
Multi-Proxy Wasserstein Classifier for Image Classification

Benlin Liu1∗, Yongming Rao2∗, Jiwen Lu2, Jie Zhou2, Cho-jui Hsie1

1 UCLA
2 Tsinghua University

{liubenlin, chohsieh}@cs.ucla.edu, raoyongming95@gmail.com,
{lujiwen, jzhou}@tsinghua.edu.cn

Abstract

Most widely-used convolutional neural networks (CNNs)
end up with a global average pooling layer and a fully-
connected layer. In this pipeline, a certain class is represented
by one template vector preserved in the feature banks of
fully-connected layer. Yet, a class may have multiple proper-
ties useful for recognition while the above formulation only
captures one of them. Therefore, it is desired to represent a
class by multiple proxies. However, directly adding multi-
ple linear layers turns out to be a trivial solution as no im-
provement can be observed. To tackle this problem, we adopt
optimal transport theory to calculate a non-uniform match-
ing flow between the elements in the feature map of a sam-
ple and the proxies of a class in a closed way. By doing
so, the models are enabled to achieve partial matching as
both the feature maps and the proxy set can now focus on
a subset of elements from the counterpart. Such formula-
tion also enables us to embed the samples into the Wasser-
stein metric space, which has many advantages over the orig-
inal Euclidean space. This formulation can be achieved by
a lightweight iterative algorithm, which can be easily em-
bedded into the automatic differentiation framework. Empir-
ical studies are performed on two widely-used classification
datasets, CIFAR, and ILSVRC2012, and the substantial im-
provements on these two benchmarks demonstrate the effec-
tiveness of our method.

Introduction
Recent years have witnessed the great progress brought by
deep neural networks, especially convolutional neural net-
works (CNNs), in various vision tasks, ranging from recog-
nition (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016), object detection (He et al. 2017) and segmenta-
tion (Chen et al. 2017). Such strong power of neural network
is mainly attributed to its great capability in extracting fea-
ture map directly from an input sample X , which contains
the high-level information that is useful for downstream
tasks. For recognition tasks, the extracted feature map is then
usually aggregated across spatial domain through a pooling
operation to get a feature vector of Rd to represent the in-
put sample. Then we can calculate the inner product of this
feature vector with the template vector of a certain class C
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Figure 1: Comparison between the conventional (a) GAP-
FC classifier, (b) Flatten-FC classifier, and (c) the pro-
posed multi-proxy Wasserstein classifier. Our method uti-
lizes matching flow between the feature maps of a sample
and the template feature vectors of a class, and thus embeds
the samples into the Wasserstein metric space and facilitates
CNNs to learn multiple diverse clues for classification.

preserved in the fully-connected layer as the similarity score
for this 〈sample, class〉 pair.

In the above framework, each class is represented by a
single template vector of Rd in the fully-connected layer,
which is expected to capture the most discriminative pat-

*Equal contribution.
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tern of that class. However, a certain class often has multiple
intrinsic properties that can be exploited to facilitate classi-
fication. In particular, we can determine the category of an
object based on its shape, size, viewpoint, texture and even
background. Such idea is similar to the disentangled repre-
sentation learning used in unsupervised learning that breaks
down, or disentangles, each feature into narrowly defined
variables and encodes them as separate dimensions, while
our objective here is to disentangle the template vectors
in the fully-connected layers. And this modification would
contribute to the performance even more when there exists
more target class as the inter-class variation grows smaller
in this case.

Given capturing multiple patterns can contribute to the
classification, a trivial improvement is to add several more
fully-connected layers. Thus, we now have multiple simi-
larity scores for a 〈sample, class〉 pair. We can then aver-
age these scores to obtain the final similarity score for this
〈sample, class〉 pair. However, such formulation does not
bring any improvement compared with the original formula-
tion. We argue this is because a given sample may not have
all patterns captured by different fully-connected layers. In-
stead, it may only have a subset of the captured patterns.
Besides, as more patterns are captured, the pattern would be-
come more fine-grained, so for a certain pattern, it is likely
to exist in a subarea of the input sample/extracted feature
map. However, the trivial solution treats each subarea in the
extracted feature map and each captured pattern of a certain
class in an equal way, and thus fails to tackle the above-
mentioned two problems.

