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Abstract

This paper presents a simple unsupervised visual represen-
tation learning method with a pretext task of discriminat-
ing all images in a dataset using a parametric, instance-level
classifier. The overall framework is a replica of a supervised
classification model, where semantic classes (e.g., dog, bird,
and ship) are replaced by instance IDs. However, scaling up
the classification task from thousands of semantic labels to
millions of instance labels brings specific challenges includ-
ing 1) the large-scale softmax computation; 2) the slow con-
vergence due to the infrequent visiting of instance samples;
and 3) the massive number of negative classes that can be
noisy. This work presents several novel techniques to handle
these difficulties. First, we introduce a hybrid parallel training
framework to make large-scale training feasible. Second, we
present a raw-feature initialization mechanism for classifica-
tion weights, which we assume offers a contrastive prior for
instance discrimination and can clearly speed up converge in
our experiments. Finally, we propose to smooth the labels of a
few hardest classes to avoid optimizing over very similar neg-
ative pairs. While being conceptually simple, our framework
achieves competitive or superior performance compared to
state-of-the-art unsupervised approaches, i.e., SimCLR, Mo-
CoV2, and PIC under ImageNet linear evaluation protocol
and on several downstream visual tasks, verifying that full
instance classification is a strong pretraining technique for
many semantic visual tasks.

Introduction
Unsupervised visual representation learning has recently
shown encouraging progress (He et al. 2020; Chen et al.
2020a). Methods using instance discrimination as a pretext
task (Tian, Krishnan, and Isola 2019; He et al. 2020; Chen
et al. 2020a) have demonstrated competitive or even supe-
rior performance compared to supervised counterparts under
ImageNet (Deng et al. 2009) linear evaluation protocol and
on many downstream visual tasks. This shows the potential
of unsupervised representation learning methods since they
can utilize almost unlimited data without manual labels.

To solve the instance discrimination task, usually a dual-
branch structure is used, where two transformed views of a
same image are encouraged to get close, while transformed
views from different images are expected to get far apart (He
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Figure 1: (a) An overview of our unsupervised visual rep-
resentation learning framework. Without manual labels, we
simply train an instance-level classifier that tries to distin-
guish all images in a dataset to learn discriminative repre-
sentations that can be well transferred to supervised tasks.
(b) The relationship between instance (unsupervised) and se-
mantic (supervised) classification accuracies. We observe a
strong positive correlation between them in our experiments.

et al. 2020; Chen et al. 2020a,c). These methods often rely
on specialized designs such as memory bank (Wu et al.
2018a), momentum encoder (He et al. 2020; Chen et al.
2020c), large batch size (Chen et al. 2020a,b), or shuffled
batch normalization (BN) (He et al. 2020; Chen et al. 2020c)
to compensate for the lack of negative samples or handle the
information leakage issue (i.e., samples on a same GPU tend
to get closer due to shared BN statistics).

Unlike dual-branch approaches, one-branch scheme (e.g.,
parametric instance-level classification) usually avoids the
information leakage issue, and can potentially explore a
larger set of negative samples. ExemplarCNN (Dosovitskiy
et al. 2014) and PIC (Cao et al. 2020) are of this category.
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Figure 2: An outline of our distributed hybrid parallel (DHP) training process on T GPU nodes. Data parallel: Following data
parallel mechanism, we copy the encoding and MLP layers to all nodes, each processing a subset of minibatch data. Model
parallel: Following model parallel mechanism, we evenly divide the classification weights to different nodes, and distribute
the computation of classification scores (forward pass) and weight/feature gradients (backward pass) to different GPUs. Label
smoothing: We smooth labels of the top-K hardest negative classes for each instance to avoid optimizing over noisy pairs.

Nevertheless, due to the high GPU computation and memory
overhead of large-scale instance-level classification, these
methods are either tested on small datasets (Dosovitskiy
et al. 2014) or rely on negative class sampling (Cao et al.
2020) to make training feasible.

