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Abstract

Gaussian processes offer an attractive framework for predic-
tive modeling from longitudinal data, i.e., irregularly sampled,
sparse observations from a set of individuals over time. How-
ever, such methods have two key shortcomings: (i) They rely
on ad hoc heuristics or expensive trial and error to choose the
effective kernels, and (ii) They fail to handle multilevel corre-
lation structure in the data. We introduce Longitudinal deep
kernel Gaussian process regression (L-DKGPR) to overcome
these limitations by fully automating the discovery of com-
plex multilevel correlation structure from longitudinal data.
Specifically, L-DKGPR eliminates the need for ad hoc heuris-
tics or trial and error using a novel adaptation of deep kernel
learning that combines the expressive power of deep neural
networks with the flexibility of non-parametric kernel methods.
L-DKGPR effectively learns the multilevel correlation with
a novel additive kernel that simultaneously accommodates
both time-varying and the time-invariant effects. We derive
an efficient algorithm to train L-DKGPR using latent space
inducing points and variational inference. Results of exten-
sive experiments on several benchmark data sets demonstrate
that L-DKGPR significantly outperforms the state-of-the-art
longitudinal data analysis (LDA) methods.

Introduction
Longitudinal studies, which involve repeated observations,
taken at irregularly spaced time points, for a set of individ-
uals over time, are ubiquitous in many applications, e.g.,
in health, cognitive, social, and economic sciences. Such
studies are used to identify the time-varying as well as
the time-invariant factors associated with a particular out-
come of interest, e.g., health risk (Hedeker and Gibbons
2006), air pollution (Tang et al. 2020; Hsieh et al. 2020),
etc. Longitudinal data typically exhibit longitudinal corre-
lation (LC), i.e., correlations among the repeated observa-
tions of a given individual over time; and cluster correlation
(CC), i.e., correlations among observations across individu-
als, e.g., due to the characteristics that they share among them-
selves e.g., age, demographics factors; or both, i.e., multilevel
correlation (MC). In general, the structure of MC can be com-
plex and a priori unknown. Failure to adequately account for
the structure of MC in predictive modeling from longitudinal
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data can lead to misleading statistical inferences (Gibbons
and Hedeker 1997; Liang et al. 2020). It can be non-trivial
to choose a suitable correlation structure that reflects the cor-
relations present in the data. The relationships between the
covariates and outcomes of interest can be highly complex
and non-linear. Furthermore, modern applications often call
for LDA methods that scale gracefully with increasing num-
ber of variables, the number of individuals, and the number
of longitudinal observations per individual.

Related Work
Conventional LDA Methods LDA methods have been ex-
tensively studied for decades (Hedeker and Gibbons 2006;
Verbeke et al. 2014). Conventional LDA methods fall into
two broad categories: (i) marginal models and (ii) condi-
tional models. Marginal models rely on assumptions about
the marginal association among the observed outcomes. The
generalized estimating equations (GEE) (Liang and Zeger
1986), where a working correlation matrix is specified to
model the marginal association among the observed out-
comes, offer an example of marginal models. The parameters
of marginal models are often shared by all individuals in
the population, yielding population-averaged effects or fixed
effects. Conditional models on the other hand avoid directly
specifying the full correlation matrix by distinguishing ran-
dom effects, i.e., parameters that differ across individuals,
from fixed effects, so as to estimate the individual parameters
conditioned on the population parameters. A popular example
of conditional models is the generalized linear mixed-effects
models (GLMM) (McCulloch 1997). Despite much work on
both marginal and conditional models (Fitzmaurice, Laird,
and Ware 2012; Wang 2014; Xiong, Kim, and Singh 2019;
Liang et al. 2020), many of the challenges, especially the
choice of correlation structure, and the selection of variables
to model random versus fixed effects, and the scalability of
the methods remain to be addressed.

