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Abstract

This paper studies the problem of unsupervised domain adap-
tion in the universal scenario, in which only some of the classes
are shared between the source and target domains. We present
a scoring scheme that is effective in identifying the samples
of the shared classes. The score is used to select samples in
the target domain for which to apply specific losses during
training; pseudo-labels for high scoring samples and confi-
dence regularization for low scoring samples. Taken together,
our method is shown to outperform, by a sizeable margin, the
current state of the art on the literature benchmarks.

Introduction
In real world situations, the necessity of applying domain
adaptation is the rule and not the exception, since “no man
ever steps in the same river twice”. This is true not only
for the input samples, whose distribution is likely to change
both because of the shifting setting and due to the practical
considerations of collecting training samples, but also with
regards to the output labels. In many cases, the classes seen
and labeled during training differ from those encountered
during the deployment phase.

Unsupervised domain adaptation seeks to learn a classifier
in a source domain in which supervised training samples exist,
such that it would be effective in a target domain for which
only unsupervised samples exist. Universal domain adapta-
tion (UniDA) adds the challenge that some of the classes in
the source domain do not appear in the target domain and
vice versa. Therefore, the classifier, when applied to the target
domain, has to classify only according to the relevant classes,
and also identify the samples that belong to the classes that
are unique to the target domain.

Our method is based on three losses. The first loss is the
conventional domain confusion loss, which encourages the
representation of the samples to be domain agnostic. The
second is the pseudo-labeling loss, which is a very common
loss in semi-supervised learning and, in particular, in un-
supervised domain adaptation. However, the application of
pseudo-labels in the UniDA setting requires additional care,
since labeling every sample is almost guaranteed to lead to ad-
verse results. In other words, assigning wrong pseudo-labels
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leads to “negative transfer”, which occurs when incorrectly
applying the knowledge from the source domain to the target
domain, thus lowering the classification accuracy. We, there-
fore, propose to identify the samples in the target domain for
which the labels are likely to be in the set of shared classes.

The third loss we apply is the confidence regularization
loss, which encourages target samples that are likely to be
from classes that appear only in the target domain (“private
classes”) to be classified with lower confidence. This regu-
larization term is especially important in the UniDA case, in
which there is no prior assumption on the label set relation
between the source and target domains and thus there is a
high risk of negative transfer. Similarly to the pseudo-labeling
scheme above, sample selection is needed, since lowering the
confidence of samples from the shared set of classes would
lead to a decrease in performance.

In our work, the samples from the target domain that are
likely to be from the shared classes are identified based on
two signals. The first is the certainty of the classifier, assum-
ing that the classifier is more likely to be confused when
encountering samples from unseen classes. The second is the
similarity between samples from source and target domains,
assuming that there is a higher similarity between samples
from the shared classes. We, therefore, suggest a scoring
scheme that combines the outputs of both the label classifier
and the domain classifier.

Our experiments show that our scoring scheme based on
the aforementioned signals together with the three loss terms
improves the state of the art accuracy in the UniDA scenario.

Our main contributions are: (i) a direct method for UniDA,
which employs selective pseudo-labels as the main loss, (ii)
encouraging score separation using the confidence regular-
ization, (iii) a new sample scoring scheme that outperforms
the weights employed in the literature, and (iv) state of the
art results across datasets and benchmarks.

Related Work
The problem of unsupervised domain adaptation can be di-
vided into four different categories, based on the relation
between the label sets of the source and target domains:
closed-set, open-set, partial and universal.
Closed-set domain adaptation is a scenario where the source
and target domains share the same label set. The main chal-
lenge in this scenario is to overcome the domain gap that
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comes as a result of the samples being taken from differ-
ent distributions. There are two common approaches to the
close-set problem: feature adaptation and generative mod-
els. Generative based approaches (Bousmalis et al. 2017;
Sankaranarayanan et al. 2018; Hu et al. 2018; Liu et al. 2018;
Murez et al. 2018; Huang et al. 2018; Volpi et al. 2018) at-
tempt to generate labeled target samples from the source
samples. Methods based on CycleGAN (Zhu et al. 2017) gen-
erate synthetic target-like samples from the source domain
and source-like samples from the target to train classifiers on
each of the domains (Hoffman et al. 2018; Russo et al. 2018).

