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Abstract

Ternary neural networks (TNNs) are potential for network ac-
celeration by reducing the full-precision weights in network
to ternary ones, e.g., {−1, 0, 1}. However, existing TNNs are
mostly calculated based on rule-of-thumb quantization meth-
ods by simply thresholding operations, which causes a sig-
nificant accuracy loss. In this paper, we introduce a stem-
residual framework which provides new insight into ternary
quantization, termed Ternary Residual Quantization (TRQ),
to achieve more powerful TNNs. Rather than directly thresh-
olding operations, TRQ recursively performs quantization on
full-precision weights for a refined reconstruction by combin-
ing the binarized stem and residual parts.With such a unique
quantization process, TRQ endows the quantizer with high
flexibility and precision. Furthermore, our TRQ is generic,
which can be easily extended to multiple bits through re-
cursively encoded residual for a better recognition accuracy.
Extensive experimental results demonstrate that the proposed
method yields great recognition accuracy while being accel-
erated.

Introduction
Low precision neural networks (Esser et al. 2019; Zhou
et al. 2016; Jung et al. 2019; Yang et al. 2020) are currently
emerging as important machine learning technologies, as the
result of the growing need for compressing the best Deep
Neural Networks (DNNs) to support embedded devices with
limited storage and computing capabilities. Ternay Neural
Networks (TNNs) (Alemdar et al. 2017; Laborieux et al.
2020; Zhu et al. 2016; Li, Zhang, and Liu 2016; Deng
et al. 2018), which constrain the key data structures (weights
and activations) to the ternary space {−1, 0, 1}, are one of
the extreme cases in low precision neural networks. TNNs
could directly replace the multiply-accumulate operations
by controlling gate along with binary logical operations, i.e.,
XNOR (Rastegari et al. 2016), thus drastically simplifying
the consumption and reducing the memory cost in the infer-
ence phase of DNNs.

For TNNs, to alleviate the performance degradation
brought by ternarization, a suitable quantizer that can ac-
curately map full-precision values to the quantized ternary
ones is absolutely important. Many approaches have been

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

explored for quantizer optimization. TWN (Li, Zhang, and
Liu 2016) first proposed a weight quantizer that performs
ternarization via fixed thresholds and scale factors, conse-
quently removing the multiplication operations and improv-
ing the resource-efficient. Followed by TWN, TTQ (Zhu
et al. 2016) optimizes the weight quantizier by learning dif-
ferent scale factors for different states of weights, achieving
higher performance on recognition tasks. Besides, GXNOR-
Net (Deng et al. 2018) focuses on activition ternarization
and employs a derivative approximation technique for back-
ward optimization of quantizer. Actually, though the ternary
quantizers have been improved in the above literatures, they
are consistently trained with simple thresholding operations,
which leads to large approximation error to full-precision
weights and remains the significant performance gap.

In this paper, we aim at designing a more accurate and
flexible ternary quantizer to improve the performance of
TNNs. Specifically, we propose ternary neural networks
with residual quantization (TRQ), whcih provides new
insight into ternarization by introducing a stem-residual
framework. As shown in Figure 1, rather than directly
thresholding operations, we perform the ternary weights
(O1) by the combination of binarized stem and resid-
ual, which are obtained via recursive quantization on full-
precision weights. Such stem-residual quantization brings
a refined reconstruction for ternary weights, thus achiev-
ing small quantization error and accurate mapping. Spe-
cially, a learnable coefficient is introduced in the quantiza-
tion process, which avoids a dedicated tuning and automati-
cally searchs for a better approximation to the full-precision
weights. Besides, TRQ could be extended to multiple bits by
recursively encoding the residual, leading to a new method
for multi-bit quantization. Experimental results indicate the
TRQ has a superior performance on CIFAR-10/100 and Im-
ageNet. We summarize our contributions as follows:

1) We propose Ternary Neural Networks with Residual
Quantization (TRQ) in the stem-residual framework, which
significantly improves the performance of the thresholding
based methods by calculating ternary weights in a recursive
manner.

2) Our method is based on a learnable quantization
scale, and a more reasonable training process to better ap-
proximate full-precision weights.

