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Abstract

Since the Lipschitz properties of convolutional neural net-
works (CNNs) are widely considered to be related to adversar-
ial robustness, we theoretically characterize the `1 norm and
`∞ norm of 2D multi-channel convolutional layers and pro-
vide efficient methods to compute the exact `1 norm and `∞
norm. Based on our theorem, we propose a novel regulariza-
tion method termed norm decay, which can effectively reduce
the norms of convolutional layers and fully-connected layers.
Experiments show that norm-regularization methods, includ-
ing norm decay, weight decay, and singular value clipping, can
improve generalization of CNNs. However, they can slightly
hurt adversarial robustness. Observing this unexpected phe-
nomenon, we compute the norms of layers in the CNNs trained
with three different adversarial training frameworks and sur-
prisingly find that adversarially robust CNNs have comparable
or even larger layer norms than their non-adversarially robust
counterparts. Furthermore, we prove that under a mild assump-
tion, adversarially robust classifiers can be achieved using neu-
ral networks, and an adversarially robust neural network can
have an arbitrarily large Lipschitz constant. For this reason, en-
forcing small norms on CNN layers may be neither necessary
nor effective in achieving adversarial robustness. The code is
available at https://github.com/youweiliang/norm robustness.

Introduction
Convolutional neural networks (CNNs) have enjoyed great
success in computer vision (LeCun, Bengio, and Hinton
2015; Goodfellow, Bengio, and Courville 2016). However,
many have found that CNNs are vulnerable to adversarial
attack (Akhtar and Mian 2018; Eykholt et al. 2018; Huang
et al. 2017; Moosavi-Dezfooli, Fawzi, and Frossard 2016;
Moosavi-Dezfooli et al. 2017). For example, changing one
pixel in an image may change the prediction of a CNN (Su,
Vargas, and Sakurai 2019). Many researchers link the vulner-
ability of CNNs to their Lipschitz properties and the com-
mon belief is that CNNs with small Lipschitz constants are
more robust against adversarial attack (Szegedy et al. 2014;
Cisse et al. 2017; Bietti et al. 2019; Anil, Lucas, and Grosse
2019; Virmaux and Scaman 2018; Fazlyab et al. 2019). Since
computing the Lipschitz constants of CNNs is intractable
(Virmaux and Scaman 2018), existing approaches seek to
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regularize the norms of individual CNN layers. For example,
Cisse et al. (2017) proposed Parseval Network where the `2
norms of linear and convolutional layers are constrained to
be orthogonal. However, from Table 1 in their paper, we can
see Parseval Network only slightly improves adversarial ro-
bustness in most cases and even reduces robustness in some
cases. Anil, Lucas, and Grosse (2019) combined GroupSort,
which is a gradient norm preserving activation function, with
norm-constrained weight matrices regularization to enforce
Lipschitzness in fully-connected networks while maintaining
the expressive power of the models. Li et al. (2019) further
extended GroupSort to CNNs by proposing Block Convolu-
tion Orthogonal Parameterization (BCOP), which restricts
the linear transformation matrix of a convolutional kernel to
be orthogonal and thus its `2 norm is bounded by 1. Again,
we find that the improvement of adversarial robustness is typ-
ically small while the standard accuracy drops considerably.
For example, we use the state-of-the-art adversarial “Auto
Attack” (Croce and Hein 2020) to test the checkpoint from
the authors1 and find that, the robust accuracy of their best
model on CIFAR-10 is 8.4% (under standard `∞ attack with
ε = 8/255), which is much smaller than the state of the art
( 59.5%2) such as the methods of (Carmon et al. 2019; Wang
et al. 2019; Pang et al. 2020), while the standard accuracy
drops to 72.2%. Besides, since GroupSort and BCOP have
virtually changed the forward computation and/or architec-
ture of the network, it is unclear whether their improvement
in adversarial robustness is due to regularization of norms or
the change in computation/architecture. These issues raise
concerns over the effectiveness of regularization of norms.

The approaches of regularization of norms are motivated
by the idea that reducing norms of individual layers can re-
duce global Lipschitz constant and reducing global Lipschitz
constant can ensure smaller local Lipschitz constants and
thus improve robustness. In this paper, we carefully investi-
gate the connections and distinctions between the norms of
layers, local Lipschitz constants, and global Lipschitz con-
stants. And our findings, both theoretically and empirically,
do not support the prevailing idea that large norms are bad
for adversarial robustness.