This work summarizes typical challenges of using one-
branch instance discrimination for unsupervised representa-
tion learning, including 1) the large-scale classification, 2)
the slow convergence due to the infrequent instance access,
and 3) a large number of negative classes that can be noisy,
and proposes novel techniques to handle them. First, we in-
troduce a hybrid parallel training framework to make large-
scale classifier training feasible. It relies on model paral-
lelism that divides classification weights to different GPUs,
and evenly distribute the softmax computation (both in for-
ward and backward passes) to them. Figure 2 shows an
overview of our distributed training process. This training
framework can theoretically support up to 100-million-way
classification using 256 GPUs (Song et al. 2020), which far
exceeds the number of 1.28 million ImageNet-1K instances,
indicating the scalability of our method.

Second, instance classification faces the slow conver-
gence problem due to the extremely infrequent visiting of in-
stance samples (Cao et al. 2020). In this work, we tackle this
problem by introducing a contrastive prior to the instance
classifier. Specifically, with a randomly initialized network,
we fix all but BN layers of it and run an inference epoch
to extract all instance features; then we directly assign these
features to classification weights as an initialization. The in-
tuition is two-fold. On the one hand, we presume that run-
ning BNs may offer a contrastive prior in the output instance
features, since in each iteration the features will subtract a

weighted average of other instance features extracted in pre-
vious iterations. On the other hand, initializing classification
weights as instance features in essence converts the classifi-
cation task to a pair-wise instance comparison task, provid-
ing a warm start for convergence.

Finally, regarding the massive number of negative in-
stance classes that significantly raises the risk of optimizing
over very similar negative pairs, we propose to smooth the
labels of the top-K hardest negative classes to make training
easier. Specifically, we compute cosine similarities between
instance proxies – their corresponding classification weights
– and find the negative classes with the top-K highest sim-
ilarities for each instance. The labels of these classes are
smoothed by a factor of α (i.e., from y− = 0 to y− = α/K).
The right part of Figure 2 shows the smoothing process.
Note these top-K indices are computed once per training
epoch, which is very efficient and adds only minimal com-
putational overhead for the training process.

We evaluate our method under ImageNet linear evaluation
protocol and on several downstream tasks related to detec-
tion or fine-grained classification. Despite its simplicity, our
method shows competitive results on these tasks. For exam-
ple, our method achieves a top-1 accuracy of 71.4% under
ImageNet linear evaluation protocol, outperforming all other
instance discrimination based methods (Chen et al. 2020a,c;
Cao et al. 2020). We also obtain a semi-supervised accuracy
of 81.8% on ImageNet-1K when only 1% of labels are pro-
vided, surpassing SimCLR (Chen et al. 2020a) by around
4.7%. We hope our full instance classification framework
can serve as a simple and strong baseline for the unsuper-
vised representation learning community and beyond.
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Related Work
Unsupervised Visual Representation Learning Unsu-
pervised visual representation learning aims to learn dis-
criminative representation from visual data where no man-
ual labels are available. Usually a pretext task is utilized to
determine the quality of the learned representation and to
iteratively optimize the parameters. Representative pretext
tasks include transformation prediction (Gidaris, Singh, and
Komodakis 2018; Zhang et al. 2019), in-painting (Pathak
et al. 2016), spatial or temporal patch order prediction (Do-
ersch, Gupta, and Efros 2015; Noroozi et al. 2018), coloriza-
tion (Zhang, Isola, and Efros 2016), clustering (Caron et al.
2018; Zhuang, Zhai, and Yamins 2019a; Asano, Rupprecht,
and Vedaldi 2020), data generation (Jenni and Favaro 2018;
Donahue and Simonyan 2019; Donahue, Krähenbühl, and
Darrell 2016), geometry (Dosovitskiy et al. 2015), and a
combination of multiple pretext tasks (Doersch and Zisser-
man 2017; Feng, Xu, and Tao 2019).