3) We evaluate TRQ on three diverse classification
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Figure 1: The stem-residual framework of ternary neural networks with residual quantization. As illustrated in the figure, TRQ
recursively performs quantization on full-precision weights for a refined reconstruction by combining the binarized stem and
residual parts. In the figure, Rn and On represent the residual and quantitized weights at the nth quantization level. When
n = 1, the ternary quantizer is achieved.

datasets, demonstrating that our method performs much bet-
ter than the state-of-the-art approaches.

Related Work
Binary Neural Network. Binary neural networks
(BNNs), in which both activition and weights are quan-
tizated to binary values, e.g., {−1, 1}, are particularly
adopted as a popular model acceleration way because all
calculation can be realized through bit-wise operations
(Rastegari et al. 2016) and avoid multiplications. As
demonstrated in XNOR-Net (Rastegari et al. 2016), a binary
convolution layer can achieve 32× memory saving and
58× speed-up on CPUs. However, the extreme compression
rate also comes with a significant performance degrada-
tion. XNOR-Net based on a ResNet-18 (He et al. 2016)
architecture only achieves 51.2% accuracy on the ImageNet
classification dataset, leaving a 18% accuracy gap from
its full-precision counterpart. Though series of approaches
have been explored for training BNNs, including weight
approximation (Bulat and Tzimiropoulos 2019; Gu et al.
2019a; Rastegari et al. 2016), architecture redesign (Liu
et al. 2020a; Zhuang et al. 2019), loss reconstruction (Hou,
Yao, and Kwok 2016; Gu et al. 2019b; Liu et al. 2020b) and
training strategy optimization (Kim et al. 2020; Han et al.
2020), the performance gap issue is still unsolved.

Ternary Neural Network. TNNs constrain the full-
precision values in the ternary space {−1, 0, 1}, resulting in
an extra zero state compared with BNNs. However, TNNs
can also be implemented as efficient as BNNs. As demon-
strated in GXNOR-Nets (Deng et al. 2018), for a multipli-

cation operation in TNNs, when one of the weight and acti-
vation is zero or both of them are zeros, the corresponding
computation unit is resting, until the non-zero weight and
non-zero activation enable and wake up the required com-
putation unit. Thus (Deng et al. 2018) regards computation
trigger determined by the weight and activation as a con-
trol signal/gate to start the XNOR computation and imple-
ment GXNOR-Nets in an event-driven paradigm. Further,
(Laborieux et al. 2020) extends the hardware implementa-
tion of BNNs to TNNs on a hybrid 130 nm CMOS/RRAM
chip, demonstrating that the same memory array architec-
ture can be used to implement ternary weights instead of
binary weights. Moreover, (Alemdar et al. 2017) designs a
purpose-built hardware architecture for TNNs and imple-
ments it on FPGA and ASIC, which processes TNNs at up
to 2.7× better throughput, 3.1× better energy efficiency and
635× better area efficiency than the 1-bit implementation on
TrueNorth chip. These works prove that TNN may be a bet-
ter candidate to balance the trade off between efficiency and
accuracy than BNN.

When training TNNs, however, all above works use sim-
ply thresholding operations to yield ternary weights. The
differences among the methods just lie in the way of ob-
taining the threshold, which is either through a fixed thresh-
old (Deng et al. 2018; Li, Zhang, and Liu 2016) or through
a learned threshold optimized during training (Zhu et al.
2016). In this paper, we argue that such purely thresholding
operations are not accurate enough to map the full-precision
weights and easy to cause significant performance gap be-
tween TNNs with the full-precision counterparts. Thus we
propose TRQ to introduce a ternary quantizer in a stem-
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residual framework, which performs ternary quantization
in a novelly recursive way and consequently improve the
recognition performance.

Methodology
This section introduces our ternary neural networks with
residual quantization (TRQ), which are designed to reduce
the quantization error in a recursive way. In the follow-
ing, we first give some preliminaries about ternarization. We
then present our ternary quantization method, including the
details on the forward and backward propagation. Further-
more, we describe how to generalize our approach to n-bit
quantization and end by an extensive discussion.