Our contribution in this paper is summarized as follows.

1https://github.com/ColinQiyangLi/LConvNet
2https://github.com/fra31/auto-attack
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• We theoretically characterize the `1 norm and `∞ norm of
2D multi-channel convolutional layers. To our knowledge,
our approach is the fastest among the existing methods for
computing norms of convolutional layers.

• We present a novel regularization method termed norm
decay, which can improve generalization of CNNs.

• We prove that robust classifiers can be realized with neu-
ral networks. Further, our theoretical results and exten-
sive experiments suggest that large norms (compared to
norm-regularized networks) of CNN layers do not hurt
adversarial robustness.

Related Work
Researches related to the norms of convolutional layers are
mostly concerned with the `2 norm. For example, Miyato
et al. (2018) reshape the 4D convolutional kernel into a 2D
matrix and use power iterations to compute the `2 norm
of the matrix. Although this method can improve the im-
age quality produced by WGAN (Arjovsky, Chintala, and
Bottou 2017), the norm of the reshaped convolutional ker-
nel does not reflect the true norm of the kernel. Based
on the observation that the result of power iterations can
be computed through gradient back-propagation, Virmaux
and Scaman (2018) proposed AutoGrad to compute the `2
norm. Sedghi, Gupta, and Long (2019) theoretically ana-
lyzed the circulant patterns in the unrolled convolutional
kernel, based on which they discovered a new approach
to compute the singular values of the kernels. Using the
computed spectrum of convolution, they proposed singu-
lar value clipping, a regularization method which projects
a convolution onto the set of convolutions with bounded `2
norms. It is worth noting that, because of the equivalence
of the matrix norms, i.e., 1/

√
m‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1

and 1/
√
n‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞ for all matrices

A ∈ Rm×n, our approaches to compute the `1 and `∞ norm
have the same functionalities as those to compute `2 norm,
while our approaches are much more efficient. Gouk et al.
(2018) give an analysis on the `1 and `∞ norm of convo-
lutional layers but they neglect the padding and strides of
convolution, which may lead to incorrect computation results.

All these works have not yet given a clear analysis of
how the norms of neural net layers are related to adversar-
ial robustness. To bridge this gap, we first characterize the
norms of CNN layers and then analyze theoretically and test
empirically if large norms are bad for adversarial robustness.

The `1 and `∞ Norm of Convolutional Layers
To understand how norms of CNN layers influence adversar-
ial robustness, we first need to characterize the norms. Sedghi,
Gupta, and Long (2019) proposed a method for computing
the singular values of convolutional layers, where the largest
one is the `2 norm. However, their method applies to only
the case when the stride of convolution is 1, and computing
singular values with their algorithm is still computationally
expensive and prohibit its usage in large scale deep learning.
To alleviate these problems, we theoretically analyze the `1
norm and `∞ norm of convolutional layer, and we find that

our method of computing norms is much more efficient than
that of (Sedghi, Gupta, and Long 2019).

Since 2D multi-channel convolutional layers (Conv2d)
(Goodfellow, Bengio, and Courville 2016) are arguably the
most widely used convolutional layers in practice, we analyze
Conv2d in this paper while the analysis for other types of
convolutional layer should be similar.
Setting. Let conv : Rdin×hin×win → Rdout×hout×wout be
a 2D multi-channel convolutional layer with a 4D kernel
K ∈ Rdout×din×k1×k2 , where d is the channel dimension, h
and w are the spatial dimensions of images, and k1 and k2
are the kernel size. Suppose the vertical stride of conv is s1
and horizontal stride is s2, and padding size is p1 and p2.

We first note that Conv2d without bias is a linear trans-
formation, which can be verified by checking conv(αx) =
α conv(x) and conv(x + y) = conv(x) + conv(y) for any
α ∈ R and any tensors x and y with appropriate shape.
Normally, the input and output of Conv2d are 3D tensors
(e.g., images) while the associated linear transformation
takes 1D vectors as input. So we reshape the input into a
vector (only reshaping the input channel excluding padding
since padding elements are not variables) and then Conv2d
can be represented by conv(x) = Mx + b, where M
is the linear transformation matrix and b is the bias vec-
tor. Then the norm of Conv2d is just the norm of M . We
first state the following well known facts about the norms
of a matrix A ∈ Rm×n: ‖A‖1 = max1≤j≤n

∑m
i=1 |Aij |,

‖A‖∞ = max1≤i≤m
∑n
j=1 |Aij |, and ‖A‖2 = σmax(A),

where σmax(A) is the largest singular value of A. While the
exact computation of M is complicated, we can analyze how
the norm ‖M‖p is related to the convolutional kernel K,
which is a 4D tensor in the case of Conv2d.

