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Abstract

Recently deep neural networks have been successfully ap-
plied in channel coding to improve the decoding perfor-
mance. However, the state-of-the-art neural channel decoders
cannot achieve high decoding performance and low complex-
ity simultaneously. To overcome this challenge, in this paper
we propose doubly residual neural (DRN) decoder. By inte-
grating both the residual input and residual learning to the
design of neural channel decoder, DRN enables significant
decoding performance improvement while maintaining low
complexity. Extensive experiment results show that on dif-
ferent types of channel codes, our DRN decoder consistently
outperform the state-of-the-art decoders in terms of decoding
performance, model sizes and computational cost.

Introduction
Starting from Claude Shannon’s 1948 seminal paper (Shan-
non 1948), channel codes, also known as error correction
codes, have provided data reliability for communication and
storage systems in the last seven decades. Historically, ev-
ery ten years or so information theorists discovered a new
channel code that approaches the ultimate channel capac-
ity closer than the prior ones, thereby reshaping the way
that we transmit and store data. For instance, low-density
parity check (LDPC) codes (Gallager 1962; MacKay and
Neal 1996) that was re-discovered in 1996 and polar codes
(Arikan 2009) that was invented in 2009 have become the
adopted channel codes solution in 5G standard. Nowadays,
channel codes have served as the key enablers for the dra-
matic advances of modern high-quality data transmission
and high-density storage systems, including but not limited
to 5G air interface, deep space communication, solid-state
disk (SSD), high-speed Ethernet etc.

Channel Encoding & Decoding. In general, the key idea
of channel coding is to first encode certain redundancy into
the bit-level message that will be transmitted over noisy
channel, and then at the receiver end to decode the corrupted
message for recovery via utilizing the redundancy informa-
tion. Based on such underlying mechanism, a channel codec
consists of one encoder and one decoder at the transmitter
end and receiver end, respectively (see Figure 1). In most
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Figure 1: A channel codec uses one encoder and one decoder
to recover the information after noisy transmission.

cases, channel decoder is much more expensive than en-
coder in terms of both space and computational complex-
ity. This is because in encoding phase only simple exclusive
OR operations are needed at the bit level; while in decod-
ing phase the more advanced but complicated algorithms are
needed to correct the errors occurred by noisy transmission.
To date, the most popular and powerful channel decoding al-
gorithm is iterative belief propagation (BP) (Fossorier, Mi-
haljevic, and Imai 1999).

Deep Learning for Channel Decoder. From the perspec-
tive of machine learning, the role of channel decoder can be
interpreted as a special multi-label binary classifier or de-
noiser. Based on such observation and motivated by the cur-
rent unprecedented success of deep neural network (DNN)
in various science and engineering applications, recently
both information theory and machine learning communi-
ties are beginning to study the potential integration of deep
neural network into channel codec, especially for the high-
performance channel decoder design. A simple and natu-
ral idea along this direction is to use the classical deep au-
toencoder to serve as the entire channel codec (O’Shea and
Hoydis 2017). Although this domain knowledge-free strat-
egy can work for very short channel codes (e.g. less-than-
10 code length), it cannot provide satisfied decoding per-
formance for moderate and long channel codes, which are
much more important and popular in the practical industrial
standard and commercial systems.

The State of the Art: NBP & HGN Decoders. Recently,
several studies (Nachmani, Be’ery, and Burshtein 2016;
Cammerer et al. 2017; Gruber et al. 2017; Lugosch and
Gross 2017; Nachmani et al. 2018) have shown that, by in-
tegrating the existing mathematical structure and character-
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istics of classical decoding approach, e.g. iterative BP, these
domain knowledge-based neural channel decoders can pro-
vide promising decoding performance for the longer channel
codes. Among those recent progress, both of the two state-
of-the-art works, namely Neural BP (NBP) decoder (Nach-
mani et al. 2018) and Hyper Graph Neural (HGN) decoder
(Nachmani and Wolf 2019), are based on the ”deep un-
folding” methodology (Hershey, Roux, and Weninger 2014).
Specifically, NBP decoder unfolds the original iterative BP
decoder to the neural network format, and then trains the
scaling factors instead of empirically setting. Following the
similar strategy, HGN decoder further replaces the origi-
nal message updating step of BP algorithm with a graph
neural network (GNN) to form a hyper graph neural net-
work (HGNN). As reported in their experiments on different
types of channel codes, such proper utilization of the domain
knowledge directly makes the neural channel decoders out-
perform the traditional BP decoder.1