Non-parametric LDA Methods More recently, there is a
growing interest in Gaussian processes (GP) (Quintana et al.
2016; Cheng et al. 2019; Wang et al. 2019) for LDA because
of their advantages over conventional parametric LDA meth-
ods: (i) GP make fewer assumptions about the underlying
data distribution by dispensing with the need to choose a
particular parametric form of the nonlinear predictive model;
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(ii) GP permit the use of parametertized kernels to model the
correlation between observed outcomes, to cope with data
sampled at irregularly spaced time points, by interpolating
between samples; (iii) The interpretability of GP models can
be enhanced by choosing modular kernels that are composed
of simpler kernels that capture the shared correlation struc-
ture of a subset of covariates, and (iv) GP models can flexibly
account for both longitudinal and cluster correlations in the
data. For example, Cheng et al. (2019) utilize an additive ker-
nel for Gaussian data and employ a step-wise search strategy
to select the kernel components and covariates that optimize
the predictive accuracy of the model. Timonen et al. (2019)
consider a heterogeneous kernel to model individual-specific
(random) effects in the case of non-Gaussian data. Despite
their advantages, existing GP based approaches to LDA suf-
fer from several shortcomings that limit their applicability in
real-world settings: (i) The choice of an appropriate kernel
often involves a tedious, often expensive and unreliable, pro-
cess of trial and error (Rasmussen 2003) or ad hoc heuristics
for identifying a kernel or selecting a subset of kernels from
a pool of candidates (Cheng et al. 2019). (ii) Suboptimal
choice of kernels can fail to adequately model the complex
MC structure in the data. (iii) They do not scale to thousands
of covariates and/or millions of data points that are common
in modern LDA applications.

Overview of Contributions
A key challenge in predictive modeling of longitudinal data
has to do with modeling the complex correlation structure in
the data. We posit that the observed correlation structure is in-
duced by the interactions between time-invariant, individual-
specific effects, and time-varying population effects. Hence,
we can divide the task of predictive modeling from longi-
tudinal data into two sub-tasks: (i) Given an observed data
set, how do we estimate the time-varying and time-invariant
effects and the correlation structure present in the data? (ii)
Given the correlation structure, how do we predict as yet
unobserved, e.g., future outcomes?

We introduce Longitudinal deep kernel Gaussian process
regression (L-DKGPR) to fully automate the discovery of
complex multilevel correlation structure from longitudinal
data. L-DKGPR inherits the attractive features of GP while
overcoming their key limitations. Specifically, L-DKGPR
eliminates the need for ad hoc heuristics or trial and error by
using a deep kernel learning method (Wilson et al. 2016a) that
combines the expressive power of deep neural networks with
the flexibility of non-parametric kernel methods. L-DKGPR
extends (Wilson et al. 2016a) by introducing a novel addi-
tive kernel that includes two components, one for modeling
the time-varying (fixed) effects and the other for modeling
the time-invariant (random) effects, to compensate for the
multilevel correlation structure in longitudinal data. To en-
hance the effectiveness and efficiency of model inference,
we improve the inducing points technique by introducing
inducing points directly in the latent space. Our formula-
tion permits a tractable ELBO, which not only eliminates
the need for Monte Carlo sampling, but also dramatically
reduces the number of parameters and iterations needed to
achieve state-of-the-art regression performance.

Preliminaries

Notations. We denote a longitudinal data set byD = (X,y),
where X ∈ RN×P is the covariate matrix and y ∈ RN×1
is the vector of measured outcomes. We denote a row in X
by xit, with i, t indexing the individual and the time for the
observation respectively. Because the observations for each
individual are irregularly sampled over time, we have for each
individual i, a submatrix Xi ∈ RNi×P ⊂ X , where Ni is the
number of observations available for the individual i. If we
denote by I be the number of individuals in D, the covariate
matrix X is given by X> = (X>1 , · · · , X>I )>. Accordingly,
the outcomes y are given by y> = (y>1 , · · · ,y>I )>.

Gaussian Process. A Gaussian process (GP) is a stochas-
tic process, i.e., a distribution over functions or an infinite
collection of (real-valued) random variables, such that any
finite subset of random variables has a multivariate Gaus-
sian distribution (Williams and Rasmussen 2006). A kernel
describes the covariance of the random variables that make
up the GP. More precisely, if a function f : X → R has a
GP prior f∼GP(µ, kγ) where µ is the mean function and
kγ(·, ·) is a (positive semi-definite) kernel function param-
eterized by γ, then any finite collection of components of
f (denoted as f) has a multivariate Gaussian distribution
(f|X)∼N (µ(X),KXX), where µ(X) is the mean vector,
and (KXX)ij = kγ(xi,xj) is the covariance matrix. In the
regression setting, the function f is treated as an unobserved
signal linked to the outcomes through a (typically Gaussian)
likelihood function, such that (y|f)∼N (f, σ2I).

