. AdaptNAS (Li et al. 2020b) proposes to adapt
neural architectures searched on a small proxy task to a large
target task, which reduces the search cost and guarantees the
performance on large-scale tasks in the meantime.

NAS can help to solve the limitations of GNN architec-
tures addressed above. The automatic architecture search
solves the labor-intensive problem of GNN architecture de-
sign. Besides, by assembling a more complex topological
search space, the searched architecture can be more complex
and robust to different graph data. There are some finished
works of neural architecture search on GNN architecture
such as Auto-GNN (Zhou et al. 2019) and GraphNAS (Gao
et al. 2020). They used the reinforcement learning technique
to perform the neural architecture search and achieve state-
of-art performances. In this paper, we proposed a GNN-
based architecture search algorithm, based on Differentiable
Architecture Search (Liu, Simonyan, and Yang 2018). Our
experiments showed that our results are competitive with
that of the current NAS GNN while our algorithm requires
fewer computation hours.

Methodology
In this section, we first formally define the formulation of
NAS for GNN from a bi-level optimization perspective.
Then, we define the search space for GNNs along with a set
of operation candidates in a message-passing form. Finally,
we discuss how to perform one-shot NAS with the large-
scale operation candidates by utilizing a dynamic search
space.

Problem Formulation
Let A be a search space consisting of neural architectures
α. Neural architecture search (NAS) is to find an optimal
architecture α∗ ∈ A that maximizes or minimizes the given
performance metrics M . A widely used performance metric
could be the validation loss Lvalid on a held-out validation
set Dvalid, and the corresponding network weights are the
optimal weightsw∗ obtained on a training setDtrain, which
minimizes the training loss Ltrain. In general, NAS can be
formulated as a bi-level optimization problem:

min
α

Lvalid(w∗(α),α) (1)

s.t. w∗(α) = arg min
w
Ltrain(w,α), (2)

where Eq. 1 is the upper-level problem w.r.t. the neural ar-
chitecture α, and Eq. 2 is the lower-level problem of the
network weight w. These two levels of the NAS problem
can be optimized alternately until convergence or reaching a
maximum iteration number.

Search Space
We use a hierarchical architecture with branches for the
building blocks, which is a computational graph represented
by a directed acyclic graph (DAG). In each computational
graph, there are two input nodes, one or more intermediate

hc-2 hc-1 	x(0) 	x(1) hc

Figure 1: Architecture search space when N = 5.

nodes, and an output node. Let there beN nodes in the com-
putational graph, i.e. nodes = {I(i)|0 ≤ i ≤ N − 1}. Then,
I(0) and I(1) are input nodes corresponding to the previous
two cells hc−2 and hc−1, I(N−1) is the output node of the
current cell corresponding to hc, and other N − 3 nodes are
intermediate nodes. The directed edges (i, j) of the compu-
tational graph correspond to an operation o(i,j)(·). For ex-
ample, Figure 1 shows the case where N = 5.

To calculate the intermediate nodes, we take the sum of
all the edges that direct to it:

I(j) =
∑
i<j

o(i,j)
(
x(i)
)
, 2 ≤ j ≤ N − 2. (3)

where oi,j ∈ O is an operation, and O is a set of operation
candidates. The output is the concatenation of all the inter-
mediate nodes

I(N−1) =
N−2n

i=2

I(i). (4)

The set O defines the possible operations that can be
used in the architecture. Instead of using a few predefined
fixed candidates for o ∈ O, the operations are defined in a
message-passing form, where feature information is aggre-
gated between neighboring nodes. The output of node v in
layer l is calculated by

h(l)v = Aggregate
({
e(l)u,vW

(l)h(l−1)u : u ∈ N(v)
})

, (5)

where Aggregate(·) is an aggregation function, e(l)u,v is a cor-
relation coefficient,W (l) is the network weight, h(l−1)u is the
output of previous layer (or the input feature xu if l = 1),
and N(v) is the receptive field of the node v.