Limitations of Existing Works. Despite the current
encouraging progress, the state-of-the-art neural channel
decoders are still facing several challenging limitations.
Specifically, NBP decoder and its variants do not provide
significant improvement on decoding performance over the
traditional method. For some codes (e.g. Polar codes) with
moderate or high code rates, the bit error rate (BER) per-
formance improvement brought by NBP decoder is very
slight. On the other hand, though HGN decoder indeed pro-
vides significant decoding gain over the conventional BP
decoder – HGN decoder currently maintains the best de-
coding performance among all the neural channel decoders,
the hyper graph neural network structure makes the entire
decoder suffer very large model size, thereby causing high
storage cost and computational cost for both training and in-
ference phases. Considering channel codes are widely used
in the latency-restrictive resource-restrictive scenarios, such
as mobile devices and terminals, the expensive deployment
cost of HGN decoder makes it infeasible for practical appli-
cations.

Technical Preview & Contributions. To overcome these
limitations and fully unlock the potentials of neural net-
works in high-performance channel decoder design, in this
paper we propose a novel doubly residual neural decoder,
namely DRN decoder, to provide strong decoding perfor-
mance with low storage and computational costs. As re-
vealed by its name, a key feature of DRN decoder is its
built-in residual characteristics on both data processing and
network structure, which jointly avoid the structured limita-
tions of the existing neural channel decoders. In overall, we
summarize the contributions and benefits of DRN decoder
as follows:

• Inspired by the historical success of ResNet (He et al.
2016), DRN decoder imposes both residual input and

1Some recent studies also propose to use neural networks to
design new channel codes (Kim et al. 2018; Ebada et al. 2019;
Jiang et al. 2019; Burth Kurka and Gündüz 2020; Kim, Oh, and
Viswanath 2020). In this paper we focus on designing neural chan-
nel decoders for the existing widely used channel codes (such as
LDPC, Polar and BCH codes).

residual learning on the neural channel decoder archi-
tecture. Such structure-level reformulation ensures that
DRN decoder can effectively and consistently learn strong
error-correcting capability over various types of channel
codes with different code lengths and code rates.

• Our experimental results show that, our proposed DRN
decoder achieves significant decoding performance im-
provement. Compared with the state-of-the-art NBP de-
coder, DRN decoder enjoys 0.5∼1.8 dB extra coding gain
over different channel codes. Compared with HGN de-
coder, which has the strongest error-correcting capability
among all the existing neural channel decoders, DRN de-
coder also achieves similar or even better decoding per-
formance over different channel codes.

• DRN decoder also enjoys low-cost benefits on both
model size and computational demand. Compared with
NBP decoder, DRN decoder requires 23×∼100× fewer
parameters and 3.2×∼4.3× fewer computational oper-
ations. Compared with HGN decoder, DRN decoder
achieves the similar decoding performance with only us-
ing 373×∼2725× fewer parameters and 708×∼30054×
fewer computational operations over different channel
codes.

Focus on Block Codes. Channel codes can be roughly
categorized to two types: block codes and convolutional
codes. This paper focuses efficient neural channel decoder
design for block codes, including LDPC, Polar and BCH
codes. This is because block codes are the state-of-the-art
channel codes due to their better error-correcting perfor-
mance and more feasible decoder implementation than the
convolutional codes. Currently most advanced communica-
tion (e,g, 5G) and storage systems (e,g, SSD) adopts block
codes in the industrial standards and commercial products.

Background and Related Work
Classical BP-based Channel Decoder
Channel Codes. In general, for an (n, k) channel code with
n-bit code length and k-bit information length, it can be de-
fined by a binary generator matrix G of size k × n. Mean-
while, it is also associated with a binary parity check matrix
H of size (n− k)× n, where GHT = 0.