To overcome the above-mentioned difficulties, we pro-
pose a model called multi-proxy Wasserstein net in which
we skip the traditional pooling operation and represent a
sample X as H ×W elements1. Besides, we represent each
target class as M proxies to capture different patterns. In this
work, an element and a proxy both refer to a vector of Rd,
while the former represents a subarea in an input sample
and the latter represents a certain pattern of a class. There-
fore, we now can calculate a similarity score between an el-
ement from a sample X and a proxy from a class C and we
shall getHW ×M similarity scores in total for 〈X ,C 〉 pair.
In contrast to the trivial solution where we directly exploit
a uniform matching flow to aggregate all these HW ×M
similarity scores as the final similarity score for the sample-
class pair, we adopt optimal transport theory to compute a
non-uniform semantic matching flow to aggregate all these
similarity scores. The matching flow calculated by optimal
transport assigns higher weights to the pair of elements that
are close to each other. This property enables each subarea
in the extracted feature map to pay more attention to a subset
proxies that it has stronger correlation with, and each proxy
can also focus on those closely-related subareas. As a result,
our feature-proxy matching operation will give a high final
similarity score only if there exists a subarea closely relates
to a captured pattern, and thus allows partial matching to

1Here H ×W represents the size of the feature maps from the
last stage of convolution neural network instead of the original im-
age size (e.g., 7× 7 for a 224× 224 input image).

some extent, which helps to solve the problems described
in the previous paragraph. The basic idea of our method is
illustrated in Figure 1.

Moreover, by employing optimal transport to calculate the
similarity score between a sample and a target class is equiv-
alent to embed the samples and the class into the Wasser-
stein space whose representational capacity is larger than
Euclidean space (Deza and Laurent 2009), and the relation-
ship between data can therefore be better represented in this
embedding space with low distortion as the geometry of the
space would be taken into consideration (Kloeckner 2010).
Therefore, we name our method as a multi-proxy Wasser-
stein classifier.

Compared to those elaborately designed attention mecha-
nisms, no additional parameters are involved in the calcula-
tion of matching flow. However, exactly solving the optimal
transport problem requires the complexity of O(n3) where
n is proportional to the number of elements. To reduce the
computational cost, we resort to an entropically-regularized
optimal transport problem, which can then be solved by a
fast iterative algorithm (Cuturi 2013), and the time complex-
ity will thus be lowered down toO(HW×M). This iterative
algorithm can be easily embedded into the back propagation
pipeline and then optimized using off-the-shelf modern au-
tomatic differentiation library.

To show the effectiveness of our approach, we con-
duct experiments on two widely-used classification bench-
marks, CIFAR dataset and ILSVRC2012 dataset. To ver-
ify the generalizability of our method, experiments are per-
formed across various network architectures. The substan-
tial improvements over baseline for different architectures
and datasets strongly demonstrate the benefit of proposed
method.

Related Work
Optimal Transport Optimal transport theory was firstly
studied by Monge (Monge 1781) dating back to 1781. It
aims at providing the correspondence between two distri-
butions or two sets in a closed way, based on which we can
then calculate the Wasserstein distance between this two dis-
tributions/sets. This theory also plays an important role in
machine learning community. WGAN (Arjovsky, Chintala,
and Bottou 2017) applies optimal transport to generative
model to align the distribution of generated data with the true
natural distribution. In addition, optimal transport has also
been applied to domain adaptation (Courty et al. 2017), 3D
shape understanding (Solomon et al. 2014), graph match-
ing (Xu et al. 2019), style transfer (Kolkin, Salavon, and
Shakhnarovich 2019) or measure synchronization (Birdal
et al. 2020)