Preliminary
The main operation in deep neural networks is expressed as

z = w>a, (1)

where w ∈ Rn indicates the weight vector, a ∈ Rn indicates
the input activition vector computed by the previous network
layer.

A ternary neural network means representing the floating-
point weights and/or activitions with ternary values. For-
mally, the quantization can be expressed as

Qx(x) = βxTx, (2)

where x indicates floating-point parameters including
weights w and activitions a, Tx denotes ternary values after
the quantization on x. βx is a scalar used to scale the ternary
values, which can be computed from the floating-point pa-
rameters or learned via backpropagation. Tx is usually ob-
tained by thresholding function

Tx =


+1 if x > ∆

0 if |x| 6 ∆,

−1 if x < −∆

(3)

where ∆ denotes a fixed threshold used for quantization.
With the ternary weights and activitions, the vector multi-
plications in the forward propagation can be reformulated
as

z = Qw(w)>Qa(a) = βwβa(Tw �Ta), (4)
where � represents the inner product for vectors with bit-
wise operations.

In general, the derivative of quantization function Qx(x)
is non-differentiable and thus unpractical to directly apply
the backpropagation to perform the training phase. For this
issue, we follow the now widely adopted “Straight-Through
Estimator (STE)” (Hubara et al. 2016) to approximate the
partial gradient calculation, which is formally expressed as

∂Qx (x)

∂x
≈ β1|x|61. (5)

TNNs with Residual Quantization (TRQ)
Existing TNNs are based on directly thresholding method
for ternary implementation, inevitably causing performance
degradation due to an inaccurate mapping of full-precision

values to ternary counterparts. To deal with the issue, Resid-
ual Quantization (TRQ) is introduced to learn TNNs. TRQ
can extract binarized stem and residual respectively by per-
forming recursive quantization on full-precision weights,
which are combined to generate refined ternary representa-
tion, leading to the stem-residual framework for TNNs.

In our stem-residual ternarization framework, the stem is
first extracted as a coarse fitting for full-precision weight w,
which is calculated by performing sign(·) on w as

Sw = αsign(w), (6)

where α is a learnable coefficient, which avoids a very care-
ful tuning to seek the optimal quantization scale compared
with the previous methods. Then, we further calculate the
quantization error as

R = w − Sw (7)

Furthermore, we calculate the residual Rw from R by per-
forming sign(·) on the quantization error R

Rw = αsign(R). (8)

Based on Eq.6 and Eq.8, we finally obtain our ternary
weight designed for more accurate approximation as

Tw = Sw + Rw. (9)

Up to now, we achieve the ternary quantization in a stem-
framework, with the full-precision weights quantitized to
ternary values, i.e., {−2α, 0, 2α}. Obviously, seeking a bet-
ter coefficient α is significantly important for the effective-
ness of quantizer, which would be elaborated in the follow-
ing section.

Backward Propogation of TRQ
In the backward propagation, what need to be learned and
updated are the full-precision weight w and the learnable co-
efficient α. For the stem-residual framework, the two kinds
of parameters are jointly learned. And in each layer, TRQ
updates the w first and then the α.

Update w For w updating, the gradient through the quan-
tizer to weights are estimated by a STE that pass the gradient
whose weight value is in the range of (-2α, 2α):

∂Tw

∂w
= 1|x|62α. (10)

Then, we can obtain the updating process of w

δw =
∂L

∂Tw

∂Tw

∂w
, (11)

w← w− ηδw, (12)

where L is the loss function and η is learning rate.

Update α The coefficient α determines the scale of bi-
narized stem and residual, which is directly related to the
quality of the ternary weights. Moreover, we also empiri-
cally find the recognition performance is quite sensitive to
the α. Thus rather than a coarse gradient acquired like w,
we disassemble the quantizer to calculate a finer gradient of
α
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∂Tw

∂α
= sign(w) + sign(R) + α

∂sign(R)

∂α
(13)

where
∂sign(R)

∂α
=
∂sign(R)

∂R

∂R

∂α
= 1|R|61 (−sign(w)) .

