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Abstract

In this paper, we propose an online clustering method called
Contrastive Clustering (CC) which explicitly performs the
instance- and cluster-level contrastive learning. To be spe-
cific, for a given dataset, the positive and negative instance
pairs are constructed through data augmentations and then
projected into a feature space. Therein, the instance- and
cluster-level contrastive learning are respectively conducted
in the row and column space by maximizing the similarities
of positive pairs while minimizing those of negative ones. Our
key observation is that the rows of the feature matrix could
be regarded as soft labels of instances, and accordingly the
columns could be further regarded as cluster representations.
By simultaneously optimizing the instance- and cluster-level
contrastive loss, the model jointly learns representations and
cluster assignments in an end-to-end manner. Besides, the
proposed method could timely compute the cluster assign-
ment for each individual, even when the data is presented
in streams. Extensive experimental results show that CC re-
markably outperforms 17 competitive clustering methods on
six challenging image benchmarks. In particular, CC achieves
an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100)
dataset, which is an up to 19% (39%) performance improve-
ment compared with the best baseline. The code is available
at https://github.com/XLearning-SCU/2021-AAAI-CC.

Introduction
As one of the most fundamental tools in unsupervised learn-
ing, clustering could group data into different clusters with-
out any label. Although some promising results have been
achieved recently (Nie et al. 2011; Liu et al. 2016; Nie et al.
2016; Liu, Shen, and Tsang 2017; Wang et al. 2020), most
of the algorithms would produce undesirable results due to
the over-high complexity in real-world datasets. To solve the
problem, deep clustering (Guo et al. 2017b; Ghasedi Dizaji
et al. 2017; Peng et al. 2016, 2018) utilizes neural networks
to extract representative information from images for facil-
itating the downstream clustering tasks. In very recent, the
focus of the community has shifted to how to learn repre-
sentation and perform clustering in an end-to-end fashion.

*Corresponding author: Xi Peng
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The key observation. By regarding the rows of the
feature matrix as the soft labels of instances (i.e., P (cj |xi)
denotes the probability of sample i belonging to cluster j),
the columns could be interpreted as cluster representations
distributed over the dataset. As a result, the instance- and
cluster-level contrastive learning could be conducted in the
row and column space of the feature matrix, respectively.

For example, JULE (Yang, Parikh, and Batra 2016) pro-
gressively merges data points and takes the clustering re-
sults as supervisory signals to learn a more discriminative
representation by a neural network. DeepClustering (Caron
et al. 2018) iteratively groups the features with k-means and
uses the subsequent assignments to update the deep network.
This kind of alternation-learning method would suffer from
the error accumulated during the alternation between the
stages of representation learning and clustering, which re-
sults in suboptimal clustering performance. Moreover, the
aforementioned methods can only deal with offline tasks,
i.e., the clustering is based on the whole dataset, which lim-
its their application on large-scale online learning scenarios,
i.e., to cluster the data stream.

To conquer the aforementioned offline limitation, this pa-
per proposes an online deep clustering method called Con-
trastive Clustering (CC). Our idea comes from the observa-
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tions shown in Fig. 1. For a given dataset, we use a deep
network to learn the feature matrix whose rows and columns
correspond to the instance and cluster representations, re-
spectively. In other words, we treat the label as a special
representation by projecting input instances into a subspace
with a dimensionality of the cluster number. In this sense,
the rows of the feature matrix could be interpreted as the
cluster assignment probabilities (i.e., instance soft labels),
and the columns could then be regarded as the cluster distri-
butions over instances (i.e., cluster representations). Owing
to the observation of “label as representation”, it is feasible
to perform online clustering since the clustering prediction
is now recast as a special representation learning task that is
“independent” of other instances.