Methods based on feature adaptation aim to reduce the
discrepancy between the feature distribution of samples from
the source and target domains. In work by Ganin et al. (2016),
a domain adversarial network is introduced and added to a
classifier network with the purpose of creating features that
are indiscriminate with respect to a shift between domains,
yet still discriminative for the main classification task. By
introducing a gradient reversal unit, the feature extractor is
trained to produce features that confuse the domain classifier.
Open-set domain adaptation, proposed by Busto, Iqbal, and
Gall (2020) assumes knowledge of the shared label set be-
tween the source and target domains, while all private la-
bel sets are marked as “unknown”. A modification by Saito
et al. (2018) requires no data from the private source label
set.Partial-set domain adaptation assumes that the target do-
main’s label set is a subset of the source’s label set. Cao
et al. (2018) employ adversarial distribution matching by
using a number of domain discriminators together with a
weighting scheme at both the class and instance level. Zhang
et al. (2018) use an adversarial method to identify the source
samples that are potentially from the private target label set.
Cao et al. (2018) further improve the results by using a single
domain adversarial network and down-weighting the data
of the source private set during training. Universal domain
adaptation was introduced by You et al. (2019) and unlike
the aforementioned scenarios, it does not assume any prior
knowledge about the relation between the source and target
label sets. This setting is also addressed by Fu et al. (2020)
and by Saito et al. (2020) via neighborhood clustering. Kundu
et al. (2020) introduce a two-stage learning process where
only one domain is available at each stage.

Method Comparison We employ the universal setting,
which is the most generic one. Our method greatly differs
technically from the previous work in this and in other set-
tings. In Tab. 1 we summarize the main differences from
a representative selection of other methods (including all
UniDA work we are aware of). The table presents the number
of domain classifiers used as well as the weighting or scoring
scheme (if applicable) and the loss terms. We can observe
the uniqueness of our method, as well as the diversity in the
existing literature. One thing that separates our method from
other previously used methods is the use of “selective-sample”
losses. Instead of down-weighting the losses according to a
weighting scheme, we use the scoring scheme in order to
select samples for calculating the losses. This idea goes hand
in hand with the use of pseudo-labels and our regularization
term. In addition, we are the only UniDA-setting method to

Method Uni DA Weight/scoring scheme Loss terms

DANN (Ganin
et al. 2016)

1 None CE, DA

OSBP (Saito
et al. 2018)

0 None CE, binary CE

PADA (Cao
et al. 2018)

1 Class weights:
γ = 1

nt

∑nt
i=1 ȳi

CE, weighted
DA

UAN(You
et al. 2019)

X 2 Weight for source:
ws(x) = H(ȳ)

log |YS | − d(x)

Weight for target:
wt(x) = d(x) − H(ȳ)

log |YS |

CE, DA,
weighted
domain non-
adversarial

USFDA
(Kundu et al.
2020)

X 0 Weight for positive:
w(x) = expmax(ȳ)
Weight for negative:
w(x) = expmax(1 − ȳ)

Generated
negative sam-
ples, weighted
CE, weighted
entropy

Ours X 1 No weighting,
selection scores:
s(x) = d(x) + max ȳ(x)

CE, sample-
selective
pseudo-labels,
DA, sample-
selection
confidence
regularization

Table 1: Domain adaptation methods. Uni=universal.
DA=domain adversarial terms. CE=cross entropy.

employ a single domain classification loss, where the other
methods either omit this loss or use it twice. With the excep-
tion of the domain classification loss, our losses are entirely
different from previous works.
Pseudo-labels refers to the use of predicted labels as though
they were the correct labels during training. This is a simple
yet effective tool used in closed-set domain adaptation, in
order to learn categorical representation of the target domain
(French, Mackiewicz, and Fisher 2018; Saito, Ushiku, and
Harada 2017; Sener et al. 2016; Shu et al. 2018; Zhang et al.
2018; Choi et al. 2019). Although the use of pseudo-labels
during training can greatly improve the final outcome of the
network, false pseudo-labels may lead to negative transfer,
which is a major concern in UniDA.