In encoding phase, the original k-bit binary information
vector m is encoded to an n-bit binary codeword x = mG,
where all the arithmetic operations are in binary domain. Af-
ter x is transmitted over a noisy channel, at the receiver end
the received codeword r is observed, and the goal of channel
decoding is to recover x from r. 2

Factor Graph and BP Algorithm. Channel decoding
can be performed by using various approaches. Among
them, belief propagation (BP) is the most advanced decod-
ing algorithm. The key idea of BP algorithm is to perform
iterative belief message passing over the factor graph, a bi-
partite graph entailed by parity check matrix H. As illus-
trated in Figure 2a, the factor graph for an (n, k) channel

2In practice the encoder usually adopts systematic encoding
strategy (Lin and Costello 1983), so after decoding phase m can
be directly obtained via fetching the first k bits of the decoded x̂.
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Figure 2: (a) Parity check matrix and associate factor graph
for channel codes. Iterative BP is on the factor graph. (b)
Factor graph can be unfolded to Trellis graph. Variable
nodes are colored in blue, V-to-C messages are in yellow,
and C-to-V messages are in orange.

code contains n variable nodes and (n−k) check nodes, and
each edge in the graph corresponds to an entry-1 in matrix
H.

At the initial stage of BP algorithm, all the variable nodes
receive the log likelihood ratio (LLR) lv of the correspond-
ing bit:

lv = log
P (xv = 1|rv)
P (xv = 0|rv)

, (1)

where v ∈ [n] is the index of variable nodes, and xv and rv
are the corresponding bit of x and r, respectively. Then, the
belief messages between variable nodes and check nodes are
iteratively calculated and propagated as follows:

utv→c = lv +
∑

c′∈N(v)\c

ut−1c′→v

utc→v = 2arctanh [
∏

v′∈M(c)\v

tanh (
utv′→c

2
)]

stv = lv +
∑

c′∈N(v)

utc′→v

, (2)

where c ∈ [n − k] is the index of check nodes, and t is the
iteration number.N(·) andM(·) represent the set of the con-
nected nodes to the current variable node and check node, re-
spectively. utc→v denotes the message to be propagated from

the index-c check node to the index-v variable at the t-th
iteration, and utv→c denotes the message in the opposite di-
rection. In addition, after the final iteration (L) sLv is used for
hard decision of the decoded bit x̂v . If sLv > 0, then x̂v = 1;
otherwise x̂v = 0.

Neural BP (NBP) Decoder
From the perspective of neural network, the iterative BP de-
coding over factor graph can be ”unfolded” to a neural net-
work. Specifically, since the unfolded factor graph is essen-
tially a Trellis graph, where each edge in the factor graph
becomes the node of the Trellis graph (see Figure 2b), the
entire Trellis graph can be interpreted as a special neural
network, thereby forming a neural BP (NBP) decoder. A
very attractive advantage of this interpretation is that, with
proper neural network training, each propagated message’s
associate scaling parameter, which was constant 1 or empir-
ically set in conventional BP decoder, can now be trained as
the weight of neural network to achieve better decoding per-
formance. In general, the original message passing described
in Eq. (2) become the forward propagation on the layers of
the NBP decoder (Nachmani et al. 2018) as follows:

utv→c = f(wt
v,inlv +

∑
c′∈N(v)\c

wt
c′→vu

t−1
c′→v)

utc→v = g(
∏

v′∈M(c)\v

utv′→c)

stv = σ(wt
v,outlv +

∑
c′∈N(v)

wt
c′→vu

t
c′→v)

, (3)

where f(·), g(·) and σ(·) are the tanh, arctanh and sigmoid
function, respectively. From the perspective of neural net-
work, wt

v,in, w
t
c′→v, w

t
v,out and wt

c′→v , can be learned by
minimizing the multi-label binary classification loss as fol-
lows:

loss =
N∑

v=1

−[xv log sv + (1− xv) log(1− sv)], (4)

where sv = sLv is the output of the last layer of NBP decoder.

Hyper Graph Neural (HGN) Decoder
In (Nachmani and Wolf 2019), a hyper graph neural (HGN)
decoder is proposed to further improve the performance of
neural channel decoder. Beyond the weight-learning strategy
adopted in the NBP decoder, at each iteration HGN decoder
directly learns the belief message calculation and propa-
gation schemes between check nodes and variable nodes.
Specifically, the update of utv→c is now learned and per-
formed via a graph neural network as follows:

utv→c = GNN(lv, u
t−1
c′→v), ∀c

′ ∈ N(v)\c. (5)

Because it is found that training such graph neural network
is quite challenging due to the large amount of possible up-
dating schemes, HGN decoder further uses another neural
network to learn and predict the weights for the graph neu-
ral network. In overall, unlike NBP decoder, HGN decoder

8576



adopts flexible belief message update scheme because of
its ”hyper-network” structure. Such flexibility is believed to
bring significant decoding performance improvement over
the fixed-scheme NBP decoder.