With the above observations, we propose a novel dual
contrastive learning framework to learn instance and clus-
ter representations. Specifically, CC first learns the feature
matrix of data pairs constructed through a variety of data
augmentations such as random crop and blurring. After that,
the instance- and cluster-level contrastive learning are con-
ducted in the row and column space of the feature matrix by
gathering the positive pairs and scattering the negatives. By
considering the instance- and cluster-level similarity under
our dual contrastive learning framework, CC is able to si-
multaneously learn discriminative features and perform on-
line clustering in an online and end-to-end manner. To sum-
marize, the major contributions of our work are as follows:

• For the first time, we reveal that the row and column of
the feature matrix intrinsically correspond to the instance
and cluster representation, respectively. Hence, deep clus-
tering could be elegantly unified into the framework of
representation learning;

• To the best of our knowledge, this could be the first
work of clustering-specified contrastive learning. Differ-
ent from existing studies in contrastive learning, the pro-
posed method conducts contrastive learning at not only
the instance-level but also the cluster-level. Such a dual
contrastive learning framework could produce clustering-
favorite representations as proved in our experiments;

• The proposed model works in an online and end-to-end
fashion, which only needs batch-wise optimization and
thus can be applied to large-scale datasets. Moreover, the
proposed method could timely predict the cluster assign-
ment for each new coming data point without accessing
the whole dataset, which suits streaming data.

The proposed method shows superior performance on six
challenging image datasets, including CIFAR-10/100, STL-
10, ImageNet-10/Dogs, and Tiny-ImageNet. It significantly
outperforms state-of-the-art methods on all six datasets. In
particular, it achieves an up to 39% performance improve-
ment in terms of NMI on the CIFAR-100 dataset compared
with the most competitive baseline.

Related Work
In this section, we briefly introduce some recent develop-
ments in two related topics, namely, contrastive learning and
deep clustering.

Contrastive Learning
As a promising paradigm of unsupervised learning, con-
trastive learning has lately achieved state-of-the-art perfor-
mance in representation learning (Grill et al. 2020; Li et al.
2020). The basic idea of contrastive learning is to map the
original data to a feature space wherein the similarities of
positive pairs are maximized while those of negative pairs
are minimized (Hadsell, Chopra, and LeCun 2006). In early
works, the positive and negative pairs are known as prior.
Recently, various works have shown that large quantities of
data pairs are crucial to the performance of contrastive mod-
els (He et al. 2020) and they could be constructed using the
following two strategies under the unsupervised setting. One
is to use clustering results as pseudo labels to guide the pair
construction (Sharma et al. 2020). The other, which is more
direct and commonly used, is to treat each instance as a class
represented by a feature vector and data pairs are constructed
through data augmentations (Dosovitskiy et al. 2014). To
be specific, the positive pair composes of two augmented
views of the same instance, and the other pairs are defined
to be negative. Given the data pairs, several loss functions
have been proposed for contrastive learning. For example,
triplet loss (Schroff, Kalenichenko, and Philbin 2015) mini-
mizes the distance between an anchor and a positive, while
maximizing the distance between the anchor and a negative,
NCE (Gutmann and Hyvärinen 2010) performs nonlinear lo-
gistic regression to discriminate between the observed data
and some artificially generated noise, and SimCLR (Chen
et al. 2020) adopts the normalized temperature-scaled cross-
entropy loss (NT-Xent) to identify positive pairs across the
dataset.

The differences between our method and existing con-
trastive learning methods are addressed below. On the one
hand, the existing works only perform contrastive learning at
the instance level, whereas our method simultaneously con-
ducts contrastive learning at both the instance- and cluster-
level following the observation of “label as representation”.
On the other hand, the existing works aim to learn a general
representation, which is off-the-shelf for the downstream
tasks. On the contrary, our method is specifically designed
for clustering, which could be the first successful attempt of
task-specified contrastive learning.

Deep Clustering
Although promising results have been achieved, traditional
clustering algorithms give discouraging results on large-
scale complex datasets due to the inferior capability of repre-
sentation learning. Benefit from the powerful representative
ability of deep neural networks, deep clustering (Xie, Gir-
shick, and Farhadi 2016; Guo et al. 2017a; Li et al. 2020)
has shown promising performance on complex datasets. For
example, JULE (Yang, Parikh, and Batra 2016) performs ag-
glomerative clustering by iteratively learning the data rep-
resentations and cluster assignments. Analogously, Deep-
Clustering (Caron et al. 2018) groups the features using k-
means and updates the deep network according to the clus-
ter assignments in turn. Another recent work SL (Asano,
Rupprecht, and Vedaldi 2019) makes cluster assignments
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Figure 2: The framework of Contrastive Clustering. We construct data pairs using two data augmentations. Given data pairs,
one shared deep neural network is used to extract features from different augmentations. Two separate MLPs (σ denotes the
ReLU activation and ∼ denotes the Softmax operation to produce soft labels) are used to project the features into the row and
column space wherein the instance- and cluster-level contrastive learning are conducted respectively.