The reception field N(v) defines how to sample local
neighbors for aggregation (Hamilton, Ying, and Leskovec
2017). We use a fixed setting and sample all the first order
neighbors of the node v as the reception field. The aggre-
gation function can be any permutation invariant operations,
such as sum, mean and max. We also include a multilayer
perceptron (MLP) based aggregation function proposed by
(Xu et al. 2018), which first applies a sum aggregation and
then passes the sum result through an MLP. The correlation
coefficient is calculated between the current node v and each
node u in its reception field N(v). The formulas of various
correlation coefficients are described in Table 1. We further
define an activation function Act(·) for the output. All the
components and their corresponding options are listed in Ta-
ble 2.
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Message
Passing Formula

Gonst eGonst
uv = 1

GCN eGCN
uv = 1/

√
dudv

GAT eGAT
uv = leaky relu(Wl ∗ hu +Wr ∗ hv)

Sym-GAT eSymuv = eGAT
uv + eGAT

vu

Cos eCos
uv =< Wl ∗ hu,Wr ∗ hv >

Linear eLinearuv = tanh(sum(Wl ∗ hu))

Gene-Linear eGene
uv = Wa ∗ tanh(Wl ∗ hu +Wr ∗ hv)

Table 1: Formulas of various correlation coefficients.

Component Options

eu,v
Gonst, GCN, GAT, Sym-GAT,
Cos, Linear, Gene-Linear

Aggregate(·) sum, mean, max, MLP

Act(·) sigmoid, tanh, relu, leaky relu,
relu6, elu, linear, softplus

Table 2: The components of message-passing based opera-
tions and their options.

One-shot Graph NAS

The repeatedly training of various neural architectures from
scratch for evaluation is time-consuming, and the con-
strained parameter sharing mechanism (Zhou et al. 2019) is
limited. In the constrained parameter sharing, the parameters
can be shared if and only if the ancestor and the offspring
have the same shape of input and output, use the same kind
of correlation coefficient function and activation function,
and is not a batch normalization layer or a skip connection.
Parameters violate such constraints still need to be trained
from scratch. Besides, extra computation complexity is in-
troduced comparing to the traditional strategy to check the
constraints for each pair of parameters to be shared, which
is, unfortunately, CPU intensive and cannot be accelerated
by GPUs.

Although the explicit parameter sharing is limited, there
is a technique to share parameters implicitly among archi-
tectures, which is the one-shot search method. The one-
shot search method has been widely adopted for convolu-
tional neural architecture search. It successfully reduces the
search cost of CNN architectures from thousands of GPU
days (Zoph et al. 2018) to several GPU hours (Liu, Si-
monyan, and Yang 2018; Dong and Yang 2019). In one-
shot NAS, a hyper-network containing all possible archi-
tectures in the search space as its sub-graphs is constructed
and trained once for evaluation. Operation candidates are
weighted summed according to an architecture parameter α
in the hyper-network, which reformulates NAS problems to
the learning of the importance weightsα for candidates. Af-
ter search, discrete architectures can be extracted from the

Algorithm 1 Search with dynamic search space
Input: a set of operation candidatesO, the number of nodes
N in a cell, the maximum size M of the candidates subset,
the maximum epoch max epoch of inner-loop to optimize
a hyper-network, the number K of top candidates to be re-
mained after each iteration
Output: architecture parameterα

1: Random sample Oi,j ∈ O of size M
2: while O 6= ∅ do
3: Let O ← O −Oi,j

4: Random initialize α(i,j)

5: for epoch ∈ {1, . . . ,max epoch} do
6: Update weights w with Ltrain(w,α)
7: Update architecture α with Lvalid(w,α)
8: end for
9: Select top K operations O∗i,j ∈ Oi,j

10: Random sample O′i,j ∈ O of size M −K
11: Let Oi,j ← O∗i,j ∪ O′i,j
12: end while

hyper-network.
The remaining problem is how to build a one-shot with

the large scale search space. According to the options listed
in Table 2, there are 224 different combinations of compo-
nents. Besides, we also use two fixed operations including
a none representing not connected and an identity repre-
sent skip connection. This makes the number of operation
candidates too large to be trained in parallel in a weighted
summed one-shot model due to its large demand for GPU
memory. An existing solution to this issue in NAS of CNN
is sampling and training one path per epoch (Dong and Yang
2019). However, we argue that when the operation number
is too large (226 compared to 8 in the previous CNN work),
the probability of an individual operation to be sampled is
too low to train it properly. Especially when the number of
epochs is less than the number of operation candidates, there
must be operations that have never been sampled.