Method
Rethink and Analysis – Lessons Learned from
NBP and HGN Decoders
Dilemma between Performance and Cost. Although NBP
and HGN decoders show performance improvement over
traditional BP decoder, they are facing several inherent lim-
itations. For NBP decoder, its provided decoding perfor-
mance improvement is not consistently significant. As will
be shown in Section , on some channel codes (e.g. Polar
codes) and with some codes parameters (e.g. higher code
rate), the decoding performance of NBP decoder is simi-
lar to conventional BP decoder or even worse. On the other
hand, HGN decoder shows consistently much lower BER
with different types of codes and parameters. However, its
unique hyper graph neural network structure makes it very
expensive for both computation and storage. In overall, such
dilemma between performance and cost severely hinders
the widespread deployments of NBP and HGN decoders in
practical applications.

Rethink-1: Why is Performance of NBP Decoder Lim-
ited? As mentioned above, the underlying design method-
ology used for NBP decoder – training the unfolded factor
graph as a neural network, though works, does not achieve
the expected significant decoding performance improve-
ment. We hypothesize such phenomenon is due to three
reasons. 1) Depth. Once factor graph is unfolded to Trel-
lis graph, the depth of the corresponding neural network is
proportional to the number of iterations, which is at least 5
in typically setting. Therefore, the depth of the NBP decoder
is at least 10 layers or more. For such type of deep and plain
neural network without additional structure such as residual
block, it is well known that they suffer unsatisfied perfor-
mance due to the vanishing gradient problem. 2) Sparsity.
Because factor graph of channel codes is inherently sparse,
the underlying neural network of NBP decoder is highly
sparse as well. Therefore, training an NBP decoder is es-
sentially training a sparse neural network from scratch. Un-
fortunately, extensive experiments in literature have shown
that, the performance of a sparse model via training-from-
scratch is usually inferior to the same-size one via pruning-
from-dense (Li et al. 2016; Luo, Wu, and Lin 2017; He,
Zhang, and Sun 2017; Yu et al. 2018). Such widely observed
phenomenon probably also limits the performance of NBP
decoder. 3) Application. Different from most other applica-
tions, channel decoding has extremely strict requirement for
accuracy. Its targeted bit error rate range is typically 10−3

and below. Therefore, even though learning the weights in-
creases the classification accuracy, if such increase is not
very significant, it will not translate to obvious decoding per-
formance important in terms of BER or coding gain (dB).

Rethink-2: Is Flexible Message Update Scheme in
HGN Decoder a Must? As introduced in Section , HGN
decoder uses high-complexity hyper graph neural network

to directly learn the message update schemes instead of the
weights only. In other words, both how the messages are cal-
culated and propagated are now learnable and flexible. Al-
though such flexibility is widely believed as the key enabler
for the promising performance of HGN decoder, we argue its
necessity for the high-performance neural channel decoder
design. Recall the structure of the state-of-the-art convolu-
tional neural networks (CNNs), such as ResNet (He et al.
2016) and DenseNet (Huang et al. 2017), we can find that the
propagation path of the information during both inference
and training phases are not flexible but always fixed. Al-
though there are a set of works studying ”adaptive inference”
(Bolukbasi et al. 2017; Wang et al. 2018; Hu et al. 2019),
the main benefit of introducing such flexibility is to acceler-
ate inference speed instead of improving accuracy– actually
those adaptive inference work typically have to trade the ac-
curacy for faster inference.

Rethink-3: How to Break Performance-Cost
Dilemma? Based on our above analysis and observation,
we believe designing a high-performance low-complexity
neural channel decoder is not only possible, but the avenue
is already available – a new network architecture is the
key. This is because the history of developing advanced
CNNs, such as ResNet and DenseNet, has already demon-
strated how important a new, instead of flexible, network
architecture to the accuracy performance of CNN models.
Inspired by these historical success, we propose to perform
architecture-level reformulation to NBP decoder. Such de-
sign strategy is attractive for breaking the performance-cost
dilemma of neural channel decoder because 1) NBP decoder
itself has lower complexity than HGN decoder; and 2) if
properly performed, architecture reformulation will bring
high decoding performance.