by solving the optimal transport problem and alternatively
perform representation learning and self-labelling. Though
this kind of two-stage methods could jointly learn represen-
tations and perform clustering, their performance might be
hurt by the errors accumulated during the alternation. Be-
sides, the entire dataset is usually needed to perform clus-
tering, which limits their application in large-scale and on-
line scenarios. Recently, some online clustering methods
have been proposed (Peng, Yi, and Tang 2015; Zhong et al.
2020). For example, IIC (Ji, Henriques, and Vedaldi 2019)
discovers clusters by maximizing mutual information be-
tween the cluster assignments of data pairs and DHOG (Dar-
low and Storkey 2020) extends it to a hierarchical manner.
PICA (Huang, Gong, and Zhu 2020) learns the most seman-
tically plausible data separation by maximizing the parti-
tion confidence of the clustering solution. Though grounded
in theory, these works rely heavily on the auxiliary over-
clustering trick which is hard to explain.

Different from the above deep clustering methods, we
treat the label as a special representation so that the instance-
and cluster-level representation learning could be conducted
in the row and column space, respectively. Besides, former
works mainly utilize the representative capability of deep
neural networks for clustering, whereas our method dually
utilizes contrastive samples to facilitate clustering under a
unified framework. Such a clustering-oriented contrastive
learning paradigm helps the model to minimize the inter-
cluster similarities to separate different clusters. To the best
of our knowledge, this could be one of the first successful
attempts to promote clustering through contrastive learning.

Method
As illustrated in Fig. 2, our method consists of three jointly
learned components, namely, a pair construction backbone
(PCB), an instance-level contrastive head (ICH), and a
cluster-level contrastive head (CCH). In brief, PCB con-
structs data pairs through data augmentations and extracts
features from augmented samples, after that ICH and CCH
respectively apply contrastive learning in the row and col-
umn space of the feature matrix. After training, the cluster
assignments can be easily obtained through the soft labels

predicted by CCH. Notably, although our basic idea indi-
cates that the dual contrastive learning could be directly con-
ducted on the feature matrix, we experimentally find that
the clustering performance could be improved by decou-
pling the instance- and cluster-level contrastive learning into
two independent subspaces. The possible reason is that such
a decoupling strategy could improve the representability of
ICH and CCH. In the following, we will elaborate on the
three components in turn and introduce the proposed objec-
tive function at the end.

Pair Construction Backbone
Inspired by the recent progress in contrastive learning (Chen
et al. 2020), CC uses data augmentations to construct data
pairs. Specifically, given a data instance xi, two stochastic
data transformations T a, T b sampled from the same family
of augmentations T are applied to it, resulting in two cor-
related samples denoted as xai = T a(xi) and xbi = T b(xi).
The previous works have suggested that a proper choice of
augmentation strategy is essential to achieve a good per-
formance in downstream tasks. In this work, five types of
data augmentation methods are used, including Resized-
Crop, ColorJitter, Grayscale, HorizontalFlip, and Gaussian-
Blur. For a given image, each augmentation is applied inde-
pendently with a certain probability following the setting in
SimCLR (Chen et al. 2020). Specifically, ResizedCrop crops
an image to a random size and resize the crop to the original
size; ColorJitter changes the brightness, contrast, and satura-
tion of an image; Grayscale converts an image to grayscale;
HorizontalFlip horizontally flip an image and GaussianBlur
blurs an image by a Gaussian function.

One shared deep neural network f(·) is used to extracted
features from the augmented samples via hai = f(xai ) and
hbi = f(xbi ). As for the architecture of the network, theoret-
ically, our method does not depend on a specific network.
Here, we simply adopt ResNet34 (He et al. 2016) as the
backbone for fair comparison.

Instance-level Contrastive Head
Contrastive learning aims to maximize the similarities of
positive pairs while minimizing those of negative ones. The
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Algorithm 1: Contrastive Clustering
Input: dataset X ; training epochs E; batch size N ;

temperature parameter τI and τC ; cluster
number M ; structure of T , f , gI , and gC .