To solve this problem, we propose a dynamic search
space, where a small subset of operation candidates Oi,j ∈
O is maintained for each directed computation edge (i, j)
in the architecture such that j ∈ {2, . . . , N − 2} and i ∈
{0, . . . , j−1}. At the beginning of search, we first randomly
initialize Oi,j . During search, the subset is then updated it-
eratively. The operation candidates are ranked according to
their corresponding architecture parameter α(i,j)

o , and only
the top-K operations are kept after an iteration. The basic
idea is that if an operation is ranked lower than the other in
a subset, it is ranked lower than the others in the universe.
Therefore, operations with low α

(i,j)
o can be replaced with

new operations sampled from the remaining candidates for
the next iteration. Note that the dynamic subsets of opera-
tion candidates are not uniform for all the edges in the cell
but are maintained individually for each edge, which ensures
the diversity of operations in the final architecture.

To construct a one-shot hyper-network of the dynamic
search space, the architecture parameter α = {α(i,j)} is
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Cora Citeseer Pubmed
#Nodes 2708 3327 19717
#Edges 5429 4732 44338
#Features 1433 3703 500
#Classes 7 6 3

Semi
#Train Nodes 140 120 60
#Valid Nodes 500 500 500
#Test Nodes 1000 1000 1000

Full
#Train Nodes 1708 2327 18717
#Valid Nodes 500 500 500
#Test Nodes 500 500 500

Table 3: Statistics and splits of Cora, Citeseer, and Pubmed.

utilized. The mixed operation on edge (i, j) is calculated ac-
cording to the softmax over α(i,j) by:

ō(i,j)(x) =
∑

o∈Oi,j

exp
(
α

(i,j)
o

)
∑

o′∈Oi,j
exp

(
α

(i,j)
o′

)o(x), (6)

where ō(i,j) is the weighted mixed operation on edge (i, j) in
the hyper-network. Therefore, the hyper-network is param-
eterized by two factors, the network weights w and the ar-
chitecture parameter α. To evaluate and optimize the hyper-
network, we use a commonly used loss function for classifi-
cation tasks, negative log likelihood (NLL):

L(w,α) = E(x,y)∼D [−y log (f(x|w,α))] . (7)

Following the bi-level optimization setting in Eqs. 1 and 2,
the architecture parameter is update with the gradient of val-
idation loss:

α′ ← α− ηα · ∇αLvalid(w,α), (8)

where ηα is the architecture learning rate, and Lvalid(w,α)
is the validation loss calculated on a held-out validation set
Dvalid.

After the architecture parameter is optimized in the one-
shot hyper-network, top-K operation candidates on each
edge (i, j) are selected given the α(i,j):

O∗i,j = TOPK(Oi,j | α(i,j)). (9)

For each edge (i, j), we also maintain a queue of unsam-
pled operations. The top-K operations are then combined
with a set of newly sampled architecture from the queue of
unsampled operations, and the inner-loop starts again. The
overall procedure is as shown in Algorithm 1. There is an
inner-loop, where a sampled subset of operation candidates
Oi,j ∈ O for each edge is searched with an one-shot hyper-
network, and an outer-loop, where the subset of operation
candidates is dynamically updated according to the current
architecture parameter αi,j for the edge.