Additive GP is a special case of GP where unobserved
signal is expressed as the sum of J independent signal com-
ponents, i.e., f =

∑J
j=1 αjf

(j), where α = {αj}Jj=1 are
the the coefficients associated with the individual compo-
nents (Duvenaud, Nickisch, and Rasmussen 2011). In prac-
tice, each signal component is computed on a (typically small
(Cheng et al. 2019; Timonen et al. 2019)) subset of the ob-
served covariates in x. The fact that each signal component
has a GP prior ensures that the joint signal f is also GP.
Additive GP allows using different kernel functions for dif-
ferent signal components, so to model the shared correlation
structure of a subset of covariates, thus enhancing the inter-
pretability of the resulting GP. More importantly, it permits
the time-varying and time-invariant effects to be modeled
using different kernel functions, which is especially attractive
in modeling longitudinal data.

Longitudinal Deep Kernel Gaussian Process
Regression

Predictive modeling from longitudinal data typically requires
solving two sub-problems: (i) Extracting the time-varying
and time-invariant information from the observed data to
estimate the underlying multilevel correlation structure; and
(ii) using the estimated correlation structure to predict the
future outcomes. In what follows, we describe our solutions
to both sub-problems.
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Figure 1: Structure of the deep kernels.

Modeling the Multilevel Correlation using Deep
Kernels
Recall that longitudinal data exhibit complex correlations
arising from the interaction between time-varying effects and
time-invariant effects. Hence, we decompose the signal func-
tion f into two parts, i.e., f (v) which models the time-varying
effects and f (i), which models the time-invariant effects. The
result is a probabilistic model that can be specified as follows:

(y|f)∼N (f, σ2I)

f = α(v)f (v) + α(i)f (i)

(f(v)|X)∼N (µ(v)(X), k(v)γ (X,X))

(f(i)|X)∼N (µ(i)(X), k
(i)
φ (X,X))

We denote the kernel parameters for time-varying effects
and time-invariant effects respectively by γ and φ. The mean
functions µ(v),µ(i), if unknown, can be estimated from data.
In this study, without loss of generality, following (Williams
and Rasmussen 2006; Wilson et al. 2016a,b; Cheng et al.
2019; Timonen et al. 2019), we set µ(v) = µ(i) = 0. Assum-
ing that f(v) and f(i) are conditionally independent given X ,
we can express the joint signal distribution f as follows:

(f|X)∼N
(
0, kθ = α(v)2k(v)γ + α(i)2k

(i)
φ

)
(1)

Time-varying Kernel k(v)γ . We introduce a time-varying
kernel to capture the longitudinal correlation in the data. The
structure of our time-varying kernel k(v)γ is shown in Figure 1
(top). Let eγ : X → S(v) ∈ RDv be a non-linear encoder
function given by a deep architecture parameterized by γ.
Given a pair of data points xit,xjq, where i, j index the
individuals and t, q index the time-dependent observations,
the time-varying kernel is given by:

k(v)γ (xit,xjq) = kSE(eγ(xit), eγ(xjq)) (2)

with kSE denoting the squared exponential kernel (Williams
and Rasmussen 2006). Note that SE kernel is based on Eu-
clidean distance, which is not a useful measure of distance in
the high dimensional input space (Aggarwal, Hinneburg, and
Keim 2001). Hence, we use a deep neural network (Goodfel-
low, Bengio, and Courville 2016), specifically, a nonlinear
encoder to map the input space to a low-dimensional latent
space and then apply the SE kernel to the latent space.

Time-invariant Kernel k(i)φ . We introduce a time-invariant
kernel to capture cluster correlation, i.e., time-invariant cor-
relations among individuals that share similar characteristics.

The structure of time-invariant kernel is shown in Figure 1
(bottom). Let ι(xi·) = i be a mapping function that iden-
tifies the individuals, and gφ : ι(X ) → S(i) ∈ RDi be an
embedding function that maps each individual to a vector in
the latent space. Then for any pair of data samples xi·,xj·
with arbitrary observation indices, the time-invariant kernel
is given by:

k
(i)
φ (xi·,xj·) = kSE(gφ ◦ ι(xi·), gφ ◦ ι(xj·)) (3)

Learning L-DKGPR Model from Data
We now proceed to describe how to efficiently learn an L-
DKGPR model and use it to make predictions. Because of
space constraints, the details of the derivations are relegated
to the Appendix1.