Method
We follow the setting of UniDA proposed by You et al.
(2019). During training, we are provided with a source do-
main Ds = {(xsi , ysi ) ∼ p}

ns
i=1 of labeled data sampled from

distribution p and a target domain Dt = {(xti)| xti ∼ qx}
nt
i=1

of unlabeled data sampled from distribution qx, which is the
marginalization of the distribution q of samples and their la-
bels in the target domain. We denote by Ys (Yt) the label set
of the source (target) domain. The shared label set is denoted
by Y = Ys∩Yt. For convenience, we denote the private label
sets of the source and target domain in the following manner:
Ys = Ys \ Y and Yt = Yt \ Y , respectively.

UniDA generalizes all other variants of domain adaptation.
Namely, the partial-set case in which the target classes are a
subset of the source classes (closed-set is a special case of
partial-set), and the open-set case in which the source classes
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Figure 1: Architecture of the network during training and
deployment. Components in green are encoders, blue are
classifiers, orange are loss components and yellow are con-
ditions. During the training stage (a), the score along with
the label and domain classification is used to calculate the
loss. During the deployment stage (b) the scores are used as
a threshold to decide whether the sample is from the shared
label set or should be marked as unknown.

are a subset of the target classes. The latter case is the more
challenging of the two as some of the target domain samples
cannot be adapted to match the samples seen during training.

The Jaccard index of the label sets of the two domains,
ξ = |Y |

|Ys∪Yt| , is used to measure the overlap in classes. The
objective in the UniDA scenario is to create a model g that
maximizes the target classification on the shared label set, as
well as distinguishes between samples with labels from Y
and those in Yt. i.e.

max
g

E(x,y)∼q[g(x) = t(y)] (1)

where

t(y) =

{
y if y ∈ Y
τ if y ∈ Yt

(2)

and τ is the symbol used to mark unknown classes not seen
in the labeled training set Ds.

The Sub-networks The architecture we employ is shown
in Fig. 1. It consists of a domain classifier D, a feature ex-
tractor F , and a label classifier C. By using one adversarial
domain classifier D, our method is simpler than previous
work (You et al. 2019), which uses two domain classifiers.

Input x (from both domains) is fed into the feature extrac-
tor F , yielding the feature vector F (x). F (x) is, in turn, fed
to both the domain classifierD and the label classifier C. The
label classifier outputs the label prediction of classes from the
source domain ȳ(x) = C(F (x)) ∈ R|Ys|, which is a vector
of pseudo probabilities obtained by the softmax function. The
adversarial domain classifier yields the probability of the sam-
ple being from the source domain d(x) = D(F (x)) ∈ [0, 1].
The results from both classifiers are used for calculating the
sample transfer score and for calculating the losses.

The sample transfer score, s(x), estimates the confidence
that x is from the shared label set. The score is calculated

using the prediction max ȳ(x) and the domain classification
d(x) as detailed below. A higher value of s(x) indicates that
the sample x appears to be from the shared label set and that
the correct label was identified.

During the deployment stage, the test sample undergoes
the same path as before, but rather than calculating losses,
we use the score s(x) as a threshold to decide whether we
should predict a class or label the sample as the symbol τ
that represents all labels unseen during training. We use a
hyper-parameter s0 and output the class label according to
the following:

y(x) =

{
arg max ȳ s(x) > s0
τ otherwise

(3)

The Sample Transfer Score
We define a scoring mechanism that represents the confidence
that a sample x is from the shared label set Y . This score is
used in both training and deployment. During training, the
scores are used as a threshold for losses on samples from the
target domain, as explained in the following sections. During
deployment, the scores are used in order to decide whether
or not a sample should be labeled as τ or predicted from one
of the classes in the source label set, as shown in Eq. 3.

The score is a combination of two signals: (i) the confi-
dence in the classification label, as it manifests itself in the
vector of pseudo probabilities ȳ(x), and (ii) the estimation
of the probability of it being in the source domain, as is es-
timated by d(x). The usage of the second signal on target
domain samples, is meant to measure the similarity of these
samples to the source domain samples. Naturally, target sam-
ples that are more similar to the source domain samples are
more likely to be in the shared label set.

It is reasonable to expect that

E(x,y)∈p max ȳ(x) > E(x,y)∈q|y∈Y max ȳ(x)

> E(x,y)∈q|y∈Yt max ȳ(x)
(4)

In other words, the maximal value of the pseudo probability
can be used as a measure for identifying the target samples
that have labels in Y . We, therefore, derive the following
scoring mechanism for target samples:

s(x) = d(x) + max ȳ(x) (5)

Let us notice that as d(x) ∈ [0, 1] (higher values for source
samples) and max ȳ(x) ∈ [0, 1] it holds that s(x) ∈ [0, 2].