Doubly Residual Neural (DRN) Decoder
Residual Structure: From CNN to Channel Decoder. To
achieve that, we propose to integrate residual structure,
which is a key enabler for the success of ResNet in CNN, to
the design of high-performance neural channel decoder. As
analyzed and verified by numerous prior studies, the resid-
ual structure, performs residual learning to learn the residual
mapping F(x) := H(x)−x instead of directly learning the
underlying mappingH(x). Such strategy effectively circum-
vents the vanishing gradient problem and makes training
high-performance deep network become possible. As ana-
lyzed in our rethinking on the limitations of NBP decoder,
such benefit provided by the residual structure is particular
attractive for high-performance neural channel decoder de-
sign.

Doubly Residual Structure. Next we describe the pro-
posed architecture reformulation on the neural channel de-
coder. As shown in Figure 3, the entire decoder consists of
multiple blocks, where each block stacks two adjacent lay-
ers of Trellis graph. Similar to the construction of bottleneck
block in ResNet, our architecture reformulation is performed
on this two-layer-stacked component block of the decoder.

Mapping Challenge. Imposing the residual structure on
the block is facing a structure-level challenge. For each com-
ponent block, it maps three inputs to three outputs. From the
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Figure 3: Three-step reformulation to form DRN decoder.
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Figure 4: BER of BP decoder using sv and lv for hard deci-
sion after 1 iteration on different LDPC codes.

perspective of DNN, such multiple-input-to-multiple-output
mapping is very difficult for the neural network model to
learn properly and accurately, which then would signifi-
cantly limiting the learning capability.

Step-1: Merge Representations. To overcome this chal-
lenge, we propose to simplify the input-to-output mapping in
each block (see Figure 3). Our first step is to merge sv and
lv – we use sv to replace lv in the corresponding computa-
tion. Such substitution is based on the phenomenon that, as
the soft output for each iteration, sv should always be more
reliable for hard decision of each bit than lv , since lv is only
the constant extrinsic LLR obtained from the noisy channel.
For instance, as shown in Figure 4, when we simply use lv
and sv after one BP iteration for hard decision of different
LDPC codes, the BER performance using sv is much better
than that using lv for hard decision. Based on this obser-
vation, in our proposed design we merge sv and lv at each
block and only use sv for the involved computation.

Step-2: Residual Input. After merging sv with lv , there

still exist 2-input-to-2-output mapping in the block. Hence
we further propose to only use the residual value between
sv and uc→v as the input and output as follows:

acv = sv − uc→v. (6)
As shown in Figure 3, making residual input ensures that the
component block only need to learn one-to-one mapping,
thereby reducing the learning difficulty.

Step-3: Residual Learning. Based on the one-to-one
mapping result from the previous two steps, we can now in-
tegrate the shortcut-based residual learning to the decoder
architecture. In general, the reformulated block will learn
the following mapping function:

bcv = acv + h(w, acv′)

= acv + g ◦ f(w, acv′),
(7)

where h(·) is the activation function as the composition of
g(·) and f(·). Figure 3 shows the overall procedure of this
3-step architecture reformulation. Since this new structure
contains both residual input and residual learning, we name
the entire decoder as doubly residual neural (DRN) decoder.

Further Complexity Reduction. Besides architecture
reformulation, we also adopt two approaches to further re-
duce complexity of DRN decoder. First, during the training
phase we keep the weights in the same block as the same.
Our experimental results shows that, such weight sharing
strategy significantly degrades the decoding performance of
NBP decoder, but it does not affect DRN decoder at all. Sec-
ond, considering the high complexity of tanh and arctanh
functions in Eq. (2), we adopt the widely used min-sum ap-
proximation (Hu et al. 2001) to simplify the computation:

y = 2arctanh[tanh(
p

2
) tanh(

q

2
)]

≈ sign(p) · sign(q) ·min(|p|, |q|),
(8)

where | · | returns the absolute value. Based on this approxi-
mation, h(·) can be performed as follows:

h(w, acv) = w min
v′∈M(c)\v

|acv′ |
∏

v′∈M(c)\v

sign(acv′). (9)
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Decoder Conventional BP NBP HGN (NeurIPS’19) DRN (Ours)
SNR (dB) 4 5 6 4 5 6 4 5 6 4 5 6

Polar (64, 32) 4.45 5.41 6.46 4.48 5.35 6.50 4.25 5.49 7.02 6.00 7.97 10.39
Polar (64, 48) 4.64 5.90 7.31 4.52 5.73 7.49 4.91 6.48 8.41 5.80 7.54 10.03