Model Inference. Our approach to efficiently learning an L-
DKGPR model draws inspiration from (Wilson et al. 2016b),
to greatly simplify the computation of the GP posterior by re-
ducing the effective number of rows in X , from N to M
(M � N ), where M is the number of inducing points.
However, unlike (Wilson et al. 2016b), which uses induc-
ing points in the input space, we use inducing points in a
low-dimensional latent space. Let Z = {zm}Mm=1 be the col-
lection of inducing points, and u their corresponding signal.
The kernel computations based on the inducing points are
given by:

k(v)γ (x, z) = kSE(eγ(x), z)

k(v)γ (zi, zj) = kSE(zi, zj)

Replacing inducing points in the input space with those in a
low-dimensional latent space offers several advantages. First,
we no longer need to use the encoder network eγ(·) to trans-
form the inducing points z, thus increasing the computational
efficiency of the model. Second, the latent space is dense,
continuous, and usually is of much lower dimension than
the input space (Dv � P ). The resulting parameterization
of inducing points directly in the latent space, results in a
reduction in the number of parameters that describe the in-
ducing points (i.e., Z) fromO(MP ) toO(MDv). Third, the
latent space simplifies the optimization of L-DKGPR, es-
pecially when the input space is defined by heterogeneous
data types subject to domain-specific constraints, because the
latent space is always continuous regardless the constraints
in the input space. We define ι(zm) = I +m to distinguish
the inducing points from the input data. We can now express
the joint signal distribution as follows:

(f, u|X,Z)∼N
([

0
0

]
,

[
KXX KXZ

K>XZ KZZ

])
(4)

Therefore, the signal distribution conditioned on the inducing
points is given by:

(f|u, X, Z)∼N (KXZK
−1
ZZu,KXX −KXZK

−1
ZZK

>
XZ)

(5)

1Appendix can be found at https://github.com/junjieliang672/L-
DKGPR/blob/master/Appendix LDKGPR.pdf
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Let Θ = {α(v), α(i), γ, φ, σ2, Z} be the model parame-
ters. We aim to learn the parameters by maximizing the
log of marginal likelihood p(y|X,Z). By assuming a vari-
ational posterior over the joint signals q(f, u|X,Z) =
q(u|X,Z)p(f|u, X, Z), we can derive the evidence lower
bound (see e.g., (Wilson et al. 2016b)):
L , Eq(f,u|X,Z)[log p(y|f)]− KL[q(u|X,Z)||p(u|Z)] (6)

We define the proposal posterior q(u|X,Z) =
N (µq, LqL

>
q ). To speed up the computation, we fol-

low the deterministic training conditional (DTC) (Seeger,
Williams, and Lawrence 2003), an elegant sparse method
for accurate computation of the Gaussian process posterior
by retaining exact likelihood coupled with an approximate
posterior (Liu et al. 2020), rendering (f|u, X, Z) determinis-
tic during the training phase. Letting A = KXZK

−1
ZZ and

reparameterizing u = µq + Lqε with ε∼N(0, I), we can
rewrite the ELBO in closed form:

2L =− 2N log σ − σ−2(‖y‖22 − 2y>Aµq + ‖Aµq‖22
+ ‖ALq1‖22)− log |KZZ |+ 2 log |Lq|+M

− tr(K−1ZZLqL
>
q )− µ>q K−1ZZµq (7)

where 1 is a column vector of ones. We can then compute the
partial derivatives of L w.r.t. the parameters of the proposal
posterior q(u|X,Z) (i.e., {µq, Lq}), yielding:

∂L
∂µq

=
1

σ2
(−A>y +A>Aµq) +K−1ZZµq = 0 (8)

∂L
∂Lq

=
1

σ2
A>ALq11

> + (L−>q +K−1ZZLq) = 0 (9)

Solving the above equations gives:
µq = σ−2KZZBK

>
XZy (10)

Lq(I + 11>) = KZZBKZZ (11)

with B = (KZZ + σ−2K>XZKXZ)−1. To solve the trian-
gular matrix Lq from (11), we first compute the Cholesky
decomposition of I+11> = CC> andKZZBKZZ = UUT .
We then simplify both side of (11) to LqC = U . Lq can then
be solved by exploiting the triangular structure on both side
with

Li,i−k =
Ui,i−k −

∑k−1
j=0 Li,i−jCi−j,i−k

Ci−k,i−k
(12)

where k = 0, · · · , i − 1, Li,j is a shorthand for
[Lq]i,j . We separate the model parameters into two groups,
i.e., parameters w.r.t. the proposal posterior {µq, Lq} and the
remaining parameters Θ, and use an EM-like algorithm to
update both groups alternatively. The L-DKGPR algorithm
is listed in Algorithm 1.