Output: cluster assignments.
// training
for epoch = 1 to E do

sample a mini-batch {xi}Ni=1 from X
sample two augmentations T a, T b ∼ T
compute instance and cluster representations by
hai = f(T a(xi)), h

b
i = f(T b(xi))

zai = gI(h
a
i ), z

b
i = gI(h

b
i )

yai = gC(h
a
i ), y

b
i = gC(h

b
i )

compute instance-level contrastive loss Lins

through Eq. 1–3
compute cluster-level contrastive loss Lclu

through Eq. 4–6
compute overall loss L by Eq. 7
update f, gI , gC through gradient descent to
minimize L

end
// test
for x in X do

extract features by h = f(x)
compute cluster assignment by
c = argmax gC(h)

end

characteristics of pairs can be defined by different criteria.
For example, one can define pairs of within-class samples to
be positive and leave the others negative. In this work, since
no prior label is available on the clustering task, the positive
and negative pairs are constructed at the instance-level ac-
cording to pseudo-labels generated by data augmentations.
More specifically, the positive pairs consist of samples aug-
mented from the same instance, and the negative pairs oth-
erwise.

Formally, given a mini-batch of size N , CC performs two
types of data augmentations on each instance xi and results
in 2N data samples {xa1 , . . . , xaN , xb1, . . . , xbN}. For a spe-
cific sample xai , there are 2N−1 pairs in total, among which
we choose its corresponding augmented sample xbi to form
a positive pair {xai , xbi} and leave other 2N − 2 pairs to be
negative.

To alleviate the information loss induced by contrastive
loss, we do not directly conduct contrastive learning on
the feature matrix. Instead, we stack a two-layer nonlin-
ear MLP gI(·) to map the feature matrix to a subspace via
zai = gI(h

a
i ) where the instance-level contrastive loss is ap-

plied. The pair-wise similarity is measured by cosine dis-
tance, i.e.,

s(zk1
i , zk2

j ) =
(zk1

i )(zk2
j )>

‖zk1
i ‖‖z

k2
j ‖

, (1)

where k1, k2 ∈ {a, b} and i, j ∈ [1, N ]. To optimize pair-
wise similarities, without loss of generality, the loss for a

given sample xai is in the form of

`ai = − log
exp(s(zai , z

b
i )/τI)∑N

j=1[exp(s(z
a
i , z

a
j )/τI) + exp(s(zai , z

b
j)/τI)]

,

(2)
where τI is the instance-level temperature parameter to con-
trol the softness. Since we hope to identify all positive pairs
across the dataset, the instance-level contrastive loss is com-
puted over every augmented samples, namely,

Lins =
1

2N

N∑
i=1

(`ai + `bi ). (3)

Cluster-level Contrastive Head
Following the idea of “label as representation”, when pro-
jecting a data sample into a space whose dimensionality
equals to the number of clusters, the i-th element of its fea-
ture can be interpreted as its probability of belonging to the
i-th cluster, and the feature vector denotes its soft label ac-
cordingly.

Formally, let Y a ∈ RN×M be the output of CCH for a
mini-batch under the first augmentation (and Y b for the sec-
ond augmentation), and then Y a

n,m can be interpreted as the
probability of sample n being assigned to cluster m, where
N is the batch size and M equals to the number of clusters.
Since each sample belongs to only one cluster, ideally, the
rows of Y a tends to be one-hot. In this sense, the i-th col-
umn of Y a can be seen as a representation of the i-th cluster
and all columns should differ from each other.

Similar to gI(·) used in the instance-level contrastive
head, we use another two-layer MLP gC(·) to project the
feature matrix into an M -dimensional space via yai =
gC(h

a
i ), where yai denotes the soft label of sample xai (the i-

th row of Y a). For clarity, let ŷai be the i-the column of Y a,
namely, the representation of cluster i under the first data
augmentation, and we combine it with ŷbi to form a positive
cluster pair {ŷai , ŷbi }, while leaving other 2M −2 pairs to be
negative, where ŷbi denotes the second augmented represen-
tation of cluster i. Again, we use cosine distance to measure
the similarity between cluster pairs, that is

s(ŷk1
i , ŷ

k2
j ) =

(ŷk1
i )>(ŷk2

j )