By carefully inspecting how the output elements of Conv2d
are related to the input elements, we find M is basically like
the matrix in Figure 1d. The rows of M can be formed by
convolving a 3D “slice” (see Figure 1c) of the 4D kernel
with the 3D input channels and inspecting which elements
on the input channels are being convolved with the 3D ker-
nel slice. If the stride of convolution is 1, M is indeed a
doubly circulant matrix like the one in Figure 1d (Goodfel-
low, Bengio, and Courville 2016; Sedghi, Gupta, and Long
2019). However, when the stride is not 1 or there is padding
in the input channel, the patterns in M could be much more
complicated, which is not addressed in existing analytical
formulas (Gouk et al. 2018; Sedghi, Gupta, and Long 2019).
We take stride and padding into account and properly address
these issues. To obtain a theoretical result of the Lipschitz
properties of Conv2d, we present the following assumption,
which basically means that the convolutional kernel can be
completely covered by the input channel (excluding padding)
during convolution. We emphasize that the assumption holds
for most convolutional layers used in practice.
Assumption 1. Let c1 and c2 be the smallest positive integers
such that c1s1 ≥ p1 and c2s2 ≥ p2. Assume k1+c1s1−p1 ≤
hin and k2 + c2s2 − p2 ≤ win, and the padding (if any) for
the input of conv is zero padding.

We need the following lemma to present our formula to
compute the `1 norm of Conv2d. The overall idea of the
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(d) The upper left part of the linear transformation matrix of the 2D multi-
channel convolutional layer for (a) (b) (c) with stride 1 and no padding. With
padding and various strides, the pattern of the linear transformation matrix is
more complicated, but these have been properly addressed in our theorem.

Figure 1: An illustration of the linear transformation matrix of a convolutional layer.

lemma is that it links the nonzero elements of every column of
M to the elements in the convolutional kernel, which is very
useful because the `1 norm of M is exactly the maximum of
the absolute column sum of M .
Lemma 1. Suppose Assumption 1 holds. The indices set for
the last two dimensions of K is N := {(k, t) : 1 ≤ k ≤
k1, 1 ≤ t ≤ k2}. Let ∼ be a binary relation on N such that,
if indices (a, b) and (c, d) satisfy (a− c) ≡ 0 (mod s1) and
(b− d) ≡ 0 (mod s2), then (a, b) ∼ (c, d). Let A(a,b) ⊆ N
denote the largest set3 of indices such that (a, b) ∈ A(a,b)

and for all (c, d) ∈ A(a,b), (c, d) ∼ (a, b) and 0 ≤ c− a ≤
hin+2p1− k1 and 0 ≤ d− b ≤ win+2p2− k2. Let S be a
set of indices sets defined as S := {A(a,b) : (a, b) ∈ N}. Let
M:,n be the n-th column of the linear transformation matrix
M of conv, and let nz(M:,n) be the set of nonzero elements
of M:,n. Then for n = 1, 2, . . . , dinhinwin, there exists an
indices set A ∈ S such that nz(M:,n) ⊆ {Ki,j,k,t : 1 ≤ i ≤
dout, (k, t) ∈ A}, where j = dn/(hinwin)e. Furthermore,
for j = 1, 2, . . . , din, for all A ∈ S , there exists a column
M:,n of M , where (j − 1)hinwin < n ≤ jhinwin, such that
nz(M:,n) ⊇ {Ki,j,k,t : 1 ≤ i ≤ dout, (k, t) ∈ A}.