Polar (128, 64) 3.74 4.43 5.64 3.67 4.63 5.85 3.89 5.18 6.94 5.32 7.23 9.67
Polar (128, 86) 3.94 4.87 6.24 3.96 4.88 6.20 4.57 6.18 8.27 5.34 6.92 8.92
Polar (128, 96) 4.13 5.21 6.43 4.25 5.09 6.75 4.73 6.39 8.57 5.40 7.22 9.60
LDPC (49, 24) 5.36 7.26 10.03 5.29 7.67 10.27 5.76 7.90 11.17 5.77 7.86 11.28

LDPC (121, 60) 4.76 7.20 11.07 4.96 8.00 12.35 5.22 8.29 13.00 5.26 8.37 13.20
LDPC (121, 70) 5.85 8.93 13.75 6.43 9.53 13.83 6.39 9.81 14.04 6.39 10.10 15.43
LDPC (121, 80) 6.54 9.64 14.78 7.04 10.56 14.97 6.95 10.68 15.80 7.31 11.24 17.00

BCH (31, 16) 4.44 5.78 7.31 4.84 6.34 8.20 5.05 6.64 8.80 4.93 6.57 8.76
BCH (63, 36) 3.58 4.34 5.29 4.02 5.33 6.89 3.96 5.35 7.20 4.10 5.33 7.23
BCH (63, 45) 3.84 4.92 6.35 4.37 5.61 7.20 4.48 6.07 8.45 4.53 5.97 8.16
BCH (63, 51) 4.21 5.32 6.75 4.44 5.85 7.44 4.64 6.08 8.16 4.76 6.21 8.27

Table 1: Negative logarithm of BER performance of different neural channel decoders. High value means better performance.

NBP HGN DRN (Ours)
Polar (64, 32) 41.1KB 596.3KB 1.6KB
Polar (64, 48) 32.7KB 428.0KB 860B

Polar (128, 64) 88.6KB 1.4MB 3.8KB
Polar (128, 86) 111.5KB 1.4MB 3.3KB
Polar (128, 96) 75.0KB 1.0MB 2.2KB
LDPC (49, 24) 43.1KB 447.6KB 560B

LDPC (121, 60) 246.8KB 1.6MB 1.3KB
LDPC (121, 70) 193.6KB 1.4MB 1.1KB
LDPC (121, 80) 145.2KB 1.1MB 880B

BCH (31, 16) 30.9KB 281.2KB 300B
BCH (63, 36) 269.4KB 1.1MB 540B
BCH (63, 45) 277.4KB 981.0KB 360B
BCH (63, 51) 229.4KB 761.3KB 240B

Table 2: Model sizes of different neural channel decoders.

Experiment
In this section, we compare DRN decoder with the tradi-
tional BP and the state-of-the-art NBP and HGN decoders
in terms of decoding performance (BER), model size and
computational cost.

Experimental Setting
Channel Codes Type. All the decoders are evaluated on
three types of popular (n,k) channel codes: LPDC, Polar
and BCH codes with different code lengths and code rates.
The parity check matrices are adopted from (Helmling et al.
2019).

Iteration Number and Channel Condition. For fairness
the number of iterations for all the decoders is set as 5. Ad-
ditive white Gaussian noise (AWGN) channel, as the mostly
used channel type for channel coding research, is adopted
for transmission channel. The signal-to-noise ratio (SNR) is
set in the range of 1 ∼ 6dB.

Experiment Environment. Our experiment environment
is Ubuntu 16.04 with 256GB random access memory
(RAM), Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and
Nvidia-V100 GPU.

BP NBP HGN DRN
Polar(64,32) 43.6K 52.5K 80.8M 16.4K
Polar(64,48) 45.0K 52.2K 30.4M 15.1K
Polar(128,64) 93.1K 112.1K 1.1G 36.6K
Polar(128,86) 141.9K 166.7K 935.0M 48.1K
Polar(128,96) 90.2K 106.6K 431.7M 32.2K
LDPC(49,24) 54.1K 63.9K 34.1M 17.6K
LDPC(121,60) 316.4K 374.5K 1.6G 94.4K
LDPC(121,70) 263.8K 309.2K 920.4M 78.7K
LDPC(121,80) 211.1K 245.0K 476.1M 62.9K
BCH(31,16) 38.0K 45.1K 8.5M 12.0K
BCH(63,36) 347.8K 412.7K 481.6M 97.2K
BCH(63,45) 412.9K 480.1K 340.3M 112.3K
BCH(63,51) 375.0K 430.6K 162.8M 100.8K

Table 3: FLOPs of different neural channel decoders to de-
code one codeword.