You et al. (2019) propose to use a different scoring scheme
and apply it as weights for training the second domain clas-
sifier they use (we do not employ this component). Their
scoring scheme employs the following scores to target do-
main samples

wt(x) = d(x)− H(y(x))

log |Ys|
(6)

where H(y(x)) is the entropy of vector y(x). In their work,
source domain samples are also scored, by the scorews(x) =
−wt(x), while we only select target samples as detailed be-
low. Nevertheless, despite using scoring for completely dif-
ferent losses and to different sets of samples, we explore
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empirically the replacement of our scoring mechanism s(x)
with their wt(x) and demonstrate that our scheme is superior
by a sizable margin.

Sample Selective Pseudo-labels In order to utilize the un-
labeled data as much as possible, we opt to use pseudo-labels.
As explained by Choi et al. (2019), pseudo-labels can be an
extremely simple yet effective tool when training a network in
a semi-supervised scenario. The difficulty with pseudo-labels
in the UniDA scenario is the high risk of negative transfer,
i.e., decreasing the classifier’s performance due to the incor-
poration of false supervision. In the universal scenario, the
target label set is unknown and, therefore, assuming that the
network’s classification is correct is even more likely to be
detrimental than in the conventional domain adaptation case.

In order to deal with the risk of negative transfer, our
approach is to use pseudo-labels only on high confidence
samples that are likely to be in the shared label set Y . As a
confidence measure, we employ the sample’s transfer score,
s(x), and only use pseudo-labels for samples where s(x) is
above a certain threshold. We use the following dynamic
threshold, sα(t) during training:

sα(t) =
2 + s0

2
− t

T
· (2 + s0

2
− s0) (7)

where t is the current training step and T is the total num-
ber of training steps. A dynamic threshold is used to avoid
negative transfer; we begin at the midpoint between s0 and
the maximal value of s(x), and as the training advances the
network better classifies samples with the threshold s0 and
thus it is reasonable to lower the threshold further.

Our pseudo-label classification loss is the following:

LC =E(x,y)∼p[LCE(y, ȳ(x))]+

γ · E(x,y)∼q[1s(x)>sα(t) · LCE(arg max ȳ(x), ȳ(x))]

(8)

where LCE is the cross-entropy, γ is a trade-off parameter
and 1 is the 0-1 indicator function.

Sample Selective Confidence Regularization In order to
enforce a better separation between the scores of samples
from the private and shared sets and to reduce the amount
of negative transfer, we employ a novel regularization term
aimed to decrease the network’s confidence for samples likely
to be from the target private set. Recall from Eq. 5 that the
score for any given sample is the result of its domain simi-
larity and the predicted class confidence. Thus, in order to
better separate between samples from the shared and private
classes we encourage samples with a low score to have a low
predicted class confidence.

As with the pseudo-labels, we opt for a sample selective
approach in which we only apply the confidence-lowering
loss to a subset of the target samples in the batch, specifically
to samples for which the sample transfer score s(x) is below
a threshold sβ . Denote by Bt the target sample in the batch
B for which s(x) < sβ . We define the following loss term:

LCR =

|Ys|∑
j=1

( 1

|Bt|

∑
i∈Bt

ȳ(xi)j

)2
(9)

where ȳ(xi)j denotes the classifier’s pseudo-probability asso-
ciated with label j given a sample xi. Adding this penalty to
the network’s objective reduces the prediction confidence of
samples with low transfer scores by encouraging a solution
that is more uniformly distributed across the different classes.

Here we also use a dynamic threshold during training,
sβ(t), that changes according to the following:

sβ(t) =
s0
2

+
t

T
· (s0 −

s0
2

) (10)

where t is the current training step and T is the total number
of training steps. Using the same reasoning as before, at first
the threshold is set at the midpoint between s0 and 0 in order
to decrease the confidence only for samples that already
have a very low transfer score. As the training advances,
the classification to private-set and shared-set samples, that
occurs by comparing s(x) with s0 becomes more accurate,
and the threshold becomes closer to s0.

Domain Adversarial Loss
In addition to the losses described above, we also use the con-
ventional adversarial domain loss first introduced by Ganin
et al. (2016). The domain classifier’s network, D, is trained
with a binary cross-entropy loss and a gradient reversal layer
is used when backpropagating to network F .