‖ŷk1
i ‖‖ŷ

k2
j ‖

, (4)

where k1, k2 ∈ {a, b} and i, j ∈ [1,M ]. Without loss of
generality, the following loss function is adopted to distin-
guish cluster ŷai from all other clusters except ŷbi , i.e.,

ˆ̀a
i = − log

exp(s(ŷai , ŷ
b
i )/τC)∑M

j=1[exp(s(ŷ
a
i , ŷ

a
j )/τC) + exp(s(ŷai , ŷ

b
j)/τC)]

,

(5)
where τC is the cluster-level temperature parameter to con-
trol the softness. By traversing all clusters, the cluster-level
contrastive loss is finally computed by

Lclu =
1

2M

M∑
i=1

(ˆ̀ai +
ˆ̀b
i )−H(Y ), (6)
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whereH(Y ) = −
∑M

i=1[P (ŷ
a
i ) logP (ŷ

a
i )+P (ŷ

b
i ) logP (ŷ

b
i )]

is the entropy of cluster assignment probabilities
P (ŷki ) = 1

N

∑N
t=1 Y

k
ti , k ∈ {a, b} within a mini-batch

under each data augmentation. This term helps to avoid the
trivial solution that most instances are assigned to the same
cluster (Hu et al. 2017).

Objective Function
The optimization of ICH and CCH is a one-stage and end-
to-end process. Two heads are simultaneously optimized and
the overall objective function consists of the instance-level
and cluster-level contrastive loss, i.e.,

L = Lins + Lclu. (7)

Generally, a dynamic weight parameter could be applied
to balance the two losses across the training process (Grill
et al. 2020), but in practice, we find a simple addition of
the two losses already works well. The full training and test
process of the model is summarized in Algorithm 1.

Experiments
Datasets We evaluate the proposed method on six chal-
lenging image datasets. A brief description of these datasets
is summarized in Table 1. Both the training and test set
are used for CIFAR-10, CIFAR-100 (Krizhevsky and Hin-
ton 2009), and STL-10 (Coates, Ng, and Lee 2011), while
only the training set is used for ImageNet-10, ImageNet-
Dogs (Chang et al. 2017a), and Tiny-ImageNet (Le and
Yang 2015). For CIFAR-100, its 20 super-classes rather than
100 classes are taken as the ground-truth. For STL-10, its
100,000 unlabeled samples are additionally used to train the
instance-level contrastive head.

Dataset Split Samples Classes

CIFAR-10 Train+Test 60,000 10
CIFAR-100 Train+Test 60,000 20

STL-10 Train+Test 13,000 10
ImageNet-10 Train 13,000 10

ImageNet-Dogs Train 19,500 15
Tiny-ImageNet Train 100,000 200

Table 1: A summary of datasets used for evaluations.

Implementation Details For a fair comparison with previ-
ous works (Ji, Henriques, and Vedaldi 2019; Huang, Gong,
and Zhu 2020), we adopt ResNet34 as the backbone net-
work. As ResNet is designed for images of size 224 × 224,
some previous works modified the standard ResNet and used
some tricks (e.g., the Sobel layer used in PICA) to help
the network to handle small-sized inputs (e.g., CIFAR-10).
However, these specialized modifications and tricks should
vary with images of different sizes, which brings difficulty
in model selection. In this work, we simply resize all in-
put images to the size of 224 × 224, and no modification
is applied to the standard ResNet which produces a feature
vector of size 512 for each sample. Notably, as up-scaling
already leads to blurred images, we leave the GaussianBlur

augmentation out for the small image collections including
CIFAR-10, CIFAR-100, STL-10, and Tiny-ImageNet.

For the instance-level contrastive head, the dimensional-
ity of the row space is set to 128 to keep more information
of images, and the instance-level temperature parameter τI
is fixed to 0.5 in all experiments. For the choice of the di-
mensionality of the row space, we conduct additional anal-
ysis in the supplementary material. As for the cluster-level
contrastive head, the dimensionality of the column space is
naturally set to the number of clusters, and the cluster-level
temperature parameter τC = 1.0 is used for all datasets.