(14)

Then, we can obtain the updating process of α

δα =
∑ ∂L

∂Tw

∂Tw

∂α
, (15)

α← α− ηδα. (16)

Generalization to n-bit Quantization
We focus on ternary quantization in this paper, while it does
not mean that TRQ is limited to ternary applications. Ac-
tually, TRQ could also be generalized to multiple bits by
recursively encoding residual. In this section we propose a
feasible scheme for TRQ expansion, which is not the only
way and could be further explored in the future work.

We obtain the subtly quantized weights by recursively
performing quantization on full-precision weights. In this
process, residual at different quantization levels is gener-
ated for refining the quantitized weights. Here for n-bit
(n = 2, 3, 4, ...) quantization, we define the residual at level
i (i = 1, 2, ..., 2n − 3) as Ri

w, which could be computed as

Ri
w = αsign(w −Ti−1

w ), (17)

where Ti−1
w denotes the quantized weights at (i−1)th level,

and we recursively acquire the quantized weights at level i
as

Ti
w = Ti−1

w + Ri
w. (18)

Here we regard the ternary quantization as the initial state
for recursive quantization as

T0
w = Sw + αsign(w − Sw). (19)

Based on such recursive quantization, we could easily ob-
tain the residual at different levels, thus refining the residual
and reducing the approximation error with the full-precision
counterparts.

For the updating of α in backward propagation, due to the
complexity of recursive process, we just roughly estimate
the gradient α by regarding it as the coefficient of Sw and
Ri

w

∂Tw

∂α
= Sw +

2n−3∑
i=0

Ri
w. (20)

Complexity Analysis
A comprehensive comparison on computational complexity
is shown in Table 1. We assume that the input number of
the neuron is N , i.e., N inputs and one neuron output. For
computational complexity of TNNs, we follow the setting
of GXNOR-Net (Deng et al. 2018) for a comparison. As de-
scribed in GXNOR-Net, with the event-driven paradigm, the
resting computation would occur when the weight or activa-
tion of TNNs is zero, and the exception cases are achieved

by XNOR operations. As a result, the computational com-
plexity of TNNs is similar to BNNs, half of the network with
1-bit weights and 2-bit activations. Noted that for TRQ, the
stem-residual framework is only employed on weights, thus
it also enjoys the low complexity O(N) as normal TNNs.

Differences of TRQ from Existing Residual
Quantization Methods
Residual quantization has been first proposed in High-Order
Residual Quantization (HORQ) (Li et al. 2017) to enhance
the performance of BNNs, further being explored by (Guo
et al. 2017; Fromm, Patel, and Philipose 2018) to be en-
coded into low-bitwidth CNNs. All above works compute
residual error and recursively approximate it by a series of
binary maps. However, limited by the residual scales, they
can be just applied to n-bit quantization, with no general-
ization ability to arbitrary value quantization even parame-
ter changes, such as the TNNs emphasized in this paper. In-
stead, our TRQ enjoys the flexibility by the skillful combina-
tion of the binarized stem and residual, thus enabling ternary
quantization and even arbitrary value quantization by recur-
sively refining the residual. Moreover, a key feature of the
prior residual schemes is the use of analytically calculated
scaling coefficients, which can be sub-optimal. In contrast,
our TRQ employs learnable coefficient α to minimize the
training loss, thus fully utilizing the strength of back prop-
agation algorithm to seek for the suitable quantization scale
automatically.

Experiments
In this section, to demonstrate the effectiveness of the pro-
posed TRQ, we perform diverse experiments on three clas-
sification datasets: CIFAR-10/100 (Alex Krizhevsky 2014)
and ImageNet (ILSVRC 2012) (Russakovsky et al. 2015).
Notice that in the following sections, unless otherwise spec-
ified, we refer the baseline as the quantization network with
same architecture as TRQ, while adopting a normal ternary
method described in Section 3.1 (Preliminary).

Implementation Details
Data preprocessing. For CIFAR-10/100, all the images
are padded with 4 pixels on each side, then a random 32×32
crop is applied, followed by a random horizontal flip. During
inference, the scaled images are used without any augmen-
tation. For ImageNet, training images are randomly cropped
into the resolution of 224 × 224. After that, the images are
normalized using the mean and standard deviation. No addi-
tional augmentations are performed except the random hor-
izontal flip. However, for validation images, we use center
crop instead of random crop and no flip is applied.