Now we are ready to show how to calculate the norms of
Conv2d.
Theorem 1. Suppose Assumption 1 holds. Then the `1 norm
and `∞ norm and an upper bound of the `2 norm of conv are
given by

‖ conv ‖1 = max
1≤j≤din

max
A∈S

∑
(k,t)∈A

dout∑
i=1

|Ki,j,k,t|, (1)

‖ conv ‖∞ = max
1≤i≤dout

din∑
j=1

k1∑
k=1

k2∑
t=1

|Ki,j,k,t|, (2)

‖ conv ‖2 ≤
(
houtwout

dout∑
i=1

din∑
j=1

k1∑
k=1

k2∑
t=1

|Ki,j,k,t|2
) 1

2

(3)

3By largest set we mean adding any other indices to A(a,b)

would violate the conditions that follow.

where S is a set of indices sets defined in Lemma 1.

The proofs of Lemma 1 and Theorem 1 are lengthy and
deferred to the Appendix.

Do Large Norms Hurt Adversarial
Robustness?

Many works mentioned in the Introduction regularize the
norms of layers to improve robustness, while some authors
(Sokolić et al. 2017; Weng et al. 2018; Yang et al. 2020)
pointed out that local Lipschitzness is what really matters
to adversarial robustness. In the setting of neural networks,
the relations and distinctions between global Lipschitzness,
local Lipschitzness, and the norms of layers are unclear. We
devote this section to investigate their connections. For com-
pleteness, we provide the definition of Lipschitz constant.

Definition 1 (Global and local Lipschitz constant). Given
a function f : X → Y , where X and Y are two finite-
dimensional normed spaces equipped with norm ‖ · ‖p, the
global Lipschitz constant of f is defined as

‖f‖p := sup
x1,x2∈X

‖f(x1)− f(x2)‖p
‖x1 − x2‖p

. (4)

We call ‖f‖p a local Lipschitz constant on a compact space
V ⊂ X if x1 and x2 are confined to V . In the context of
neural nets, the norm is usually the `1, `2, or `∞ norm.

To deduce the prevailing claim that large norms hurt adver-
sarial robustness, one must go through the following reason-
ing: large norms of layers→ large global Lipschitz constant
of the network→ large local Lipschitz constant in the neigh-
borhood of samples → the output of the network changes
so sharply around samples that the prediction is changed→
reducing adversarial robustness. However, there are at least
two serious issues at the first and second arrow in the above
reasoning. The first issue is that large norms of individual
layers do not necessarily cause the global Lipschitz constant
of the network to be large, as demonstrated in the following
proposition.
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Proposition 1. There exists a feedforward network with
ReLU activation where the norms of all layers can be ar-
bitrarily large while the Lipschitz constant of the network is
0.

The proof is deferred to the Appendix. Although the net-
work illustrated in the proof of Proposition 1 is a very simple
one, it does show that the coupling between layers could
make the actual Lipschitz constant of a neural net much
smaller than we can expect from the norms of layers. A re-
lated discussion of coupling between layers is presented in
(Virmaux and Scaman 2018). This proposition breaks the
logical chain at the first arrow in the above reasoning of large
norms hurting adversarial robustness. The second issue in the
reasoning is that, even if the Lipschitz constant of a neural
network is very large, it can still be adversarially robust. This
is because, local Lipschitzness, which means the output of a
network does not change sharply in the neighborhood of sam-
ples, is already sufficient for adversarial robustness, and it
has no requirement on the global Lipschitz constant (Sokolić
et al. 2017; Weng et al. 2018; Yang et al. 2020). In the next
paragraph, we will first prove that under a mild assumption,
robust classifiers can be achieved with neural networks, and
then we will prove that the Lipschitz constant of a robust
classifier can be arbitrarily large.

Since we are primarily interested in classification tasks,
our discussion will be confined to these tasks. We first need
some notations. Let X ⊂ Rn be the instance space (data
domain) and Y = {1, . . . , C} be the (finite) label set where
C is the number of classes. Let D be the probability measure
of X , i.e., for a subset A ⊂ X , D(A) gives the probability
of observing a data point x ∈ A. Let X be endowed with
a metric d that will be used in adversarial attack, and let
B(x, ε) := {x̃ : d(x, x̃) ≤ ε} be the ε-neighborhood of x. Let
f : X → Y denote the underlying labeling function (which
we do not know), and let X (c) ⊂ X be the set of class c.
The robust accuracy is defined as follows, similar to the
“astuteness” in (Wang, Jha, and Chaudhuri 2018; Yang et al.
2020).
Definition 2 (Robust accuracy). We say a classifier g : Rn →
R have robust accuracy γ under adversarial attack of mag-
nitude ε ≥ 0 if γ = D

(
{x ∈ X : |g(x̃) − f(x)| <

0.5 for all x̃ ∈ B(x, ε)}
)
.