Prediction. Given the covariate matrix X∗ for the test data,
the predictive distribution is given by:

p(f∗|X∗, X,y, Z) ' N (KX∗ZK
−1
ZZµq,

KX∗X∗ −KX∗ZK
−1
ZZK

>
X∗Z) (13)

Complexity. The time complexity and space complexity of

both inference and prediction are O(NM2) and O(NM)
respectively, where N is the number of measured outcomes,
and M the number of inducing points.

Algorithm 1: L-DKGPR
Input: Training set S = {X,y}, latent dimension

Dv, Di, number of inducing points M ,
gradient-based optimizer and its related
hyper-parameters (i.e., learning rate, weight
decay, mini-batch size), alternating frequency
T .

1 Initialize the parameters Θ = {σ2, Z, α(v), α(i), γ, φ}
2 while Not converged do
3 Update proposal posterior q(u|X,Z) according to

(10) and (12)
4 t = 0
5 for t < T do
6 Update Θ using the input optimizer.
7 t = t+ 1

Experiments
We compare L-DKGPR to several state-of-the-art LDA and
GP methods on simulated as well as real-world benchmark
data. The experiments are designed to answer research ques-
tions about accuracy, scalability, and interpretability of L-
DKGPR: (RQ1) How does the performance of L-DKGPR
compare with the state-of-the-art methods on standard lon-
gitudinal regression tasks? (RQ2) How does the scalability
of L-DKGPR compare with that of the state-of-the-art lon-
gitudinal regression models? (RQ3) Can L-DKGPR reliably
recover the rich correlation structure from the data? (RQ4)
How do the different components of L-DKGPR contribute
to its overall performance? (RQ5) What is the advantage of
solving the exact ELBO in (7) compared to solving its orig-
inal form in (6) using Monte Carlo sampling (Wilson et al.
2016b)?

Data
We used one simulated data set and three real-world longitu-
dinal data sets in our experiments:2
Simulated Data. We construct simulated longitudinal data
that exhibit i.e., longitudinal correlation (LC) and multilevel
correlation (MC) as follows: The outcome is generated using
y = f(X) + ε where f(X) is a non-linear transformation
based on the observed covariate matrix X and the residual
ε∼N(0,Σ). To simulate longitudinal correlation, we simply
set Σ to a block diagonal matrix with non-zero entries for
within-individual observations. To simulate multilevel corre-
lation, we first split the individuals into C clusters and assign
non-zero entries for the data points in the same cluster. Fol-
lowing (Cheng et al. 2019; Timonen et al. 2019), we simulate
40 individuals, 20 observations, and 30 covariates for each
individual. We vary the number of clusters C from [2, 5].
Study of Women’s Health Across the Nation (SWAN).
(Sutton-Tyrrell et al. 2005). SWAN is a multi-site longitudi-
nal study designed to examine the health of women during the
midlife years. We consider the task of predicting the CESD

2Details of generation of simulated data and of pre-processing
of real-world data are provided in the Appendix.
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score, which is used for screening for depression. Similar
to (Liang et al. 2020), we define the adjusted CESD score
by y = CESD − 15, thus y ≥ 0 indicates depression. The
variables of interest include aspects of physical and mental
health, and demographic factors such as race and income.
The resulting data set has 3, 300 individuals, 137 variables
and 28, 405 records.
General Social Survey (GSS). (Smith et al. 2015). The GSS
data were gathered over 30 years on contemporary American
society collected with the goal of understanding and explain-
ing trends and constants in attitudes, behaviors, and attributes.
In our experiment, we consider the task of predicting the self-
reported general happiness of 4, 510 individuals using 1, 553
features and 59, 599 records. We follow the experimental
setup in (Liang et al. 2020), with y = 1 indicates happy and
y = −1 indicates the opposite.
The Alzheimer’s Disease Prediction (TADPOLE). (Mari-
nescu et al. 2018). The TADPOLE challenge involves pre-
dicting the symptoms related to Alzheimer’s Disease (AD)
within 1-5 years of a group of high-risk subjects. In our exper-
iment, we focus on predicting the ADAS-Cog13 score using
the demographic features and MRI measures (Hippocampus,
Fusiform, WholeBrain, Entorhinal, and MidTemp). The re-
sulting data set has 1, 681 individuals, 24 variables and 8, 771
records.

Experimental Setup
To answer RQ1, we use both simulated data and real-world
data. To evaluate the regression performance, similar to
(Liang et al. 2020), we compute the mean and standard devia-
tion of R2 between the actual and predicted outcomes of each
method on each data set across 10 independent runs. We use
50%, 20%, 30% of data for training, validation, and testing
respectively.