Training procedure. We conduct experiments mainly on
ResNet (He et al. 2016) backbones, including ResNet-
18 and ResNet-34. VGG-Small (Simonyan and Zisserman
2014) is also leveraged for the CIFAR-10 and CIFAR-100
experiments. Similar with previous works (Liu et al. 2018;
Kim et al. 2020; Gu et al. 2019a), we do not quantize the first
and last layers. For experiments on CIFAR-10/100, we run
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Bit width(A/W) Operations ComplexityMultiplication Accumulation XNOR BitCount
32/32 N N 0 0 -
1/1 0 0 N 1 O(N)
2/1 0 0 2N 1 O(2N)

ter/ter 0 0 0∼N 0/1 O(N)

Table 1: Operation overhead comparisons with different computing bit width.

Width TRQ-wo TRQ TRQ-0.6
ResNet-18 16-16-32-64 52.1 54.9 53.9
ResNet-18 32-32-64-128 60.5 62.7 61.3

VGG-Small - 62.6 65.4 60.5

Table 2: The accuracy (%) of TRQ with and without α
(TRQ and TRQ-wo), and with fixed α = 0.6 (TRQ-0.6)
on CIFAR-100.

Figure 2: The Top-1 accuracy (%) on CIFAR-10 and CIFAR-
100 with different initial α.

the training algorithm for 200 epochs with a batch size of
256. Besides, a linear learning rate decay scheduler is used,
and the initial learning rate is set to 0.01. For experiments
on ImageNet, we train the models for up to 100 epochs with
a batch size of 256. The learning rate starts from 0.001 and
is decayed twice by multiplying 0.1 at 75th and 95th epoch.
For all settings, Adam with momentum of 0.9 is adopted as
the optimizer.

Ablation Study on CIFAR
In this section, we first perform hyperparameter sweeps to
determine the value of initial α to use. Following this we
analyze the necessary of α, then show TRQ’s generalization
to multiple bits, and finally we evaluate the effectiveness of
TRQ on CIFAR datasets.

Initial value of α. The initiation of parameters is always
important for network training. Thus we set different initial
values 0.10, 0.3, 0.5, 0.8, 1, 1.5, and 2 to α, to explore their
influence on classification. The experiments are performed
on the CIFAR-10/100 with ResNet-18 backbone. From the
results on CIFAR-10 in Figure 3, we can observe that the
performance is similar when the initial values of α are set

Figure 3: Evolution of α values in different layers during
training with ResNet-18 backbone on CIFAR-100.

between 0.8 and 1.5, and the best performance can be ob-
tained at 1.5. Meanwhile, from the results on CIFAR-100,
the good performance plateau appears when initial α is at
the range between 0.8 and 1, and the performance of initial
value 1 performs slightly better than that of 0.8. For both
CIFAR-10 and CIFAR-100, the performance of initial val-
ues outside the 0.5 to 1.5 is fairly worse, which shows the
importance of setting the initial value of α carefully. Based
on the above discoveries, we set the initial value of α as 1 in
the following experiments, which shows a stably high clas-
sification performance on both two datasets.

Analysis of α. α is introduced in stem-residual framework
to automatically seek for a reasonable quantization scale. To
valid the necessarity of α, we provide the experiments with
and without α on CIFAR-100 with the backbone ResNet-
18. As shown in Table 2, compared with the TRQ without
α (TRQ-wo), TRQ achieves better performance by a large
margin (more than 2%), thus indicating that α is quite im-
portant for training TRQ.

Simultaneously, as illustrated in Figure 3, we explore how
the value of α changes during training. It can be observed
that α converges to around 0.6 with training. While this
doesn’t mean that α should be fixed and not optimized. As
shown in Table 2, we compare the results in two cases, i.e.,
α is fixed to 0.6 (TRQ-0.6) and α is optimized by back-
propagation. As we can see, when fixed α as 0.6, a greater
performance decrease happens. When employed with VGG-
Small backbone, the accuracy even drops nearly 5% com-
pared with the learnable α, thus validating the superiority of
the leanable α. We conjecture that is because with the learn-
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Figure 4: Quantization error of TRQ and baseline based on
ResNet-18 backbone.