One big problem of optimal transport is that it is costly
to compute, requiring the solution of a linear program. Cu-
turi (Cuturi 2013) proposes a light-speed iterative method
to solve the entropically-regularized optimal transport prob-
lem, and it can be directly plugged into the back-propagation
pipeline. In this work, we also employ this algorithm to cal-
culate the matching flow between the elements in the ex-
tracted feature map of an input sample and the multiple
proxies of a class.
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Image Classification Deep learning has demonstrated
great sauces in image classification tasks (He et al. 2016;
Lin, RoyChowdhury, and Maji 2015; Hu et al. 2019; Rao
et al. 2018; Liu et al. 2020). Many methods for image classi-
fication are in fact equivalent to using multiple proxies com-
pared to the original setting. The dimension of the template
vectors in fully-connected layer following bilinear pooling
operation (Lin, RoyChowdhury, and Maji 2015) is square
of the original average pooling setting, which means it uses
as many proxies as the dimensions of output feature map
and uses output feature map as matching flow for following
aggregation. WS-DAN (Hu et al. 2019) improves upon bi-
linear pooling by reducing the number of proxies and uses
an attention module to learn the matching flow. However,
these methods mainly works for fine-grained classification
but not for general classification tasks. We show the match-
ing flow obtained by these method leads to inferior perfor-
mance in the experiments while they often use much more
proxies compared to our methods.

Attention-based Pooling Some previous works have ex-
plored the use of attention mechanism for image classifica-
tion. Girdhar et al. (Girdhar and Ramanan 2017) proposes
to aggregate spatial logits based on the importance weight
given by a jointly-trained spatial attention module but only
work for action recognition tasks. Attention Branch Net-
work (ABN) (Fukui et al. 2019) designed a separate atten-
tion branch to learn a more elaborate attention module based
on CAM for image classification. However, such attention
module involves much more parameters and computational
cost to learn the importance weight while our method re-
quires no further parameters in the calculation of matching
flow and need much less FLOPs. Further, all these methods
only use one proxy to represent a class, while in this work
we try to explore using multiple proxies to capture diverse
patterns of a class from different angles.

Method
In this section, we detail the proposed Multi-Proxy Wasser-
stein classifier and its instantiations for image classifica-
tion. We first introduce preliminary knowledge about op-
timal transport theory and Wasserstein distance. Then, we
present the multi-proxy classifier for visual classification. At
last, we describe how to model the feature-proxy match as
an optimal transport problem and optimize the classifier in
an end-to-end manner.

Preliminaries
We begin by briefly reviewing the preliminary knowledge
about optimal transport theory and Wasserstein distance,
where our method is built upon.

Optimal transport theory aims to seek the minimal cost
transport plan between two distribution. Considering a
source distribution µs and a target distribution µt that are de-
fined on probability spaceX and Y respectively, the Wasser-
stein distanceWp between the two distributions is

Wp(µs, µt) = inf
π∈Π(µs,µt)

∫
X×Y

c(x, y)pdπ(x, y), (1)

where the infimum is taken over all possible transport plans
π (i.e., Π(µs, µt) is the joint probability distribution with
marginals µs and µt), c : X × Y → R+ is the cost function
of transportation. The Wasserstein distance is the cost of the
optimal transport plan matching µs and µt (Villani 2008).

In this paper, we focus on discrete distributions supported
on finite sets of points in Rd, which can be written as:

µs =

ns∑
i

psi δ(xi), µt =

nt∑
i

ptiδ(yi), (2)

where ps and pt are the probability mass summing to 1, ns
and nt are the number of samples, δ(·) is the Dirac function,
{xi} and {yi} are the support points. The transport plan π
matching the two distributions also becomes discrete. In this
case, we can further define cost matrix M ∈ Rns×nt+ with
Mi,j = c(xi, yj)

p. Then, the above optimal transport prob-
lem is equivalent to:

Wp(µs, µt) = min
T≥0

tr(MT>),

subject to T1 = µs, T>1 = µt.
(3)

The corresponding optimal transport T ∗ is called the opti-
mal transport plan, representing the optimal matching flow
between these two distributions. T ∗i,j is the amount of mass
that need to move from xi to yj in order to reach an overall
minimum cost.