LDA = E(x,y)∼pLCE(1, d(x)) + E(x,y)∼qLCE(0, d(x))
(11)

The final loss has the following unweighted components:

L = LC + LCR − LDA (12)

Experiments
Following You et al. (2019), we use four datasets. Office-
Home (Venkateswara et al. 2017) is a dataset made up of
65 different classes from four domains: Artistic (Ar), Clipart
(Cl), Product (Pr) and Real-world images (RW). Keeping
in line with You et al. (2019), we test each combination of
source and target domain by setting the first 10 classes in
alphabetical order as the shared label set Y , the next five as
the source private, Ys, and the rest of the classes (50 classes)
are the private target, Yt. Office31 (Saenko et al. 2010) con-
sists of three domains, each with 31 classes. The domains are
Amazon (A), DSLR (D) and Webcam (W). The 10 shared
classes between this dataset and Caltech-256 (Griffin, Holub,
and Perona 2006) are used as the shared label set. Aside from
these classes, we set the first 10 classes in alphabetical order
as Ys and the last 11 classes as Yt. VisDA2017 (Peng et al.
2018) is a dataset with a single source and target domain
testing the ability to perform transfer learning from synthetic
images to natural images. The dataset has 12 classes identical
in each domain; we use the first six as the shared label set,
the next three as the private source label set and the last three
as the private target label set. ImageNet-Caltech employs
Imagenet-1K (Deng et al. 2009) with 1000 different classes
and Caltech-256 (Griffin, Holub, and Perona 2006) with 256
classes. The shared label set is comprised of the 84 shared
classes between the two datasets, while the source and target
private label sets are all other classes in each dataset.
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Evaluation protocol The protocol of the Open-Set chal-
lenge in VisDA2018 is employed. After the training stage,
the model is tested only on samples from the target domain.
The network must classify the test data into |Y |+ 1 different
classes, where the last label τ contains all labels from the
target domain’s private label set. As detailed above, our net-
work tries to classify using the labels from the source domain
and only classifies into the “unknown” class if the sample’s
transfer score is lower than a predetermined threshold.
Implementation details The architecture of F , C, and
D follows that of You et al. (2019) in order to provide a
direct comparison with this previous work. The method is
implemented in Pytorch using a ResNet-50 model (He et al.
2016), pretrained on ImageNet (Deng et al. 2009), as the
backbone feature extractor F . The label classifier network,
C, is a fully connected network with a single layer used to
classify the features F (x). The domain classifier network, D,
is a three-layer MLP with ReLU activations.

Our method enjoys a very limited number of hyperparam-
eters. Early on during the development process, we fixed the
following hyperparameters across all datasets: γ = 0.6 and
s0 = 1.0. We provide parameter sensitivity experiments to
demonstrate the robustness of the method to its parameters.

Classification Results
We compare our approach with prior methods in the UniDA
setting. Tab. 2, 3 present the results on the acceptable bench-
marks of the field. The success rate for methods other than
ours (with the exception of USFDA (Kundu et al. 2020)) is
taken from You et al. (2019). As can be observed, our ap-
proach achieves state of the art results on the majority of the
domain adaptation tasks across the different datasets.

Scoring Scheme Analysis
In Fig. 2 we present the estimated probability density function
for the different components of s(x) on the Office31 dataset
for the domain shift W→D. d(x), shown in Fig. 2(a), displays
the following expected behavior:

E(x,y)∈p|y∈Ysd(x) > E(x,y)∈p|y∈Y d(x) ≈
E(x,y)∈q|y∈Y d(x) > E(x,y)∈q|y∈Ytd(x)

(13)

In Fig. 2(b) we analyze the max probability of the classifier,
max ȳ(x), validating the hypothesis in Eq. 4 and justifying
using this component as part of our scoring scheme. Finally,
in Fig. 2(c), we present the full sample transfer score s(x).
The results show that target samples with higher scores s(x)
are typically from the shared label set. This justifies the use
of our scoring scheme to distinguish between samples that
we can predict correctly and those that should be labeled τ .
Comparing Scoring Schemes We next compare our pro-
posed scoring scheme s(x), as shown in Eq. 5, to a scoring
scheme that is based on the weight proposed by You et al.
(2019), wt(x) given by Eq. 6. In order to compare the two
scoring schemes, we use the score wt(x) proposed on the
target samples instead of s(x). The method that uses wt(x)
was tuned to optimize its performance. In addition to the
scoring scheme based on the weight wt(x), we also compare
to an entropy based one, since entropy has been shown to