CIFAR-10/% CIFAR-100/%
full-precision 87.7 58.2ResNet-18

16-16-32-64 baseline 85.2 54.8
TRQ 85.5 54.9
full-precision 90.9 63.0ResNet-18

32-32-64-128baseline 87.5 60.6
TRQ 89.3 62.7
full-precision 92.6 66.8

VGG-Small baseline 89.1 61.8
TRQ 91.2 65.4

Table 3: The experimental comparison of baseline and TRQ
on CIFAR datasets.

able α in stem-residual framework, the quantizer could be
automatically finetuned to find the best quantization map-
ping for each layer, thus yielding better performance than
the fixed case.

Quantization Error. In order to better understand our
TRQ, which achieves more accurate mapping between
ternary weights and their full-precision counterparts, we
adopt mean square error (MSE) (Esser et al. 2019) to cal-
culate the quantization error between w and Tw

E =
1

M

∑
(
w −Tw

w
)2, (21)

where M denotes the total number of weights in each layer.
In Figure 4, we plot the quantization error for the 2th-
17th layer of ResNet-18. The results show our methods
(the red histogram) have lower quantization error compared
with baseline (the gray histogram) which achieved with the
method in Section 3.1 in most layers. In particular, the quan-
tization error can be reduced by more than 25% (0.8 vs 0.6)
in the 9th layer.

Generalization to n-bit Quantization. We illustrate that
our TRQ can not only improve the performance on ternary
quantization, but also could be generalized to multiple bits.
Here we adopt the expansion method described in Sec. 3.4,
and perform the experiments on CIFAR-100 with the back-
bone of ResNet-18. The baseline model is implemented as
the way as DoReFa-Net (Zhou et al. 2016). As shown in
Figure 5, we can see that the accuracy of TRQ increases

Figure 5: The results of TRQ with multi-bits expansion on
CIFAR-100.

(56.2%→ 58.3%→ 58.5%) as the bit width increases from
2bit to 4bit, indicating that the compound residual at multi-
levels could refine the quantized weights thus improving the
recognition accuracy. Moreover, our TRQ consistently sur-
passes the baseline on each bit width (0.4%, 1.1%, 1.0% on
2bit, 3bit and 4bit, respectively), which demonstrates the su-
periority and potential of the residual quantization on multi-
ple bits.

Evaluation on CIFAR. To valid the effectiveness of TRQ,
here we perform ablation evaluation on CIFAR datasets.
Three backbones are used in this experiment, including
VGG-Small, ResNet-18 with the width of 16-16-32-64 and
32-32-64-128. We report the performance of baseline and
TRQ on both CIFAR-10 and CIFAR-100 in Table 3. As
shown in Table 3, for ResNet-18, TRQ achieves stable im-
provement on both CIFAR-10 and CIFAR-100 datasets com-
pared with the corresponding baseline. Moreover, TRQ with
the backbone ResNet-18 whose width is 32-32-64-128 even
realizes nearly lossless ternarization on CIFAR-100 (only
with a 0.3% performance drop). All these demonstrate the
effectiveness of TRQ on ResNet. For VGG-Small, our TRQ
consistently surpasses the baseline by a margin of 2.1%
and 3.5% on CIFAR-10 and CIFAR-100, respectively, which
further shows the general improvement brought by TRQ.