Multi-Proxy Image Classification
Most recent convolution neural networks for image classi-
fication use a global average pooling (GAP) followed by a
fully-connected (FC) layer to summarize spatial features and
produce output logits following the practice of Network-in-
Network (Lin, Chen, and Yan 2013) and ResNet (He et al.
2016). The GAP-FC scheme significantly reduces the re-
dundant parameters in classifier compared to previous net-
works based on Flatten-FC strategy (Krizhevsky, Sutskever,
and Hinton 2012; Simonyan and Zisserman 2014). However,
we argue that such scheme still has a drawback. In particu-
lar, a certain class often has multiple intrinsic properties that
can be exploited to facilitate classification and the spatial
distribution of visual patterns usually can also contribute to
the classification. Therefore, we propose a new classification
method based on multiple proxies instead of a single class
center to model the multiple intrinsic properties and spatial
clues for image classification.

Let X ∈ Rd×HW denote the output of CNN and y is the
corresponding one-hot encoded classification label, where d,
H and W are the number of channels, height, width of the
last feature maps. The conventional GAP-FC scheme can be
formulate as:

ŷGAP-FC = softmax
(
XT

GAPW
)
, (4)

where XT
GAP ∈ Rd is the aggregated feature after global av-

erage pooling, W ∈ Rd×K is the fully-connected classifier
for K categories, and ŷGAP-FC is the output probability dis-
tribution over these K categories.

Instead of modeling each class as a single d-dimension
vector, our method constructs M proxies for each class and
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aggregates the spatial features according to the correlation
between features and proxies. Specifically, given the set of
proxies Pi ∈ Rd×M for a class i and the CNN feature maps
X, the classification score can be computed by:

si =
HW∑
j=1

M∑
m=1

wi,j,mXT
j Pi,m, (5)

and the normalized scores are the predicted probability dis-
tribution over k categories for the proposed multi-proxy
(MP) classifier:

ŷMP = softmax ([s1, s2, ..., sk]) , (6)

where Xj is the feature at j-th location, Pi,m is the m-th
proxy for class i, wi,j,m reflects the correlation between the
feature and the proxy.

Besides the trivial solution we discussed at the beginning
that adopts a uniformly-distributed wi,j,m, a slightly more
sophisticated approach is to obtain the correlation based on
matching the features and proxies individually using cosine
similarity, which can be computed as:

ci,j,m =
XT
j Pi,m

‖Xj‖‖Pi,m‖
. (7)

However, this approach ignores the relationship among dif-
ferent features and proxies. Without considering any mutual
relation, many local features may be assigned to the same
proxy and proxies for the same category usually collapse to
a similar value. This mode collapse phenomena make the
multi-proxy classifier failing to capture the diverse intrin-
sic properties of the category. Our experimental study also
shows this trivial approach will not significantly improve the
classification performance (see our ablation study).

Feature-Proxy Matching via Optimal Transport
To overcome the above mentioned issues, we propose to
model the feature-proxy matching as a optimal transport
problem. Specifically, we use the matching flow obtained
using optimal transport to reweigh the inner product of each
feature-proxy pair. In our case, the source distribution is the
discrete distribution of local features and the target distribu-
tion is the proxy distribution for each class. As suggested
by (Frogner, Mirzazadeh, and Solomon 2019), we set both
source and target distribution as uniform distribution for the
sake of simplicity. We also observed that adaptively learned
distribution will not boost performance but lead to unstable
training. We set the cost matrixMi = 1−Ci for each class in
practice, where Ci is the cosine similarity matrix computed
using Eq. 7. Therefore, we can obtain the optimal transport
T ∗i by optimizing the global matching flow:

T ∗i = arg min
Ti≥0

tr(Mi
pT>i ),

subject to Ti1 = µs, T>i 1 = µt.
(8)

Based on the optimal matching flow, we can obtain the clas-
sification score of multi-proxy classifier by:

si =
HW∑
j=1

M∑
m=1

T ∗i,j,mXT
j Pi,m. (9)

Algorithm 1 Learning Multi-Proxy Wasserstein Classifier

1: Input: An input sample X ; a proxy set Pi for a single
class which containsM proxies; a convolutional feature
extractor F ;

2: Output: A set of similarity scores between the input
sample X and all K target classes

3: Use feature extractor F to extract a feature map X of
size Rd×HW from the sample X