Training & Testing. Each input batch is mixed with equal
number of samples from different SNR settings. The train-
ing batch size is 384, so there are 64 samples generated at
each SNR value. We use the RMSprop optimizer (Hinton,
Srivastava, and Swersky 2012) with learning rate 0.001 and
run 20,000 iterations. The training samples are generated on
the fly and testing samples are generated till at least 100 er-
ror samples detected at each SNR setting.

Decoding Performance (BER)
Since BER can range from 10−1 to 10−8, for simplicity,
we adopt the negative logarithm representation as used in
HGN paper. Table 1 lists the negative logarithm of BER
performance of different decoding methods. A higher num-
ber means a better performance because it corresponds to a
lower BER. From this table it is seen that, with the built-
in doubly residual structure, our DRN decoder obtain very
strong error-correcting capability. It consistently achieves
the best BER performance on most of Polar and LDPC
codes. For BCH codes, DRG decoder achieve almost the
same or better performance than HGN decoderl.
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(a) BCH codes with n = 63.
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(b) LDPC codes with n = 121.
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(c) Polar codes with n = 128.

Figure 5: BER-vs-SNR curve of different decoders on different channel codes.

Figure 5 shows the BER-vs-SNR curve for different de-
coders on different channel codes. Notice that HGN de-
coder only reports the BER under SNR=4∼6dB. It can be
seen that compared with the state-of-the-art NBP decoder,
our DRN decoder consistently outperforms NBP decoder at
all SNR settings (0.5∼1.8 dB coding gain). Compared with
the current most powerful HGN decoder, DRN decoder still
achieves the similar or even better decoding performance
over all the evaluated channel codes.

Besides, compared with successive cancellation (SC) al-
gorithm, which is a unique decoding approach for polar
codes, DRN also shows better performance. For instance, on
Polar (64, 32), SC has BER performance as 0.3 at 1dB, 0.14
at 2dB, 0.029 at 3dB, which are inferior to DRN. Though
SC list (SCL) decoder can bring better BER performance,
SCL suffers the inherent serial decoding scheme and linear
increase in cost as list size increases.

Model Size

Table 2 compares the model sizes of different decoders.
Based on its inherent lightweight structure and weight shar-
ing strategy, our DRN decoder requires the fewest model
size than others over all different channel codes. Compared
with NBP decoder, DRN decoder brings 23×∼100× reduc-
tion on model size. Notice that as mentioned in Section , the
weight sharing strategy cannot be applied to NBP due to the
resulting severe decoding performance loss. Also, compared
with the large-size hyper graph neural network-based HGN
decoder, DRN decoder enables 373×∼2725× reduction on
model size with achieving the similar or better decoding per-
formance as shown in Table 1 and Figure 5.

Computational Cost

Table 3 compares the computational cost, in term of float-
ing point operations (FLOPs) for decoding one codeword
among different decoders. It can be seen that DRN decoder
also enjoys the lowest computational cost because of its
small-size model. Compared with NBP decoder, DRN de-
coder has 3.2×∼4.3× fewer computational cost. Compared
with HGN decoder, DRN decoder needs 708×∼30054×
fewer operations while achieving the same or better decod-
ing performance.

Figure 6: Density of H matrix on different codes.

Analysis
From simulation results it is seen that DRN achieves better
BERs than HGN on 6 BCH codes, and achieves very close
BERs on other 6 BCH codes. Though such performance is
already very promising, the performance improvement over
HGN is not as huge as that on LDPC and polar codes. We
hypothesize such phenomenon is related to the density of
H matrix. For BP-family decoders, like our DRN, H matrix
density highly affects BER performance. Figure 6 shows H
matrices of the evaluated BCH codes have higher density
than those of LDPC and Polar codes, hence this may explain
why DRN performs better on LDPC and Polar codes than on
BCH codes.

Conclusion
This paper proposes doubly residual neural (DRN) decoder,
a low-complexity high-performance neural channel decoder.
Built upon the inherent residual input and residual learn-
ing structure, DRN decoder achieves strong decoding per-
formance with low storage cost and computational cost. Our
evaluation on different channel codes shows that the pro-
posed DRN decoder consistently outperforms the state-of-
the-art neural channel decoders in terms of decoding perfor-
mance, model size and computational cost.
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