(a) (b) (c)

Figure 2: Distributions of the different components of the
scoring scheme on the four following sample groups: source
samples in Y (orange), source sample in Ys (blue), target
samples in Y (red) and target samples in Yt (green). (a) Dis-
tribution of the domain classifier’s output d(x). (b) The label
classifier’s maximum probability, max ȳ(x). (c) The score
s(x), which combines both. All distributions shown are pre-
sented using the Gaussian kernel density estimator.

be a good criterion in domain adaptation (Grandvalet and
Bengio 2004; Long et al. 2016). Based on the assumption
that the target samples from the shared label set are similar
to the source samples and will thus have a lower entropy, we
define the following scoring scheme:

sh(x) = 1− H(y(x))

log |Ys|
(14)

The comparison on the Office31 dataset is shown in Tab. 4.
Clearly, our scoring scheme produces superior results across
the entire dataset. We thus conclude that our scoring mecha-
nism outperforms the one proposed by You et al. (2019) and
sh(x) when used in the context of our method.

Tab. 4 also presents an ablation study on the components
of the scoring mechanism. “s(x) w/o d(x)” refers to the
score function when removing the domain factor d(x) from
Eq. 5 and “s(x) w/o max ȳ(x)” to the score function when
removing the classification component. The results show that
both components are necessary for achieving our final results.
However, the classification component is more crucial to
the success of our scoring mechanism, and by itself already
outperforms the state of the art.
Comparing Regularization and Pseudo-labels We next
compare our regularization term and pseudo-labels scheme
to similar methods from the literature. We compare the confi-
dence regularization scheme to the widely used entropy maxi-
mization loss and our selective pseudo-labels to that proposed
by Zou et al. (2019). The results for the Office31 dataset are
shown in Tab. 5. It is clear that our method achieves better
results across the entire dataset.

Parameter Sensitivity
Pseudo-label Threshold Analysis We study the sensitiv-
ity of our method to the threshold sα, which is used to de-
termine whether or not the pseudo-label of a target sample
should be taken into consideration when calculating its loss.
While our method employs a dynamic threshold, in order to
obtain a clearer image, we perform the experiment when the
threshold is fixed. We compare the average accuracy on the
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Method Office-Home
Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

ResNet (He et al. 2016) 59.37 76.58 87.48 68.86 71.11 81.66 73.72 56.30 86.07 78.68 59.22 78.59 73.22
DANN (Ganin et al. 2016) 56.17 81.72 85.87 68.67 73.38 83.76 69.92 56.84 85.80 79.41 57.26 78.26 73.17
RTN (Long et al. 2016) 50.46 77.80 86.90 65.12 73.40 85.07 67.86 45.23 85.50 79.20 55.55 78.79 70.91
IWAN (Zhang et al. 2018) 52.55 81.40 86.51 70.58 70.99 85.29 74.88 57.33 85.07 77.48 59.65 79.91 73.39
PADA (Cao et al. 2018) 39.59 69.37 76.26 62.57 67.39 77.47 48.39 35.79 79.60 75.94 44.50 78.10 62.91
ATI (Busto, Iqbal, and Gall 2020) 52.90 80.37 85.91 71.08 72.41 84.39 74.28 57.84 85.61 76.06 60.17 78.42 73.29
OSBP (Saito et al. 2018) 47.75 60.90 76.78 59.23 61.58 74.33 61.67 44.50 79.31 70.59 54.95 75.18 63.90
UAN (You et al. 2019) 63.00 82.83 87.85 76.88 78.70 85.36 78.22 58.59 86.80 83.37 63.17 79.43 77.02
USFDA (Kundu et al. 2020) 63.35 83.3 89.35 70.96 72.34 86.09 78.53 60.15 87.35 81.56 63.17 88.23 77.03

Ours 65.07 86.38 91.41 79.45 84.86 89.61 82.00 56.80 89.81 79.52 61.47 89.03 79.62

Table 2: Average class accuracy (%) on the Office-Home (ξ = 0.15). The results for all methods besides USFDA (Kundu et al.
2020) and ours are taken from You et al. (2019)