4: for i = 1, 2, . . . ,K do
5: Use Eq (7) to calculate the similarity matrix Ci
6: Mi ← 1− Ci
7: Ki ← e

−Mp
i

λ

8: β ← 1, t← 0
9: while t < tMAX do

10: α← µs/Kβ
11: β ← µt/K

>α
12: if ∆α < thereshold then
13: break
14: end if
15: t← t+ 1
16: end while
17: Ti ← diag(α)Kdiag(β)
18: Use Eq (9) to calculate si
19: end for
20: return {s1, s2, . . . , sK}

Intuitively, the proposed optimal transport method adap-
tively assigns the local features to the target proxies. With
the global cost planning, our method encourage the classi-
fier to learn diverse proxy patterns. As an extension of the
GAP-FC scheme, our method models the spatial distribu-
tion of visual features, which provides extra clues for more
accurate classification. Different from the Flatten-FC strat-
egy, our method is transition-invariant, which ensures more
robust classification.

End-to-End Proxy Learning
Since exactly solving the optimal transport problem requires
the complexity ofO(n3). To enable efficient training and in-
ference, we adopt the Sinkhorn divergence method proposed
in (Cuturi 2013), where an entropic regularizer is added to
the original optimal transport problem, which lower down
the complexity to O(HW × M). Thanks to the efficient
algorithm, our method only introduce a slight additional
computational cost compared to the CNN backbone while
clearly improving the classification performance. The mod-
ified objective becomes:

Wp(µs, µt) = min
T≥0

tr(MpT>) + λtr
(
T (log(T )− 11>)>

)
,

subject to T1 = µs, T>1 = µt,
(10)

where λ is a non-negative regularization parameter. Eq. 10
is a convex problem, which can be solved using Sinkhorn-
Knopp algorithm (Sinkhorn 1967). With K = exp(−M

p

λ ),
the problem can be solved by alternately projecting onto the
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marginal constraints:

α← µs/Kβ, β ← µt/K
>α. (11)

After converge, the optimal transport can be computed by:

T ∗ = diag(α)Kdiag(β). (12)

Note that the above iterative algorithm is fully differentiable,
which makes our method easy to implement by using auto-
matic differentiation library like Pytorch (Paszke et al. 2019)
and train the proposed multi-proxy classifier in an end-to-
end manner. The algorithm of learning multi-proxy Wasser-
stein classifier is summarized in Algorithm 1.

Experiments
To demonstrate the effectiveness of our method, we conduct
experiments on two widely-used benchmarks for image clas-
sification task, namely CIFAR10/100 (Krizhevsky, Hinton
et al. 2009), and ILSVRC2012 (Russakovsky et al. 2015).

Datasets
CIFAR CIFAR-10 (Krizhevsky, Hinton et al. 2009)
dataset contains 60,000 low resolution RGB images of size
32×32 from 10 different classes. Each class consists of ex-
actly 6,000 images. All these images are split into a training
set of 50,000 images and 10,000 test images. CIFAR-100
uses the same training set and test set, but further divides
the target categories into 100 different classes. We also use
CIFAR-10.1 dataset (Recht et al. 2018) to identify the ro-
bustness of our model against unknown distribution shift
during test phase. CIFAR-10.1 contains 2,000 test images
in total, with exactly the same classes and creation process
as original CIFAR-10 dataset. The objective is to investi-
gate the effect of the subtle unknown distribution shifts be-
tween two test sets on recognition task. The traditional do-
main adaptation methods cannot handle this task well as the
distribution shifts are just too subtle and the sample size is
too small for most domain adaptation methods. We show our
method can bring substantial improvement on this difficult
dataset.

ILSVRC2012 ILSVRC2012 (Russakovsky et al. 2015) is
a large-scale dataset used to evaluate the capability of a deep
neural network. The training set contains around 1.2 million
images and the test set contains 5K images, all of which are
high-resolution images from 1,000 different categories. The
distribution over target classes roughly uniform for training
set and strictly uniform for test set.