Here, for convenience of proof, we use a classifier that
outputs a real number, and its prediction is determined by
choosing the nearest label to its output. Thus, if the output
of g is at most 0.5 apart from the true label, then g gives
the correct label. This definition and the following theorem
and proposition can be easily generalized to the widely used
classifiers with vectors as outputs. Intuitively, robust accuracy
is the probability measure of the set of “robust points”, which
are the points whose ε-neighbors can be correctly classified
by g. Our next theorem shows that, under a mild assumption
similar to that in (Yang et al. 2020), there exits a neural
network that can achieve robust accuracy 1 (i.e., the highest
accuracy).
Assumption 2 (2-epsilon separable). The data points
of any two different classes are 2-epsilon separable:
inf{d(x(i), x(j)) : x(i) ∈ X (i), x(j) ∈ X (j), i 6= j} > 2ε.

Intuitively, Assumption 2 states any two epsilon-balls cen-
tered at data points from two different classes do not have
overlap. We would like to provide an explanation for why the
assumption holds for a reasonable attack size ε in computer
vision tasks. We say the attack size ε is reasonable, if for all
x ∈ X and for all s ∈ B(x, ε), the label of s given by humans
is the same as that of x. Thus, if ε is reasonable (as in our
definition), the two balls B(x1, ε) and B(x2, ε) for x1 and x2
coming from two different classes would not have overlap,
which means the 2-epsilon separable assumption should hold
for a reasonable ε. In our analysis, we do not rely on the
number of classes, so the assumption should hold for any
number of classes. But we do think in reality, the training
of adversarially robust classifiers may be more difficult for
larger number of classes because intuitively, the neighbor-
hood B(x, ε) of x from different classes are more likely to be
close to each other if the number of classes are larger.
Theorem 2 (Realizability of robust classifiers). Let ρ : R→
R be any non-affine continuous function which is continu-
ously differentiable at at least one point, with nonzero deriva-
tive at that point. If Assumption 2 holds, then there exists
a feedforward neural network with ρ being the activation
function that has robust accuracy 1.

The proof is deferred to the Appendix. We notice that
Yang et al. (2020) showed a related result that there exists a
function that has small local Lipschitz constants and achieves
robust accuracy 1. Our result (Theorem 2) is different from
theirs in that we prove that a neural network that can be
realized in a digital computer can obtain robust accuracy 1
while they proved an abstract function f can obtain robust
accuracy 1, where the definition of f relies on knowing the
data distribution D and f may not be realized in a digital
computer. Yang et al. (2020) also empirically showed that
real-world image datasets are typically 2ε-separable and thus
there should exist neural networks that achieve high robust
accuracy. Using Theorem 2, we are ready to show that a
neural network having robust accuracy 1 can have arbitrarily
large Lipschitz constant, as in the following proposition.
Proposition 2. Let ρ : R→ R be any non-affine continuous
function which is continuously differentiable at at least one
point, with nonzero derivative at that point. If Assumption 2
holds, then for all ξ > 0, there exists a feedforward neural
network with ρ being the activation function that achieves
robust accuracy 1 and its Lipschitz constant is at least ξ.

The proof is deferred to the Appendix. Proposition 2 shows
that neural networks that have large Lipschitz constant can
be adversarially robust because they can have small local
Lipschitz constants in the instance domain. This proposition
implies that what really matters is the local Lipschitz property
of the network instead of the global one. Yang et al. (2020)
also stressed the importance of controlling local Lipschitz-
ness of neural nets, by showing a function that has small local
Lipschitz constant can achieve robust accuracy 1.

On the other hand, although enforcing a small global Lips-
chitz constant can ensure local Lipschitzness, it may reduce
the expressive power of the network and hurt standard ac-
curacy. Let us consider fitting the function f(x) = 1/x in
the interval (0.5, 1); then no 1-Lipschitz function could fit
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it well since the slope of the function in that interval is as
large as 4. Thus, enforcing global Lipschitzness may result
in hurting standard accuracy a lot while obtaining only a
slight improvement in robustness (e.g., as in (Li et al. 2019)).
In order to further investigate how norms influence the ad-
versarial robustness in practice, we further propose a novel
norm-regularization method in the next section.