Comparison on ImageNet
We further analyze the effectiveness of TRQ on the large-
scale dataset ImageNet. Since the dataset is challenge
for network optimization, we use multi-batchnormalization
(multi-bn) strategy on ResNet architecture to alleviate opti-
mization problems, which termed as TRQ-bn in the experi-
ment. For a basic block in TRQ-bn, three batch normalizaton
layers are employed: the first is a pre-bn (Zhang et al. 2018)
before quantization, the second is a normal bn following the
ternary convolutional layer, and the last is an additional bn
following the shortcut. Such multi-bn can significantly im-
prove the network performance by improving the distribu-
tion of feature maps with only small additional memory and
computation.
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Network Method A/W Top-1/% Top-5/% Complexity

ResNet-18

full-precision 32/32 69.3 89.2 -
baseline ter/ter 61.6 82.7 O(N)
TRQ(ours) ter/ter 62.6 83.7 O(N)
TRQ-bn(ours) ter/ter 64.4 85.1 O(N)
TRQ-a(ours) ter/ter 65.7 85.9 O(N)
RTN ter/ter 64.5 - O(N)
XNOR-Net 1/1 51.2 73.2 O(N)
BiReal-Net 1/1 56.4 79.5 O(N)
LQ-Net 2/1 62.6 84.3 O(2N)

ResNet-34

full-precision 32/32 73.3 91.3 -
baseline ter/ter 65.2 85.7 O(N)
TRQ(ours) ter/ter 66.2 86.3 O(N)
TRQ-bn(ours) ter/ter 68.2 87.7 O(N)
BiReal-Net 1/1 62.2 83.9 O(N)
LQ-Net 2/1 66.6 86.9 O(2N)
HWGQ 2/1 64.3 85.7 O(2N)

Table 4: Comparison of top-1 and top-5 accuracy on ImagNet.

(a) Training accuracy curves on ImagNet.

(b) Validation accuracy curves on ImageNet.

Figure 6: Accuracy curves of baseline, TRQ and TRQ-bn
with ResNet-18 backbone on ImageNet.

We illustrate the training and validation accuracy curves
of baseline, TRQ and TRQ-bn in Figure 6, which are based
on a ResNet-18 backbone. From Figure 6, we can observe
that TRQ greatly improves the convergence speed of TNNs.
Simultaneously from the results in Table 4, TRQ improves
baseline by 1.0% on both ResNet-18 and ResNet-34 top-
1 accuracy, which validates the effectiveness of our TRQ
on large-scale dataset. Moreover, TRQ-bn could further ob-
tains an improvement of about 2% on both the two networks,
which finally achieves approximate 93% of the accuracy of

their full-precision counterparts.
To evaluate the overall performance of TRQ, we further

compare TRQ with four state-of-the-art quantization on Im-
ageNet, i.e., XNOR-Net (Rastegari et al. 2016), BiReal-Net
(Liu et al. 2018), LQ-Net (Zhang et al. 2018), HWGQ (Cai
et al. 2017) and RTN (Li et al. 2020). To perform fair com-
parison with RTN whose quantization procedure of weight
and activation are both improved, we apply residual quan-
tization to activation as well, leading to TRQ-a. The results
are reported in Table 4. From Table 4, by comparing with
the state-of-the-art BNNs including XNOR-Net and BiReal-
Net, we can significantly boost the performance. For exam-
ple, TRQ outperforms XNOR-Net and BiReal-Net by 11%
and 6% on ResNet-18, respectively. It is because that ternary
values {−1, 0, 1} has stronger representational capability
than binary values {−1, 1}, while the complexity of two
methods are same because of the event-driven paradigm in
TNNs. Moreover, our TRQ can even achieve better perfor-
mance than the methods with O(2N) complexity, including
the “A/W = 2/1” cases in LQ-Net and HWGQ. Besides, our
TRQ-a surpasses RTN 1.2% in accuracy, demonstrating the
advantage of the effective residual quantization scheme.

Conclusion

In this paper, we propose efficient and accurate ternary neu-
ral networks equipped with residual quantization (TRQ). In-
stead of prior works that directly apply thresholding quan-
tization, our TRQ implement ternary quantization from
a stem-residual perspective. Particularly, TRQ rethinks of
ternary weights as a combination of binarized stem and
residual, thus endowing the ternary quantizer more accurate
mapping between full-precison weights and ternary coun-
terparts. Furthermore, we empirically demonstrate that TRQ
is generic to extend to multiple bits through recursively
encoded residual, which ulteriorly brings improvement on
recognition accuracy. As a result, TRQ can significantly boot
the performance of BNNs, and additionally even outper-
forms quantization methods with higher complexity.
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