To answer RQ2, we take data from a subset consisting of
50 individuals with the largest number of observations from
each real-world data. We record the run time per iteration of
each method on both the 50-individual subset and full data
set. Because not all baseline methods take advantage of GPU
acceleration, we compare the run times of all the methods
without GPU acceleration. We report execution failure if a
method fails to converge within 48 hours or generates an
execution error (Liang et al. 2020).

To answer RQ3, we rely mainly on simulated data since
the actual correlation structures underlying the real-world
data sets are not known. We evaluate the performance of each
method by visualizing the learned correlation matrix and
compare it to the ground truth correlation matrix on simulated
data. Additionally, we illustrate how the correlation matrix
learned by L-DKGPR can provide gain useful insights using
a case study with the SWAN data. Results of the case study
are included in the Appendix.

To answer RQ4, we compare the performance of L-
DKGPR with L-RBF-GPR, a variant that replaces the learned
deep kernel with a simple RBF kernel; and L-DKGPR-, a
variant of L-DKGPR without the time-invariant effects.

To answer RQ5, we compare the regression performance
and hyper-parameter choices of L-DKGPR solved using Al-
gorithm 1 with the version of L-DKGPR solved using Monte

Carlo sampling (Wilson et al. 2016b) on SWAN and GSS
data sets.
Baseline Methods. We compare L-DKGPR with the follow-
ing baseline methods: (i) Conventional longitudinal regres-
sion models, i.e., GLMM (Bates et al. 2015) and GEE (Inan
and Wang 2017); (ii) State-of-the-art longitudinal regression
models, i.e., LMLFM (Liang et al. 2020) and LGPR (Ti-
monen et al. 2019); (iii) State-of-the-art Gaussian Process
models for general regression, i.e., KISSGP with deep ker-
nel (Wilson et al. 2016b) (we use the same deep structure
as in our time-varying kernel) and ODVGP (Salimbeni et al.
2018). Implementation details3 and hyper-parameter settings
of L-DKGPR as well as the baseline approaches are provided
in the Appendix.

Results
We report the results of our experiments designed to answer
the research questions RQ1-RQ4.
L-DKGPR vs. Baseline Longitudinal Regression Meth-
ods. The results are reported in Table 1 and Table 2 for sim-
ulated and real-world data sets respectively. In the case of
simulated data, we find that KISSGP, ODVGP, GEE and
GLMM fail in the presence of MC with the mean R2 be-
ing negative (indicative of models containing variables that
are not predictive of the response variable). This can be ex-
plained by the fact that GEE is designed only to handle pure
LC, thus fails to account for CC or MC. While GLMM is
capable of handling MC, it requires practitioners to specify
the cluster structure responsible for CC prior to model fit-
ting. However, in our experiments, the cluster structure is
unknown a priori. Hence it is not surprising that GLMM
performs poorly. Though both KISSGP and ODVGP are con-
ceptually able to handle data with complex correlation, they
both experience dramatic performance drop when the data
exhibit cluster correlation (or time-invariant effects). More-
over, we find that although LMLFM outperforms GLMM
and GEE in the presence of MC, its R2 is still quite low. This
is because LMLFM accounts for only a special case of MC,
namely, for CC among individuals observed at the same time
points, and not all of the CC present in the data. We find
that LGPR performs rather poorly on both simulated and
real-world data. This might due to the fact that LGPR obtains
the contributions of each variable to the kernel independently
before calculating their weighted sum. Though it is possible
to incorporate higher-order interactions between variables
into LGPR, doing so requires estimating large numbers of
interaction parameters, with its attendant challenges, espe-
cially when working with small populations. In contrast to
the baseline methods, L-DKGPR consistently and signifi-
cantly outperforms the baselines by a large margin. On the
real-world data sets, L-DKGPR outperforms the longitudinal
baselines in most of the cases.
Scalability of L-DKGPR vs. Baseline Methods. We see
from Table 2 that most longitudinal baselines, i.e., LGPR,
GLMM, and GEE, fail to process real-world data sets with
very large numbers of covariates. Indeed, the computational

3Data and codes used in this paper are publicly available at
https://github.com/junjieliang672/L-DKGPR.
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Method LC MC(C = 2) MC(C = 3) MC(C = 4) MC(C = 5)