Experiments
Datasets
We search for architectures and test their performances on
citation networks for node classification, including Cora,

Citeseer, and Pubmed. Following the splits used by Yang,
Cohen, and Salakhudinov (2016) and Gao et al. (2020), for
the semi-supervised learning, we use 20 nodes per class for
training and use 500 and 1,000 nodes for validation and test-
ing, respectively For the full supervised learning, we follow
the splits of Gao et al. (2020), where 500 nodes are used
for validation, 500 nodes are used for testing, and all the re-
maining nodes are used for training. The detailed statistics
of the dataset along with the splits are shown in Table 3.

Baseline Methods
In order to demonstrate the effectiveness of our NAS
method, we compare the found architectures with vari-
ous categories of the state-of-the-art architectures, including
manually crafted architectures and various NAS searched ar-
chitectures.

• Manually crafted architectures: Firstly, we consider
two architectures that includes in our search space: GCN
(Kipf and Welling 2016), which is equivalent to ”GCN-
sum-relu”, and GAT (Veličković et al. 2017), which is
equivalent to ”GAT-sum-elu”. Besides, we also compare
with several newly published and complicated methods:
APPNP (Klicpera, Bojchevski, and Günnemann 2018),
which utilize an improved propagation scheme based on
personalized PageRank, ARMA (Bianchi et al. 2019),
which utilizes auto-regressive moving average (ARMA)
filters instead of the polynomial ones, and H-GCN (Hu
et al. 2019), which learns hierarchical representations for
graphs.

c_{k-2}

0

GCN-add-softplus 1

skip-connect

c_{k-1}
GCN-add-softplus

Cos-add-linear

c_{k}

(a) The best architecture on Cora;

c_{k-2} 0

GCN-add-relu6

1

GCN-add-linear

c_{k-1}

skip-connect

SymGAT-mean-relu

c_{k}

(b) The best architecture on Citeseer;

c_{k-2}

0

Const-add-tanh 1

GCN-add-linear

c_{k-1}
SymGAT-mlp-tanh

skip-connect

c_{k}

(c) The best architecture on Pubmed;

Figure 2: The best searched architectures on the semi-
supervised tasks.
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Type Model Cora Citeseer Pubmed
semi full semi full semi full

Manually
Crafted

GCN (Kipf and Welling 2016) 81.4± 0.5% 90.2± 0.0% 70.9± 0.5% 80.0± 0.3% 79.0± 0.4% 87.8± 0.2%

GAT (Veličković et al. 2017) 83.0± 0.7% 89.5± 0.3% 72.5± 0.7% 78.6± 0.3% 79.0± 0.3% 86.5± 0.6%

ARMA (Bianchi et al. 2019) 82.8± 0.6% 89.8± 0.1% 72.3± 1.1% 79.9± 0.6% 78.8± 0.3% 88.1± 0.2%

APPNP (Klicpera et al. 2018) 83.3± 0.1% 90.4± 0.2% 71.8± 0.4% 79.2± 0.4% 80.2± 0.2% 87.4± 0.3%

H-GCN (Hu et al. 2019) 79.8± 1.2% 89.7± 0.4% 70.0± 1.3% 79.2± 0.5% 78.4± 0.6% 88.0± 0.5%

Macro
NAS

AGNN (Zhou et al. 2019) 83.6± 0.3% - 73.8± 0.7% - 79.7± 0.4% -

GraphNAS (Gao et al. 2020) 83.7± 0.4% - 73.5± 0.3% - 80.5± 0.3% -
(2 GPU Hrs) (2 GPU Hrs) (9 GPU Hrs)

Micro
NAS

GraphNAS (Gao et al. 2020) - 90.6± 0.3% - 81.2± 0.5% - 91.2± 0.3%
(6 GPU Hrs) (6 GPU Hrs) (12 GPU Hrs)

DSS (Ours) 83.9± 0.3% 91.0± 0.2% 73.3± 0.3% 81.4± 0.4% 80.3± 0.2% 88.2± 0.4%
(0.9 GPU Hrs) (0.8 GPU Hrs) (0.9 GPU Hrs)

Table 4: Test accuracy on node classification tasks.