The Adam optimizer with an initial learning rate of
0.0003 is adopted to simultaneously optimize the two con-
trastive heads and the backbone network. No weight decay
or scheduler is used. The batch size is set to 256 due to the
memory limitation, and we train the model from scratch for
1,000 epochs to compensate for the performance loss caused
by small batch size as suggested by Chen et al. The exper-
iments are carried out on Nvidia TITAN RTX 24G and it
takes about 70 gpu-hours to train the model on CIFAR-10,
90 gpu-hours for CIFAR-100, 160 gpu-hours on STL-10,
20 gpu-hours on ImageNet-10, 30 gpu-hours on ImageNet-
dogs, and 130 gpu-hours on Tiny-ImageNet.

Evaluation Metrics Three widely-used clustering metrics
including Normalized Mutual Information (NMI), Accuracy
(ACC), and Adjusted Rand Index (ARI) are utilized to eval-
uate our method. Higher values of these metrics indicate bet-
ter clustering performance.

Comparisons with State of the Arts We evaluate the
proposed CC on six challenging image benchmarks and
compare it with 17 representative state-of-the-art cluster-
ing approaches, including k-means (MacQueen et al. 1967),
SC (Zelnik-Manor and Perona 2005), AC (Gowda and Kr-
ishna 1978), NMF (Cai et al. 2009), AE (Bengio et al. 2007),
DAE (Vincent et al. 2010), DCGAN (Radford, Metz, and
Chintala 2015), DeCNN (Zeiler et al. 2010), VAE (Kingma
and Welling 2013), JULE (Yang, Parikh, and Batra 2016),
DEC (Xie, Girshick, and Farhadi 2016), DAC (Chang et al.
2017b), ADC (Haeusser et al. 2018), DDC (Chang et al.
2019), DCCM (Wu et al. 2019), IIC (Ji, Henriques, and
Vedaldi 2019) and PICA (Huang, Gong, and Zhu 2020). For
SC, NMF, AE, DAE, DCGAN, DeCNN, and VAE, cluster-
ing results are obtained via k-means on the features extracted
from images.

According to the results shown in Table 2 and 3, CC sig-
nificantly outperforms these state-of-the-art baselines by a
large margin on all six datasets. In particular, CC surpasses
the closest competitor PICA by 0.114 on CIFAR-10, 0.121
on CIFAR-100, and 0.153 on STL-10 in terms of NMI.
Moreover, CC achieves more than 50% performance im-
provements on the best baseline on CIFAR-100 and Tiny-
ImageNet in terms of ARI. The remarkable results demon-
strate the powerful clustering ability of CC, which benefits
from the incorporation of the instance- and cluster-level con-
trastive learning.
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Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057
SC 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076
AC 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067
NMF 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065
AE 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152
DAE 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138
DCGAN 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157
DeCNN 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142
VAE 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168
JULE 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138
DEC 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203
DAC 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302
ADC – 0.325 – – 0.160 – – 0.530 – – – –
DDC 0.424 0.524 0.329 – – – 0.371 0.489 0.267 0.433 0.577 0.345
DCCM 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555
IIC – 0.617 – – 0.257 – – 0.610 – – – –
PICA 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761
CC(Ours) 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.859 0.893 0.822

Table 2: The clustering performance on six object image benchmarks (Part 1/2). The best results are shown in boldface.

Dataset ImageNet-Dogs Tiny-ImageNet

Metrics NMI ACC ARI NMI ACC ARI

K-means 0.055 0.105 0.020 0.065 0.025 0.005
SC 0.038 0.111 0.013 0.063 0.022 0.004
AC 0.037 0.139 0.021 0.069 0.027 0.005
NMF 0.044 0.118 0.016 0.072 0.029 0.005
AE 0.104 0.185 0.073 0.131 0.041 0.007
DAE 0.104 0.190 0.078 0.127 0.039 0.007
DCGAN 0.121 0.174 0.078 0.135 0.041 0.007
DeCNN 0.098 0.175 0.073 0.111 0.035 0.006
VAE 0.107 0.179 0.079 0.113 0.036 0.006
JULE 0.054 0.138 0.028 0.102 0.033 0.006
DEC 0.122 0.195 0.079 0.115 0.037 0.007
DAC 0.219 0.275 0.111 0.190 0.066 0.017
ADC – – – – – –
DDC – – – – – –
DCCM 0.321 0.383 0.182 0.224 0.108 0.038
IIC – – – – – –
PICA 0.352 0.352 0.201 0.277 0.098 0.040
CC(Ours) 0.445 0.429 0.274 0.340 0.140 0.071

Table 3: The clustering performance on six object image
benchmarks (Part 2/2). The best results are shown in bold-
face.