A Regularization Method: Norm Decay
Equipped with Eq. (1) and Eq. (2), we present an algorithm
termed norm decay to control (or regularize) the norm of
fully-connected layers and convolutional layers. Then we
investigate how norm decay influences generalization and
adversarial robustness in experiments.

The norm decay approach is to add a regularization term
to the original loss function L(θ), where θ is the parameter,
to form an augmented loss function:

min
θ

L(θ) + β

N

N∑
i=1

‖θ(i)‖p (5)

where θ(i) denotes the linear transformation matrix of the
i-th layer and β is a hyperparameter, and the summation is
over all fully-connected layers and convolutional layers.

Form Eq. (1) and Eq. (2), we can see that the `1 and
`∞ norm depends on only some elements in the kernel,
which means the gradient of norm w.r.t. kernel elements
(∇θ‖θ(i)‖p) are typically sparse. Besides, since the norm is
the sum of the absolute values of these elements, the gra-
dient w.r.t. a single kernel element is either 1 or -1 or 0,
which makes the computation of gradient very efficient. Af-
ter updating the kernel parameters using an optimizer such
as stochastic gradient descent (SGD), the elements that con-
tribute to the norm may become completely different from
those before the update (due to the max operation in Eq. (1)
and Eq. (2)), which could cause non-smoothness (i.e., rapid
change) of the gradient ∇θ‖θ(i)‖p. To smooth the gradient
change and stabilize training, we introduce a momentum γ
to keep a moving average of the gradient of the norms. The
details are shown in Algorithm 1.

Algorithm 1 Norm Decay
Input: loss function L (assuming it is to be minimized),

parameters θ, momentum γ, regularization parameter β
Output: parameters θ

1: h← 0 (initialize the gradient of norms of layers)
2: repeat
3: g ← ∇θL
4: Compute p, the gradient of `1 or `∞ norm of each

fully-connected and convolutional layer
5: h← γ · h+ (1− γ) · p
6: g ← g + β/N · h
7: θ ← SGD(θ, g)
8: until convergence

kernel size `2(VS) `2(SGL) `1(ours) `∞(ours)

3, 3, 32, 32 26.5 5.75 0.00605 0.00576
3, 3, 32, 128 27.4 6.92 0.00682 0.00575
3, 3, 128, 256 29.0 98.0 0.00576 0.00560
3, 3, 256, 512 59.4 490 0.0117 0.00898
5, 5, 256, 128 59.7 91.5 0.0103 0.00729
5, 5, 512, 256 255 523 0.0239 0.0180

Table 1: Computation time (seconds) of 100 runs of com-
puting different norms for various kernels. The experimental
setup is shown in the next subsection and the computation
is run on GPU. The input image has the same shape as a
CIFAR-10 image. The kernel size is represented by (kernel
height, kernel width, # input channels, # output channels).
VS denotes the method of Virmaux and Scaman (2018) and
SGL denotes the method of Sedghi, Gupta, and Long (2019).

Experiments
Firstly, we show our approaches for computing norms of
Conv2d are very efficient. In the second part, we conduct
extensive experiments to investigate if regularizing the norms
of CNN layers is effective in improving adversarial robust-
ness. In the third part, we compare the norms of the layers
of adversarially robust CNNs against their non-adversarially
robust counterparts.

Algorithmic Efficiency Comparison
We compare the efficiency of three methods that can compute
the exact norms of convolutional layers, including comput-
ing the `2 norm with power iteration (Virmaux and Scaman
2018) and circulant matrix (Sedghi, Gupta, and Long 2019)
and computing the `1 norm and `∞ norm with Eq. (1) and
Eq. (2). The result is shown in Table 1, which shows that
our approaches are much faster (up to 14,000 times faster)
than the others, while our approaches are theoretically and
empirically equivalent to the others in computing norms.