Results on CIFAR
We first carry out the performance evaluation on CI-
FAR dataset. To show the generalizability of our method,
we test on several different network architectures, includ-
ing two types of ResNet (He et al. 2016) with differ-
ent depth (ResNet-18 and ResNet-101), two types Wide-
ResNet (Zagoruyko and Komodakis 2016) with different
depth and width (Wide-ResNet-40-2 and Wide-ResNet-28-
10), DenseNet-100 (Huang et al. 2017) (growth rate k = 12)
and PyramidNet200 (Han, Kim, and Kim 2017) augmented

with CutMix (Yun et al. 2019) (widening factor ᾱ = 240).
Among above models, the spatial size of the feature maps
from the last convolution layer are all 8×8 except ResNet-18
which is 4 × 4. We use ResNet-18 to show that our method
can work with output feature maps of different sizes. All
models are trained by 200 epochs in total with initial learn-
ing rate as 0.1. We adjust the learning rate in the training
process by following the strategies described in the origi-
nal works. We use stochastic gradient descent (SGD) as our
optimizer, and we set momentum as 0.9 and weight decay
as 0.0005. For the hyper-parameter in Algorithm. 1, we set
M = 4 for all different network architectures. In our experi-
ments, we findW1 works best for most architectures, so we
set p = 1 for all cases. And we set the weight of entropically
regularization term λ as 0.1. Besides, we set threshold as 0.1
and maximum iteration number as 100. All experiments are
conducted with NVIDIA 1080 Ti GPUs using PyTorch 1.4.0
on Python 3.7.4 platform. We report the median accuracy af-
ter running each experiment 5 times. We re-run the baseline
methods for both CIFAR-10 and CIFAR-100 and also report
the results from original papers.

As shown in Table. 1 and Table. 2 , we find our method
improves upon the corresponding baseline for all different
architectures. Though the improvement is relative marginal
on CIFAR-10, especially for Wide-ResNet-28-10 which
only acquires 0.14% boost, we can see the improvement
of accuracy on CIFAR-10.1 is much higher than CIFAR-10
except DenseNet-100. For Wide-ResNet-40-2, the accuracy
on CIFAR-10.1 is even 1.6% higher than the correspond-
ing baseline. This indicates our method can make the model
more robust to such subtle unknown distribution shift. Con-
sidering both test sets are sampled from natural image dis-
tribution, our method shows much stronger ability to gener-
alize to more unseen natural image data. Since the major ob-
jective of machine learning is to generalize to more unseen
data, we believe such robustness to natural variations should
be acknowledged as one great advantage of our approach.

On CIFAR-100, our method outperforms its counterparts
consistently. Noticeably, the improvement on CIFAR-100 is
much more obvious compared to CIFAR-10. For instance,
we improve by 2.2% on CIFAR-100 for ResNet-110 while
the improvement on CIFAR-10 is only 0.47%. This illus-
trates that our method can bring more boost when the num-
ber of target classes is more. This is due to the inter-class
variation of CIFAR-100 is smaller than CIFAR-10, so learn-
ing more discriminative pattern can benefit classifier more.

Results on ILSVRC2012
Besides CIFAR dataset, we also perform experiments on
ILSVRC2012 dataset to validate the effectiveness our
method on large-scale dataset. We test our method with
ResNet18, ResNet50 and ResNet101. The size of output fea-
ture map becomes 7×7 in this case. We run the experiments
for 90 epochs in total, and multiply learning rate by 0.1 at
epoch 30 and epoch 60. We set the batch size as 256 and
the input size as 224× 224. Other setting are same with CI-
FAR experiments. We show the results in Table. 3. The re-
sult clearly shows that our method can brings improvement
to different network architectures consistently. For exam-
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Model # Params FLOPs CIFAR-10 CIFAR-10.1
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

ResNet-18 0.27M 0.27M 41.3M 41.4M 92.26 92.85(+0.59) 83.55 84.45(+0.90)

ResNet-110 1.73M 1.73M 255M 255M 94.0393.57? 94.50(+0.47) 86.15 87.05(+0.90)

WRN40-2 2.2M 2.2M 323M 323M 95.0994.80? 95.13(+0.04) 87.60 89.20(+1.60)

WRN28-10 36.4M 36.4M 5.25G 5.25G 95.9595.83? 96.09(+0.26) 89.80 91.15(+1.35)

DenseNet100 4.07M 4.07M 1.35G 1.35G 94.7594.23? 95.08(+0.33) 88.20 87.90(−0.30)

PyramidNet200 26.7M 26.7M 4.56G 4.56G 96.8397.12? 97.32(+0.20) 88.15 88.60(+0.45)

Table 1: The performance of different architectures on CIFAR-10 and CIFAR-10.1 benchmark. We re-implement all baseline
methods for fair comparison. All the results available in the original paper denoted are listed in the table and denoted by *.