Qualitative Study
We carry out two experiments to analyze the pair-wise sim-
ilarity across the training process and the evolution of the
learned instance representation and cluster assignments on
ImageNet-10.

Analysis on Pair-wise Similarity To provide an intuitive
understanding of how contrastive clustering works, we vi-
sualize the changes of both the instance- and cluster-level
pair-wise similarities w.r.t. the training epoch. As shown
in Fig. 3, the similarities of positive instance/cluster pairs
grows as the training process goes while the similarity of

Figure 3: Instance-level and cluster-level pair-wise similari-
ties across the training process on ImageNet-10. The colored
areas denote the variances.

negative instance/cluster pairs stay at a low level. In addi-
tion, the similarity interval between the positive and nega-
tive is comparatively large at both the instance- and cluster-
level, which explains the success of our model. Note that the
variances of positive instance and negative cluster pairs are
much lower than those of negative instance pairs and posi-
tive cluster pairs due to the following two reasons. On the
one hand, the large variance of negative instance pairs could
be attributed to the fact that some pairs consist of samples
of different instances but the same class, which should be
treated as positive theoretically. On the other hand, the vari-
ance of positive cluster pairs comes from the inconsistent
cluster assignments of samples under different augmenta-
tions.

Evolution of Instance Feature and Cluster Assignments
By simultaneously optimizing the instance- and cluster-
level contrastive head, the model ought to learn discrimi-
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(a) 0 epoch (NMI = 0.183) (b) 20 epoch (NMI = 0.472) (c) 50 epoch (NMI = 0.628) (d) 100 epoch (NMI = 0.737)

Figure 4: The evolution of instance features and cluster assignments across the training process on ImageNet-10. The colors
indicate the cluster assignment obtained from CCH and the features for t-SNE are computed from ICH.

native representations and desirable cluster assignments at
the same time. To see how our model converges to the goal,
we perform t-SNE in the row space at four different times-
tamps throughout the training process. The results are shown
in Fig. 4, where different colors indicated different labels
predicted by the cluster-level contrastive head. The result
shows that, at the beginning, features are all mixed and most
instances are assigned to a few clusters. As the training pro-
cess goes, cluster assignments become more reasonable, and
features scatter and gather more distinctly.

Ablation Study
Two ablation studies are carried out to further understand
the importance of data augmentation and the effect of two
contrastive heads.

Importance of Data Augmentation Some existing works
have shown that the performance of contrastive learn-
ing heavily relies on the proper strategy of data augmen-
tation (Chen et al. 2020). To verify the significance of
data augmentation, we test our model on CIFAR-10 and
ImageNet-10 by removing one and both of the two augmen-
tations. When data augmentations are removed, the raw im-
age is directly used as the input. Table 4 shows that data
augmentations could enhance the performance of CC, espe-
cially on more complicated datasets, i.e., CIFAR-10. When
no data augmentation is applied, every positive pair consists
of two same samples/clusters and thus only negative pairs
take part in model optimization, which leads to pretty poor
results.

Dataset Augmentation NMI ACC ARI

CIFAR-10
T a(x) + T b(x) 0.705 0.790 0.637
T a(x) + x 0.630 0.690 0.533

x+ x 0.045 0.169 0.022

ImageNet-10
T a(x) + T b(x) 0.859 0.893 0.822
T a(x) + x 0.852 0.892 0.817

x+ x 0.063 0.177 0.030

Table 4: Importance of data augmentation.

Effect of Contrastive Head To prove the effectiveness of
the instance- and cluster-level contrastive head, we conduct

ablation studies on CIFAR-10 and ImageNet-10 by remov-
ing one of the two heads. Since the cluster assignments can
no longer be directly obtained when the cluster-level con-
trastive head is removed, we perform k-means in the in-
stance space instead. The results are shown in Table 5. Inter-
estingly, ICH shows comparable performance on CIFAR-10
while CCH performs better on ImageNet-10, which suggests
the joint effects of the two heads to some extent. Despite the
performance improvement brought by CCH, we would like
to emphasize that CCH is essential in achieving online clus-
tering as it directly makes cluster predictions.