Regularizing Norms Improves Generalization but
Can Hurt Adversarial Robustness
To better understand the effect of regularizing the norm of
CNN layers, we conduct experiments with various models
on CIFAR-10 (Krizhevsky and Hinton 2009). Specially, we
use three approaches, including weight decay (WD), singular
value clipping (SVC) (Sedghi, Gupta, and Long 2019), and
norm decay (ND), to regularize the norms. Here, we only
use the norm-regularization methods that do not change the
architecture of the network, and thus exclude the GroupSort
(Anil, Lucas, and Grosse 2019) and BCOP (Li et al. 2019).
We also exclude the methods that may not regularize the true
norms (e.g., reshaping the convolutional kernel into a matrix)
such as Parseval Regularization (Cisse et al. 2017) and (Gouk
et al. 2018).
Experimental setup. We set the regularization parameter
to different values and test generalization and adversarial
robustness of the models on test set. In norm decay, we
simply set the hyperparameter γ (momentum) to 0.5 and
test the other hyperparameter β in {10−5, . . . , 10−2}. We
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plain weight decay singular value clipping `1 norm decay `∞ norm decay

model ACC — 10−2 10−3 10−4 10−5 0.5 1.0 1.5 2.0 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

vgg Clean 90.4 91.6 91.7 90.1 90.2 87.6 89.1 90.0 89.9 88.1 91.1 90.6 90.8 91.8 91.1 90.8 90.6
Robust 60.2 56.3 60.5 60.6 60.3 48.8 52.2 54.1 56.7 56.5 62.5 61.1 60.1 56.9 60.0 60.8 60.1

resnet Clean 93.2 94.3 94.1 93.1 92.7 93.6 94.0 94.2 93.8 92.5 93.4 93.5 93.4 93.0 93.8 93.1 93.0
Robust 37.0 28.2 33.7 33.9 40.9 35.2 41.7 43.2 39.8 24.5 37.7 38.3 37.5 20.0 34.7 38.9 37.6

senet Clean 93.1 94.2 93.9 93.0 92.4 93.8 94.2 93.8 94.2 92.3 93.8 93.3 93.3 93.0 93.6 92.8 93.2
Robust 35.7 23.5 32.8 37.0 34.8 30.5 35.6 35.2 37.4 33.6 36.0 38.2 36.7 28.6 31.0 37.6 37.4

regnet Clean 91.8 93.6 94.4 92.3 91.3 93.9 93.4 93.0 92.4 93.7 92.3 91.6 91.9 93.4 92.0 91.8 91.9
Robust 34.8 23.7 30.3 30.0 31.0 27.7 28.8 29.0 28.8 29.2 31.1 28.1 34.3 23.2 27.7 27.9 30.6

Table 2: Comparison of clean accuracy (%) and robust accuracy (%) of 4 CNN models trained with different norm-regularization
methods on CIFAR-10. The second row corresponds to the values of regularization parameters. Robust accuracy is tested with
standard Auto Attack (Croce and Hein 2020) under `∞ metric with ε = 1/255.

also test the regularization parameter of weight decay in
{10−5, . . . , 10−2} and test SVC by clipping the singular val-
ues to {2.0, 1.5, 1.0, 0.5}, respectively, following the setting
in the original paper. We use four CNN architectures in our
experiments, including VGG-11 (Simonyan and Zisserman
2015), ResNet-18 (He et al. 2016), SENet-18 (Hu, Shen, and
Sun 2018), and RegNetX-200MF (Radosavovic et al. 2020).
We use the SGD optimizer with momentum of 0.9 and set the
initial learning to 0.01. We train the models for 120 epochs
and decay the learning rate by a factor of 0.1 at epoch 75, 90,
and 100. After finishing training, we use the state-of-the-art
attack “Auto Attack” (Croce and Hein 2020) to attack the
trained CNNs. The experiments are conducted on a machine
a GTX 1080 Ti GPU and an Intel Core i5-9400F 6-core CPU
and 32GB RAM.

The result is shown in Table 2. Since we find that all mod-
els trained with WD, SVC, and ND have basically zero robust
accuracy under `∞ attack with ε = 8/255 and ε = 4/255,
we set ε = 1/255 to see the actual effect of regularizing
norms. Because of that, we first conclude that these regular-
ization methods cannot improve adversarial robustness by
reducing norms when facing large attack (in the sense of
large ε). From Table 2, we can see that the four regulariza-
tion methods typically improve generalization. However, as
the regularization becomes stronger, the norm of all layers
becomes smaller (see Appendix for the changes of norms
during training) while the robust accuracy could slightly de-
crease. The reduction in robust accuracy is especially evident
when the regularization is the strongest and the norms are the
smallest (in the first column of each regularization method
in Table 2). This result is very surprising and contradicts the
prevailing claim that small norms of CNN layers improve ro-
bustness (Szegedy et al. 2014; Cisse et al. 2017; Anil, Lucas,
and Grosse 2019; Li et al. 2019). We can see that there seems
to be a trade-off between standard (clean) accuracy and ro-
bust accuracy. When the clean accuracy gets a higher value,
the robust accuracy typically gets a lower value. This trade-
off has been pointed out by Tsipras et al. (2019), and they
proved that the trade-off is inevitable when the distribution of
two different classes is “mixed”. However, Yang et al. (2020)
have shown that the CIFAR-10 training set and test set are
both 2ε-separable for ε much larger than the typical values
used in adversarial attack. Therefore, by Theorem 2, there