Method Office31 ImageNet-Caltech VisDA2017
A→W D→W W→ D A→ D D→ A W→ A Avg I→ C C→ I Avg

ResNet (He et al. 2016) 75.94 89.60 90.91 80.45 78.83 81.42 82.86 70.28 65.14 67.71 52.80
DANN (Ganin et al. 2016) 80.65 80.94 88.07 82.67 74.82 83.54 81.78 71.37 66.54 68.96 52.94
RTN (Long et al. 2016) 85.70 87.80 88.91 82.69 74.64 83.26 84.18 71.94 66.15 69.05 53.92
IWAN (Zhang et al. 2018) 85.25 90.09 90.00 84.27 84.22 86.25 86.68 72.19 66.48 69.34 58.72
PADA (Cao et al. 2018) 85.37 79.26 90.91 81.68 55.32 82.61 79.19 65.47 58.73 62.10 44.98
ATI (Busto, Iqbal, and Gall 2020) 79.38 92.60 90.08 84.40 78.85 81.57 84.48 71.59 67.36 69.48 54.81
OSBP (Saito et al. 2018) 66.13 73.57 85.62 72.92 47.35 60.48 67.68 62.08 55.48 58.78 30.26
UAN (You et al. 2019) 85.62 94.77 97.99 86.50 85.45 85.12 89.24 75.28 70.17 72.73 60.83
USFDA (Kundu et al. 2020) 85.56 95.20 97.79 88.47 87.5 86.61 90.19 76.85 72.13 74.49 63.92

Ours 90.11 95.33 98.18 90.56 90.03 90.45 92.44 76.13 73.75 74.94 66.83

Table 3: Average class accuracy for Office31(ξ = 0.32), ImageNet-Caltech (ξ = 0.07) and VisDA2017(ξ = 0.50)

(a) (b) (c)

Figure 3: (a) Accuracy w.r.t s0 on Office31 W to D. (b)
Accuracy w.r.t sα on Office31 A to D. (c) Accuracy w.r.t.
threshold sβ on Office31 W to D.

Office31 dataset with the domain shift A→D. The tests are
conducted by fixing all other hyperparameters to the default
values and only changing the value of sα. The results are
presented in Fig. 3(b). By taking the lowest threshold pos-
sible, sα = 0, we allow the use of pseudo-labels on every
sample seen during the training stage. As can be seen from
the performance graph, this yields a lower result than higher
thresholds, probably due to negative transfer. This is also evi-
dent when examining the results of Tab. 6 when setting the
threshold sα = 0. The second edge case is sα = 2, which is
the maximal value that the s(x) can have. With this threshold,
no score will ever satisfy s(x) > sα and thus it is equivalent

to not using pseudo-labels at all. From Fig. 3(b) one can ob-
serve that sα = 2 yields lower results, meaning that the use
of pseudo-labels does, in fact, help train the network. Tab. 6
shows the results on the OfficeHome and Office31 datasets
in the case where pseudo-labels are applied as suggested in
our approach and when they are not applied at all. These
results show that the use of pseudo-labels during training
does improve the accuracy during the deployment stage.

We also analyze the advantage of employing a dynamic
threshold for the use of pseudo-labels. The analysis is done
on the Office31 and OfficeHome datasets by fixing a set
threshold, sα = 1.20 (which was found to provide the op-
timal value). The results are reported in Tab. 6. As can be
seen, the dynamic threshold does seem to give better results
overall. This is probably due to the fact that we are able to
use more samples for which the transfer score, s(x), is above
s0 and below the static sα at later parts of the training.
Confidence Regularization Threshold Analysis We
next analyze the threshold sβ used to determine which of
the target samples are used when calculating the confidence
regularization. We compare the average accuracy when only
changing the threshold sβ while all other hyper-parameters
are set to the default value. The results can be found in
Fig. 3(c). The accuracy varies by around 2% and it is clear
that the use of this regularization term under a relatively sta-
ble threshold value does improve the final result. For larger
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A→W D→W W→ D A→ D D→ A W→ A Avg

UAN(You et al. 2019) 85.62 94.77 97.99 86.50 85.45 85.12 89.24
USFDA (Kundu et al. 2020) 85.56 95.20 97.79 88.47 87.5 86.61 90.19