Contrastive Visual Representation Learning More re-
cently, contrastive representation learning methods (Hénaff
et al. 2019; He et al. 2020) have shown significant perfor-
mance improvements by using strong data augmentation and
proper loss functions (Chen et al. 2020c,a). For these meth-
ods, usually a dual-branch structure is employed, where two
augmented views of an image are encouraged to get close
while augmented views from different images are forced to
get far apart. One problem of these methods is the short-
age of negative samples. Some methods rely on large batch
size (Chen et al. 2020a), memory bank (Wu et al. 2018a), or
momentum encoder (He et al. 2020; Chen et al. 2020c) to
enlarge the negative pool. Another issue is regarding the in-
formation leakage issue (He et al. 2020; Chen et al. 2020c)
where features extracted on a same GPU tend to get close
due to the shared BN statistics. MoCo (He et al. 2020; Chen
et al. 2020c) solves this problem by using shuffled batch nor-
malization (BN), while SimCLR (Chen et al. 2020a) handles
the problem with a synchronized global BN.

Instance Discrimination for Representation Learning
Unlike the two-branch structure used in contrastive methods,
some approaches (Dosovitskiy et al. 2014; Cao et al. 2020)
employ a parametric, one-branch structure for instance dis-
crimination, which avoids the information leakage issue.
Exemplar-CNN (Dosovitskiy et al. 2014) learns a classifier
to discriminate between a set of “surrogate classes”, each
class represents different transformed patches of a single
image. Nevertheless, it shows worse performance than non-
parametric approaches (Wu et al. 2018a). PIC (Cao et al.
2020) improves Exemplar-CNN in two ways: 1) it intro-
duces a sliding-window data scheduler to alleviate the infre-
quent instance visiting problem; 2) it utilizes recent classes
sampling to reduce the GPU memory consumption. Despite
its effectiveness, it relies on complicated scheduling and op-
timization processes, and it cannot fully explore the large
number of negative instances. This work presents a much
simpler instance discrimination method that uses an ordi-
nary data scheduler and optimization process. In addition, it
is able to make full usage of the massive number of negative
instances in every training iteration.

Methodology
Overall Framework
This work presents an unsupervised representation learning
method with a pretext task of classifying all image instances
in a dataset. Figure 1 (a) shows the outline of our method.
The pipeline is similar to common supervised classification,
where semantic classes are replaced by instance IDs. In-
spired by the design improvements used in recent unsuper-
vised frameworks (Chen et al. 2020a), we slightly modify
some components, including using stronger data augmen-
tation (i.e., random crop, color jitter, and Gaussian blur), a
two-layer MLP projection head, and a cosine softmax loss.
The cosine softmax loss is defined as

J = − 1

|I|
∑
i∈I

log
exp(cos(wi,xi)/τ)∑N
j=1 exp(cos(wj ,xi)/τ)

, (1)

where I denotes the indices of sampled image instances in a
minibatch, xi is the projected embedding of instance i, W =
{w1,w2, · · · ,wN} ∈ RD×N represents the instance clas-
sification weights, cos(wj ,xi) = (wT

j xi)/(‖wj‖2 · ‖xi‖2)
denotes the cosine similarity between wj and xi, and τ is a
temperature adjusting the scale of cosine similarities.

Nevertheless, there are still challenges for this vanilla in-
stance classification model to learn good representation, in-
cluding 1) the large-scale instance classes (e.g., 1.28 million
instance classes for ImageNet-1K dataset); 2) the extremely
infrequent visiting of instance samples; and 3) the massive
number of negative classes that makes training difficult. We
propose three efficient techniques to improve the represen-
tation learning and the scalability of our method:

• Hybrid parallelism. To support large-scale instance clas-
sification, we rely on hybrid parallelism and evenly dis-
tribute the softmax computation (both in forward and
backward passes) to different GPUs. Figure 2 shows a
schematic of the distributed training process on T GPUs.

• A contrastive prior. To improve the convergence, we pro-
pose to introduce a contrastive prior to the instance clas-
sifier. This is simply achieved by initializing classification
weights as raw instance features extracted by a fixed ran-
dom network with running BNs.