• Macro NAS architectures: Both GraphNAS (Gao et al.
2020) on the semi-supervised tasks and AGNN (Zhou
et al. 2019) searched for individual operations in different
chain-structured layers of the entire network along with
their hyper-parameters, such as dimensions and number of
attention heads. These architectures are typically referred
to as macro architectures (Elsken, Metzen, and Hutter
2018).

• Micro NAS architectures: GraphNAS (Gao et al. 2020)
searches micro architectures consisting of a hierarchical
multi-branch structure of 12 predefined operations on the
full-supervised tasks.

Results on Node Classification
We search for neural architectures with the semi-supervised
setting on each dataset. After search, we retrain the searched
architectures in both the semi- and full- supervised setting.
To construct the hyper-networks, we allow 2 intermediate
nodes, which correspond to 5 directed computation edges
in the hyper-networks and 4 directed computation edges in
the final discrete architectures. The hyper-network has 16
channels and 2 layers. We follow Kipf and Welling (2016)
and use a single GCN instead of MLP as the classifier.
Both the network weights and the architecture parameters
are optimized with ADAM. The network learning rate is
set to 0.007, and the architecture learning rate is set to 0.1.
The hyper-network is trained for 100 epochs. Dropout and
weight decay are applied as regularization. We use a dropout
rate of 60%, and use 3e-4 for the weight decay of network
weights and 1e-3 for the weight decay of architecture pa-
rameters. The GCN classifier is excluded from weight decay.
For our dynamic search space, we use 224 message passing
operations and 2 special operations as aforementioned. The
size M of the dynamic subset of operation candidates is 10.
When the subset is updated, top-3 operations are kept.

After search with the one-shot hyper-network, to derive
a discrete architecture, we select the strongest operation on
the top-2 strongest edges. For example, if a node in a com-
putational graph has 3 input edges, we first select the top-

1 operation o∗ on each edge according to αi,j . Then, we
compare edges according to the architecture parameter of
each selected operation α(i,j)

o∗ and retain the top-2 edges. The
searched architectures on each dataset are demonstrated in
Figure 2.

The obtained architectures are evaluated by retraining.
For retraining, we still use networks with 2 layers and op-
timize them with ADAM. The other hyper-parameters are
tuned over the following options:

• Hidden channels: {16, 64, 128, 256};
• Learning rate: {0.05, 0.005, 0.001, 0.0001};
• Dropout rate: {0.0, 0.3, 0.6, 0.9};
• Weight decay: {1e− 4, 5e− 5}.

The test accuracy of searched architectures are demon-
strated in Table 4. Compared to the semi-supervised set-
ting of GraphNAS on Cora and Citeseer, our proposed one-
shot method achieves twice speedup, while on Pubmed it
achieves 10 times of speedup. Because the manually crafted
GNNs use the same architecture for both semi- and full-
supervised tasks, we transfer the architectures searched with
semi-supervision to full-supervision without any modifica-
tion.

On semi-supervised tasks, our architectures consistently
outperform those hand-crafted ones and can reach competi-
tive performance to AGNN and GraphNAS with less search
cost than GraphNAS (detailed search cost is not reported
in AGNN, but they claim a 12-GPU-hours search by their
method without parameter sharing). The full-supervised per-
formance of our architectures is slightly lower than Graph-
NAS on Pubmed. This might because they search for dif-
ferent architectures that are specific to full-supervised tasks,
while we directly transfer architectures searched with semi-
supervision. However, our architectures can still consis-
tently outperform all the manually crafted ones under full-
supervision.
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Search with Dynamic Search Space

To show the effectiveness of using dynamic search space, we
compare our method with a fixed search space and a random
search space. To construct a fixed search space, we evaluated
all the operation candidates individually Chain-structured
networks with 2 layers and 64 channels are constructed and
evaluated. To ensure the diversity of the search space, we se-
lect the top aggregation function and activation function for
each correlation coefficient. The test accuracy of top oper-
ations are shown in Table 5. For random search space, we
randomly sample the subset for each edge (i, j) and search
for only 1 iteration without the top-K updating. We repeat
the random initialization on each dataset for 3 times to get
different random search space.