Model # Params FLOPs Accuracy
Baseline Ours Baseline Ours Baseline Ours

ResNet-18 0.28M 0.29M 41.3M 41.4M 69.95 71.60(+1.65)

ResNet-110 1.73M 1.73M 255M 255M 73.25 75.27(+2.02)

WRN40-2 2.2M 2.2M 323M 323M 76.2274.73? 77.12(+2.39)

WRN28-10 36.5M 36.6M 5.25G 5.25G 80.1480.13? 80.71(+0.57)

DenseNet100 4.12M 4.27M 1.35G 1.35G 76.8276.21? 77.57(+0.65)

PyramidNet200 26.8M 27.0M 4.56G 4.56G 84.9685.53? 85.28(+0.32)

Table 2: The performance of different architectures on CIFAR-100 benchmark. We re-implement all baseline methods for fair
comparison. All the results available in the original paper denoted are listed in the table and denoted by *.

Model # Params FLOPs Top-1 Top-5
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

ResNet-18 11.7M 13.3M 1.82G 1.87G 69.76 71.08(+1.32) 89.06 89.95(+0.89)

ResNet-50 25.6M 31.7M 3.88G 4.08G 76.15 76.96(+0.81) 92.87 93.33(+0.46)

ResNet-101 44.5M 50.6M 7.60G 8.02G 77.37 77.94(+0.57) 93.56 93.87(+0.31)

Table 3: The performance of different architectures on ILSVRC2012. We report Top-1 / Top-5 accuracies (%) for different
architectures.

ple, it improves Top-1 accuracy on ResNet18 by 1.32%. On
ResNet50 and ResNet101, it still improves Top-1 accuracy
by 0.81% and 0.57% respectively. We can see our method
can help small network even more than larger ones.

Ablation Study
Necessity of Optimal Transport We conduct experi-
ments to show that it is necessary to exploit the optimal
transport theory to make the multi-proxy classifier work.
In particular, we first test the trivial solution that simply
adds multiple fully-connected layers and take the average
of outputs from all branches (Baseline + Multi-FCAverage).
This is equivalent to using a uniform matching flow to
aggregate HW × M similarity scores for the final score
of a 〈sample, class〉 pair. We conduct experiments using
ResNet18 and WideResNet40-2 on CIFAR-100.We report
the results in Table. 4. We can see the trivial solution brings
absolutely no change to the original baseline. This empir-
ically shows that the trivial solution would degrade to the
original setting.

More deeply, what makes our formulation works is that
we embed the sample and the class as discrete distributions

ResNet18 WRN40-2

Baseline 69.95 76.22

Baseline + Multi-FCAverage 69.94 76.23
Baseline + Multi-FCFlatten 69.32 75.07
Baseline + Multi-FCCosine 70.06 76.42

Baseline + Bilinear 69.02 74.00
Baseline + WS-DAN 69.40 74.52

Ours 71.60 77.12

Table 4: We compare our method with some other methods
that can also calculate the matching flow to illustrate the ne-
cessity of using optimal tranport theory. All the experiments
are conducted on CIFAR-100. The details please refer to the
ablation study section.

in the Wasserstein space. A simple modification to the triv-
ial solution to overcome the degrade problem could be re-
placing the average operation by flatten operation (Baseline
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Training Test

ResNet-110 38.71s 2.54s
ResNet-110 + Ours 45.58s 2.93s

Table 5: We measure both training time and test time for
ResNet-110 on CIFAR-100. The training time refers the av-
erage time of running 1 epoch, and test time is the time
needed to evaluate the whole test set.