Ours with wt(x) 86.23 93.26 91.79 84.31 86.09 85.41 87.84
Ours with sh(x) 85.26 93.81 95.16 82.84 85.31 83.51 87.65
Ours, s(x) w/o d(x) 88.73 95.70 96.46 88.69 89.61 80.83 81.67
Ours, s(x) w/o max ȳ(x) 78.99 89.91 87.91 83.73 81.80 82.55 84.15
Ours with s(x) 90.11 95.33 98.18 90.56 90.03 90.45 92.44

Table 4: Comparison on Office31 between UAN (You et al. 2019), USFDA (Kundu et al. 2020) and our approach when using
either s(x) (with ablation on the score’s components) or UAN’s wt(x) as the scoring scheme, as well as other variants.

Accuracy

Ours using entropy maximization 91.70
Ours using pseduo-labels of Zou et al. (2019) 88.26
Ours 92.44

Table 5: Variants of our method: entropy maximization and
the pseudo-labeling scheme of Zou et al. (2019). (Office31;
see appendix for detailed results).

Office-Home Office31

Ours w/o pseudo-labels 76.689 89.89
Ours, sα = 0 77.13 88.19
Ours, static sα = 1.2 78.46 92.48
Ours 79.62 92.44

Table 6: Average results when using different thresholds
schemes for pseudo-labels on Office-Home and Office31.

values of sβ the accuracy of the model drops as a result of
the regularization term lowering the prediction confidence
for samples that are likely to be in the shared label set.

In Tab. 7 we analyze the effect of the dynamic threshold sβ
compared to a static one. The analysis is done on the Office31
and OfficeHome datasets by fixing a set threshold, sβ = 1.00
(which was found to provide the optimal value). As can be
seen from the results, the dynamic threshold yields slightly
higher results across different datasets, but not always. We
note that on top of improved average performance, the dy-
namic threshold reduces the number of parameters. When
removing the confidence regularization all together or apply-
ing it to all target samples, the performance further drops.
Tab. 7 also shows the ratio between the mean sample score
for shared and private samples for the domain shift W→D.
Evidently, the regularization term increases the ratio and thus
helps distinguish between the private and shared classes.
Decision Threshold Analysis Another component of the
network we analyze is the decision threshold s0, which is
used to decide whether the model would label a sample as τ
or use the predicted label. The analysis is done in a similar
manner to the two previous sections.

As is evident from the results in Fig. 3(a), there is little
variance in the results for a threshold in a wide range between

O-H Office31 Score ratio

No CR 78.04 91.12 1.38 : 0.88
CR, all target samples 78.18 91.07 1.42 : 0.87
CR, all samples 78.56 91.91 1.41 : 0.88
CR, static sβ = 1.0 79.10 92.55 1.40 : 0.81
CR, dynamic sβ (ours) 79.62 92.44 1.41 : 0.80

Table 7: Variants of the confidence regularization (CR) for
Office31 and Office-Home (O-H). The score ratio column
presents the ratio between the mean score for shared and
private samples in the target domain for W → D on the
Office31 dataset. See appendix for full results.

0 and 1.4. For thresholds higher than 1.4, we see a sharp drop
in the accuracy until finally reaching the lowest possible value
at s0 = 2. This drop in accuracy occurs because only a very
small number of samples have a transfer score, s(x), higher
than the threshold and thus most samples are labeled τ . The
extreme case, as seen in the graph, is s0 = 2 where no sample
can pass this threshold and all are labeled τ , leading to an
accuracy score that is ξ the fraction of samples from novel
target classes in this benchmark.

Conclusions
We study unsupervised domain adaptation in the challenging
case where there is a partial overlap between the source
and target domain classes. Our method adapts through the
usage of pseudo-labels and a confidence regularization loss.
However, since some of the samples of the target domain
cannot be properly labeled by any of the source labels, we
propose to score the target samples and apply a threshold in
order to select those that would lead to positive transfer.

Our scoring takes into consideration the confidence of
the label classifier, as well as the confidence of the domain
discriminator. The more certain the first classifier is in its
prediction and the less certain the latter is that the sample
is from the target domain, the more likely the target domain
sample is from the shared label set.

The method obtains state of the art results by a sizable
margin on the relevant literature benchmarks, despite being
simpler than previous work. We also demonstrate that our
scoring scheme is superior to the values given by the weight-
ing schemes previously proposed.
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