Dataset Contrastive Head NMI ACC ARI

CIFAR-10
ICH + CCH 0.705 0.790 0.637
ICH Only 0.699 0.782 0.616
CCH Only 0.592 0.657 0.499

ImageNet-10
ICH + CCH 0.859 0.893 0.822
ICH Only 0.838 0.888 0.780
CCH Only 0.850 0.892 0.816

Table 5: Effect of two contrastive heads.

Conclusion
Based on the observation that the rows and columns of the
feature matrix could be respectively realized as the represen-
tation of instances and clusters, we proposed the Contrastive
Clustering (CC) method which dually conducts contrastive
learning at the instance- and cluster-level under a unified
framework. The proposed CC shows its promising perfor-
mance in clustering. In the future, we plan to extend it to
other tasks and applications such as semi-supervised learn-
ing and transfer learning.
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Broader Impact
The proposed method considers the clustering task that aims
to group a set of unlabeled data into several classes. As a
fundamental problem in machine learning, clustering has a
wide range of applications, such as pattern recognition, data
analysis, and image processing due to its powerful ability in
data annotation and preprocessing. The method is evaluated
on six wide-spread image datasets that are not at risk, but just
like any learning method, the performance of our method
depends on the data bias and cannot be guaranteed in more
complex real-world applications. In this sense, it might bring
some disturbances in decision making, and thus it should be
carefully used especially in the area of health care, anomaly
detection, autonomous vehicles, etc.

References
Asano, Y. M.; Rupprecht, C.; and Vedaldi, A. 2019. Self-
labelling via simultaneous clustering and representation
learning. arXiv preprint arXiv:1911.05371 .

Bengio, Y.; Lamblin, P.; Popovici, D.; and Larochelle, H.
2007. Greedy layer-wise training of deep networks. In Ad-
vances in neural information processing systems, 153–160.

Cai, D.; He, X.; Wang, X.; Bao, H.; and Han, J. 2009. Lo-
cality preserving nonnegative matrix factorization. In IJCAI,
volume 9, 1010–1015.

Caron, M.; Bojanowski, P.; Joulin, A.; and Douze, M. 2018.
Deep clustering for unsupervised learning of visual features.
In Proceedings of the European Conference on Computer
Vision (ECCV), 132–149.

Chang, J.; Guo, Y.; Wang, L.; Meng, G.; Xiang, S.; and Pan,
C. 2019. Deep Discriminative Clustering Analysis. arXiv
preprint arXiv:1905.01681 .

Chang, J.; Wang, L.; Meng, G.; Xiang, S.; and Pan, C.
2017a. Deep adaptive image clustering. In Proceedings
of the IEEE international conference on computer vision,
5879–5887.

Chang, J.; Wang, L.; Meng, G.; Xiang, S.; and Pan, C.
2017b. Deep adaptive image clustering. In Proceedings
of the IEEE international conference on computer vision,
5879–5887.

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. arXiv preprint arXiv:2002.05709 .

Coates, A.; Ng, A.; and Lee, H. 2011. An analysis of single-
layer networks in unsupervised feature learning. In Proceed-
ings of the fourteenth international conference on artificial
intelligence and statistics, 215–223.

Darlow, L. N.; and Storkey, A. 2020. DHOG: Deep Hier-
archical Object Grouping. arXiv preprint arXiv:2003.08821
.

Dosovitskiy, A.; Springenberg, J. T.; Riedmiller, M.; and
Brox, T. 2014. Discriminative unsupervised feature learning
with convolutional neural networks. In Advances in neural
information processing systems, 766–774.

Ghasedi Dizaji, K.; Herandi, A.; Deng, C.; Cai, W.; and
Huang, H. 2017. Deep clustering via joint convolutional au-
toencoder embedding and relative entropy minimization. In
Proceedings of the IEEE international conference on com-
puter vision, 5736–5745.
Gowda, K. C.; and Krishna, G. 1978. Agglomerative clus-
tering using the concept of mutual nearest neighbourhood.
Pattern recognition 10(2): 105–112.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond,
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