should exist a neural network that achieves robust accuracy 1
and there should be no intrinsic trade-off.

The reason for this phenomenon may be that regularizing
the norms in fact suppresses the power of CNNs to become
local Lipschitz. From the results in the last section, we know
that large norms do not necessarily result in large local Lips-
chitz constants. Thus, in an unconstrained parameter space
(in the case of no regularization) the network may be able
to find a minimizer (w.r.t. the loss) that has better local Lips-
chitzness. When the parameter space is constrained (due to
regularization), the network may need to sacrifice local Lip-
schitzness to retain standard accuracy, which is the training
target.

Although the proposed norm decay may slightly reduce the
adversarial robustness, it still serves as a novel and promising
regularizer for CNNs in improving standard generalization.

The Norms of Adversarially Robust Networks

Equipped with our efficient approaches to computing norms
of convolutional layers, we further test how the norms of
adversarially robust CNNs differ from their non-adversarially
robust counterparts. Specifically, we use three adversar-
ial training frameworks, namely, PGD-AT (Madry et al.
2018), ALP (Kannan, Kurakin, and Goodfellow 2018), and
TRADES (Zhang et al. 2019) to train the four models, namely,
VGG-11, ResNet-18, SENet-18, and RegNetX-200MF. The
experimental setting is the same as that in the last subsection
except the initial learning rate is set to 0.1 by following the
setting of Pang et al. (2020). After finishing training, we com-
pute the `∞ norms of all layers in the CNNs with/without
adversarial training. The result is shown in Figure 2. We can
see that the norms of layers of adversarially robust CNNs
are comparable or even larger than their non-adversarially
robust counterparts (e.g., the adversarially robust ResNet
and SENet have especially larger norms while having much
higher robust accuracy than the plain models). Due to space
limitation, we put the comparison of the norms of individual
layers in the supplementary material. These findings consis-
tently show that large norms of CNNs do not hurt adversarial
robustness and what really matters is the local Lipschitzness
of the networks.
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Figure 2: Comparison of the distribution of norms of the layers of four CNN architectures trained with different adversarial
training methods on CIFAR-10. The density is fitted using Gaussian kernel density estimation. The small bars on the bottom
of the plots indicate the values of the norms. The two numbers beside each training method are the clean accuracy and robust
accuracy, respectively. The robust accuracy is evaluated with standard Auto Attack (Croce and Hein 2020) under `∞ metric with
ε = 8/255.

Conclusion and Future Work

In this paper, we theoretically characterize the `1 norm and
`∞ norm of convolutional layers and present efficient ap-
proaches for computing the exact norms. Our methods are
extremely efficient among the existing methods for comput-
ing norms of convolutional layers. We present norm decay, a
novel regularization method, which can improve generaliza-
tion of CNNs. We prove that robust classifiers can be realized
with neural networks – a piece of encouraging news to the
deep learning community.

We theoretically analyze the relationship between global
Lipschitzness, local Lipschitzness, and the norms of layers. In
particular, we show that large norms of layers do not necessar-

ily lead to a large global Lipschitz constant and a large global
Lipschitz constant does not necessarily incur small robust
accuracy. In the experiments, we find that regularizing the
norms may not improve adversarial robustness and may even
slightly hurt adversarial robustness. Moreover, CNNs trained
with adversarial training frameworks actually have compara-
ble and even larger layer norms than their non-adversarially
robust counterparts, which shows that large norms of layers
do not matter. Our theoretical result (Proposition 2) also sug-
gests that imposing local Lipschitzness on neural nets may
be an effective approach in adversarial training, which sheds
light on future research.
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