+ Multi-FCFlatten), like what has been done in the end-
ing layers of AlexNet (Krizhevsky, Sutskever, and Hinton
2012) and VGG (Simonyan and Zisserman 2014). Yet, such
formulation has been proved to be inferior to the original
GAP-FC formulation by our experiments in Table 4. This
is because the flatten operation makes the order of elements
or proxies matters, while the discrete distribution is in fact
an unordered set. However, we do not care where a pattern
would appear on the input image sample in the classification,
so flatten can not improve the trivial solution. Furthermore,
flatten would require H ×W proxies while our formulation
needs much less than that.

Another slightly more sophisticated solution is to intro-
duce non-uniformity by using the cosine similarity between
an element and a proxy as the weight in the matching flow.
However, we show in Table. 4 that the improvement brought
by this modification (Baseline + Multi-FCCosine) is smaller
compared to our method. As discussed above, directly using
cosine similarity defined in the Euclidean space can not cap-
ture the geometry of the space like the embeddings in the
wasserstain space. This again demonstrate the necessity of
exploiting optimal transport for calculating matching flow.

Comparison with Fine-Grained Methods We also com-
pared with methods used for fine-grained classification on
general classification tasks as they are equivalent to us-
ing multiple proxies for classification. Different from above
non-parametric solution, the matching flow given by fine-
grained classification methods often requires additional pa-
rameters. We compare with bilinear pooling and WS-DAN
(only considering the attention module but not augmentation
step) with our method on CIFAR-100. The results are shown
Table 4. We can find these methods even lead to decrease
of accuracy on the general-purpose classification task. On
the contrary, our method achieves around 2% lower on fine-
grained classification task benchmark like CUB-2011 (Wah
et al. 2011). This reveals the fine-grained methods and our
method are good at dealing with different recognition tasks.
We conjecture this is because the size of the output feature
map in fine-grained tasks (26 × 26 on CUB-2011) is much
larger than that in general classification tasks (8× 8 / 4× 4
for CIFAR, 7 × 7 for ILSVRC2012). Larger size of output
feature map enlarges the variation among elements in out-
put feature map, and this may make it easier for the atten-
tion module to learn the relationship between elements and
proxies.
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1.00Figure 2: The number of iteration needed to calculate the
correspondence flow gradually converges to 6 with the train-
ing goes on.

Time Analysis
One major concern of optimal transport is always its effi-
ciency. We first conduct experiments to investigate the aver-
age iterations needed for the sinkhorn algorithm to be con-
verged. We take the average across all batches, all epochs
and all networks on CIFAR dataset. The average number of
iterations is just 5.93, and we can find the variance is quite
small from Figure 2. This indicates the additional compu-
tational cost is relatively small. More concretely, we report
the training time (1 epoch) as well as the test time (on whole
test set) in Table. 5. We can see that the training time in-
creases by 17.7%, and 15.4%, which is acceptable given the
improvement on the performance. The additional time cost
is mainly attributed to the for iteration used in the itera-
tive algorithm. In fact, considering the original ResNet110
requires 1.7GFLOPs in total, the increase of the number of
FLOPs caused by our method is negligible, as we only use
4 proxies for each class in our experiments. Compared to
ABN (Fukui et al. 2019) which require 5.7GFLOPs, our
method can achieve comparable improvement with much
less FLOPs.

Visualization
To have an intuitive understanding of the proposed multi-
proxy Wasserstein classifier, we visualize the correspon-
dence between local features and proxies. The results can
be found in Supplementary Material.

Conclusion
In this work, we propose a new method called multi-proxy
wasserstein network, where we represent each target class
as multiple proxies instead of one to capture diverse useful
patterns in the input sample from different angles. To make
the multiple proxy can truly help the recognition, we pro-
pose to apply optimal transport theory to calculate a match-
ing flow for each class to aggregate the similarity scores be-
tween each element in the feature map and each proxy. A
fast iterative algorithm is exploited to achieve this. Through
extensive experiments, We further validate the advantage of
our method as well as the necessity of using optimal trans-
port in this problem.
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