L-DKGPR 86.0±0.2 91.3±0.2 99.6±0.2 99.8±0.2 99.8±0.2
KISSGP 85.9±1.7 -43.4±33.3 -55.5±7.1 -58.2±14.4 -57.2±17.9
ODVGP 82.3±5.2 -1.6±16.9 -14.7±6.5 -13.5±8.4 -6.1±4.4
LGPR -37.1±19.1 -123.6±162.0 -26.3±43.2 -9.1±14.8 -0.1±5.9

LMLFM 54.7±15.1 -138.3±121.9 -48.3±123.6 22.6±49.0 36.2±41.1
GLMM 5.3±27.9 -656.3±719.8 -801.4±507.4 -684.1±491.3 -528.7±313.5

GEE 59.0±24.5 -636.1±606.0 -703.6±465.8 -665.6±554.3 -516.5±457.5

Table 1: Regression accuracy R2 (%) comparison on simulated data with different correlation structures.

Data sets N I P L-DKGPR KISSGP ODVGP LGPR LMLFM GLMM GEE

TADPOLE 595 50 24 44.0±5.6 1.2±10.1 9.0±14.1 -261.1±9.0 8.7±5.1 50.8±5.5 -11.4±4.8
SWAN 550 50 137 46.8±4.9 42.4±4.6 29.0±3.1 -16.6±12.7 38.6±4.2 40.1±7.7 46.4±8.0
GSS 1,500 50 1,553 19.1±3.7 12.5±6.3 -7.6±3.3 N/A 15.3±1.4 N/A -4.6±3.5

TADPOLE 8,771 1,681 24 64.9±1.4 0.6±3.9 21.1±1.0 N/A 10.4±0.6 61.9±1.9 17.6±0.7
SWAN 28,405 3,300 137 52.5±0.4 20.5±7.6 24.9±21.8 N/A 48.6±2.0 N/A N/A
GSS 59,599 4,510 1,553 56.9±0.1 53.1±0.9 15.4±27.0 N/A 54.8±2.2 N/A N/A

Table 2: Regression accuracy R2 (%) on real-world data sets. We use ‘N/A’ to denote execution error.

Data sets L-DKGPR L-DKGPR-v L-DKGPR-i L-RBF-GPR

TADPOLE 64.9±1.4 13.2±1.1 56.3±1.3 55.5±2.4
SWAN 52.5±0.4 29.0±3.2 16.7± 2.4 5.4±1.6
GSS 56.9±0.1 56.2±0.1 -0.2±0.2 -14.1±0.4

Table 3: Effect on the regression accuracy R2 (%) of different
components of L-DKGPR

complexity of these basline methods increases in propor-
tion to P 3 where P is the number of covariates. In con-
trast, L-DKGPR, LMLFM and state-of-the-art GP baselines
(KISSGP and ODVGP) scale gracefully with increasing num-
ber of data points and covariates. For CPU run time analysis,
please refer to our Appendix.
Recovery of Correlation Structure. The outcome correla-
tions estimated by all GP methods on the simulated data are
shown in Figure 2. We see that KISSGP and ODVGP are in-
capable of recovering any correlation structure from the data.
LGPR seems to be slightly better than KISSGP and ODVGP
when MC is presented. However, we see that only one known
cluster is correctly recovered when C > 2. This suggests that
these methods fail to recover accurate correlation structures,
which is consistent with their poor performance in terms of
R2. In contrast, L-DKGPR outperforms other methods in
terms of recovering the correlation structure present in the
data. However, it is worth noting that the learned correla-
tion structure is still far from perfect. We conjecture that
in the absence of a strong prior on the kernel structure, the
space of possible kernels is very large. Because L-DKGPR
works within an MLE framework, it searches for a kernel
that maximizes the likelihood. When the optimal solution is
surrounded by a large number of local maxima, it is easy for
L-DKGPR to get stuck in one of several local maxima.
Ablation Study. Regression accuracy comparison on com-

Figure 2: Outcome correlation estimated by all GP methods
on simulated data.

plete real-world data sets is shown in Table 3. Role of time-
invariant component: We see a dramatic drop in regression
performance when time-invariant effects are not modeled
(L-DKGPR-v) as compared to when they are (L-DKGPR).
This result underscores the importance of modeling the time-
independent components of LC and CC for accurate mod-
eling of longitudinal data. This task is simplified by the
decomposition of the correlation structure into the time-
varying and time-invariant components. The time-invariant
component is analogous to estimating the mean correlation
whereas the time-varying component contributes to the resid-
ual. Hence, the decomposition of the correlation structure
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Data sets Solver M Iterations R2 (%)