Operation Cora
Const-mean-elu 77.4%
GCN-add-softplus 79.7%
GAT-add-tanh 79.6%
SymGAT-add-sigmoid 80.7%
Cos-add-linear 73.0%
GeneLinear-mlp-elu 81.3%
Linear-add-tanh 80.5%

Table 5: Top operations used for fix search space. Accuracy
is tested on Cora with the semi-supervised setting.

The test accuracy of search architectures from each search
space on the semi-supervised tasks are reported in Table 6.
Not surprisingly, the proposed dynamic search space con-
sistently reaches the best performance among all the three
search spaces. However, things become interesting when we
compare the fixed search space and the random search space.
The architectures searched in the fixed search space reach
better performance on Cora and Citeseer than the random
search space, but are outperformed by the latter on Pubmed.
Along with the superior performances of dynamic search
space, this demonstrates that operations perform well when
they are solely used do not always perform that well when
they are used in a complex structure. Besides, randomly
sampled candidates also have a chance to outperform can-
didates perform well when they are solely used, although it
is highly unstable due to its random nature.

Search
Space Cora Citeseer Pubmed

Fixed 83.4± 0.2% 71.8± 0.2% 78.9± 0.3%
Random 82.7± 0.9% 71.2± 0.2% 79.2± 0.2%
Dynamic 83.9± 0.3% 72.2± 0.3% 80.3± 0.2%

Table 6: Semi-supervised test accuracy of architectures
searched on different search space. The random search
spaces are sampled for 3 times on each dataset to get dif-
ferent initialization.

Dynamic Search Space Updating

There are two hyper-parameters of the dynamic search
space, i.e. the subset size M of dynamic operation candi-
dates and the K for top-K operation selection. They impact
the search cost and final performance together. In terms of
search cost, the smaller M or the larger K will lead to more
iterations and longer GPU hours. The number of iterations
can be calculated by

iterations = 1 +

⌈
|O| −M
M −K − 2

⌉
, (10)

where |O| is the total number of operation candidates, and
the constant 2 corresponding to the 2 special operations. Al-
though increaseM can reduce the total number of iterations,
a large M requires too much GPU memory and causes over-
flow. We empirically set the upper bound of M to 10.

Subset
Size Top-K GPU

Hours
Cora

semi full

8 1 0.8 82.2± 0.3% 91.0± 0.2%
3 1.2 82.8± 0.3% 91.1± 0.1%

10 1 0.7 82.6± 0.4% 90.8± 0.3%
3 0.9 83.9± 0.3% 91.0± 0.2%

Table 7: Different hyper-parameters for the dynamic search
space.

The results are as shown in Table 6. We set M to our em-
pirical upper-bound 10 and a smaller value 8. The results
show that decreasing M indeed increases the GPU hours
around 0.1 to 0.3 depending on K without any improve-
ment in accuracy. For K, we only retain no more than 1
operation on each edge after search according to our deriv-
ing rule, which means K = 1 is sufficient enough in theory.
However, to avoid instability in practice which might cause
the miss omitting of good operations, we setK = 3 and give
the second and third best operations ”one more chance”. The
results show that a larger K can ensure better results.

Conclusion
In this paper, we propose a novel framework for one-shot
graph neural architecture search with a dynamic search
space. The proposed dynamic search space solves the chal-
lenges of applying one-shot hyper-networks under a large
scale search space and meanwhile ensures the performance
and diversity of final searched architectures. Instead of shar-
ing parameters, the one-shot hyper-networks train and eval-
uate various architectures in parallel, which avoids the lim-
itation of parameter sharing in GNNs on input and output
shapes and operation types. Extensive experiments demon-
strate that our method outperforms the current state-of-the-
art manually designed architectures and reaches competitive
performance to existing GNN NAS approaches with up to
10 times of speedup.
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