SWAN
Alg. 1 10 300 52.5±0.4

Sampling 10 300 3.1±0.2
Sampling 128 3,000 51.4±0.4

GSS
Alg. 1 10 300 56.9±0.1

Sampling 10 300 4.5±0.1
Sampling 128 3,000 55.6±0.1

Table 4: Effect of solving L-DKGPR using Algorithm 1 vs.
Monte Carlo sampling.

into time-varying and time-invariant components should help
reduce the variance of the correlation estimates. Role of time-
varying component: We observe a significant drop in per-
formance of L-DKGPR when time-varying effects are not
modeled (L-DKGPR-i). This is not surprising because in the
absence of a time-varying kernel, the predicted outcome for
each individual is constant across all time, and hence fails
to reflect the longitudinal characteristics of the data. Role of
deep kernel: L-DKGPR consistently outperforms L-RBF-
GPR (which uses RBF kernel instead of the deep kernel used
by L-DKGPR), with the performance gap between between
the two increasing with increase in the number of covariates.
This is perhaps explained by the pitfalls of Euclidean dis-
tance as a measure of similarity between data points in a high
dimensional data space (Aggarwal, Hinneburg, and Keim
2001) (and hence kernels such as the RBF kernel which rely
on Euclidian distance in the data space), and the apparent
ability of the learned deep kernel to perform such similarity
computations in a low-dimensional latent space where the
computed similarities are far more reliable.
Effect of Solving the Exact ELBO with Algorithm 1. Ta-
ble 4 presents the results in comparing L-DKGPR solved
using Algorithm 1 with a version of L-DKGPR solved us-
ing the vanilla Monte Carlo sampling (Wilson et al. 2016b).
We find that under the same hyper-parameter setting, our
solver outperforms the sampling solver by a large margin. To
ensure similar regression performance, we have to modify
the hyper-parameters for the sampling solver by increasing
the number of inducing points M to 128 and using about
10 times more training iterations. The result indicates that
coping with the variance of the noisy ELBO approximation
increases the number of parameters and hence the number of
iterations needed.
Effect of the Number of Inducing Points M . The number
of points provide a trade-off between approximation accuracy
and efficiency in sparse GP methods. In this experiment, we
vary the number of inducing points M from 5 to 100 on sim-
ulated data and record the R2 as shown in Figure 3. We find
that when the number of inducing points exceeds a certain
threshold, i.e., 10 in all simulated settings, regression perfor-
mance becomes quite stable, an observation that is supported
by our experiments with real-world data as well (results omit-
ted). A theoretical study (Burt, Rasmussen, and Van Der Wilk
2019) points out that when input data are normally distributed
and inducing points are drawn from a k-deterministic point
process with an SE-ARD kernel, then M = O(logP N). In

Figure 3: Regression performance with different numbers of
inducing points on simulated data.

our simulated data, since the inducing points lie in the latent
space, the number of inducing points needed in theory is
M = [log(1600)]10. However, our experiments show that in
practice M ≈ logN inducing points suffice to achieve satis-
factory results. We conjecture that this is because instead of
drawing the inducing points from a k-DPP process from the
input data, we optimize representation of the inducing points
jointly with the other model parameters, thereby identifying
effective inducing points that adequately reflect the variance
of the input data. Proving or refuting this conjecture would
require a deeper theoretical analysis of L-DKGPR.

Conclusion
We have presented L-DKGPR, a novel longitudinal deep ker-
nel Gaussian process regression model that overcomes some
of the key limitations of existing state-of-the-art GP regres-
sion methods for predictive modeling from longitudinal data.
L-DKGPR fully automates the discovery of complex multi-
level correlations from longitudinal data. It incorporates a
deep kernel learning method that combines the expressive
power of deep neural networks with the flexibility of non-
parametric kernel methods, to capture the complex multilevel
correlation structure from longitudinal data. L-DKGPR uses
a novel additive kernel that simultaneously models both time-
varying and the time-invariant effects. We have shown how
L-DKGPR can be efficiently trained using latent space induc-
ing points and the stochastic variational method. We report
results of extensive experiments using both simulated and
real-world benchmark longitudinal data sets that demonstrate
the superior predictive accuracy as well as scalability of L-
DKGPR over the state-of-the-art LDA and GP methods. A
case study with a real-world data set illustrates the potential
of L-DKGPR as a source of useful insights from complex
longitudinal data.
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