• Smoothing labels of hardest classes. the massive num-
ber of negative classes raises the risk of optimizing over
very similar pairs. We apply label smoothing on the top-K
hardest instance classes to alleviate this issue.

Note that the above improvements only bring little or no
computational overhead for the training process. Next we
will introduce these techniques respectively in details.

Hybrid Parallelism
Training an instance classifier usually requires to learn a
large-scale fc layer. For example, for ImageNet-1K with ap-
proximately 1.28 million images, one needs to optimize a
weight matrix of size W ∈ RD×1280000. For ImageNet-
21K, the size further enlarged to W ∈ RD×14200000. This
is often infeasible when using a regular distributed data par-
allel (DDP) training pipeline. In this work, we introduce a
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Figure 3: Comparison of the maximum number of classes
supported by DDP and DHP training frameworks under dif-
ferent GPU memory constraints.

Dataset #Instances DDP DHP
Memory Time Memory Time

ImageNet-1K 1.28M 15.6GB 428s 9.18GB 302s
ImageNet-21K 14.2M OOM* - 21.51GB 2940s
* OOM: Out-of-memory.

Table 1: Comparison of the GPU memory consumption and
the training time per epoch of DDP and DHP training frame-
works. Experiments are conducted on ImageNet-1K and
ImageNet-21K datasets.

distributed hybrid parallel (DHP) training framework (Song
et al. 2020) to make large-scale classification feasible.

Figure 2 summarizes the outline of the distributed hybrid
parallel training process on T GPU nodes. For encoding and
MLP layers, we follow the data parallel pipeline and copy
them to different GPUs, each processing a subset of mini-
batch data; while for the large-scale fc layer, we follow the
model parallel mechanism and split the weights evenly to
T GPUs. At each training iteration and for each GPU node,
we 1) extract features of a subset of minibatch samples; 2)
gather features from all other nodes; 3) compute partial co-
sine logits using local classification weights; 4) compute ex-
ponential values of logits and sum over all classes across
GPUs to obtain the softmax denominators; 5) compute soft-
max probabilities and the cross-entropy loss on the subset
data; 6) deduce gradients of the local loss with respect to fea-
tures and weights; 7) gather feature gradients from all GPU
node and sum them; 8) run a step of optimization to update
parameters of encoding, MLP, and classification layers. The
pipeline is repeated to loop through the complete dataset for
several epochs to optimize for better representation.

Figure 3 compares the GPU memory overhead of DDP
and DHP training frameworks when increasing the (pseudo)
class number from 10K to 30M. The experiment is con-
ducted on 64 V100 GPUs with 32GB memory and a total
batch size of 4096. DDP reports out-of-memory (OOM) er-
ror when the class number reaches 4.7 million, while the
DHP training framework can support up to 30 million num-
ber of classes, which is 6.4× of the DDP’s limit. We also
note that the DHP can benefit from more GPUs to support

Figure 4: Table: comparison of ImageNet linear evaluation
accuracies of different weight-initialization methods, evalu-
ated after 10 epochs training. Bar chart: comparison of av-
erage intra- and inter-instance-class cosine similarities when
using different initialization methods.

larger-scale instance classification, but DDP does not bear
this scalability. Table 1 compares the training efficiency of
DDP and DHP frameworks on ImageNet-1K and ImageNet-
21K under the same batch size settings. We show that the
DHP training framework not only consumes less GPU mem-
ory, but also trains much faster than the DDP counterpart.

A Contrastive Prior
Instance classification faces the slow convergence problem
in early epochs due to the infrequent visiting of instance
samples (i.e., once access per epoch). A recent work (Cao
et al. 2020) handles this infrequent visiting problem by using
a sliding-window data scheduler, which samples overlapped
batches between adjacent iterations. This increases the pos-
itive instance visiting but it also significantly multiplies the
time of looping over the complete dataset.

In this work, we handle this problem from a different per-
spective: we propose to speed up the convergence by intro-
ducing a contrastive prior to classification weights. Specifi-
cally, before training started, we run an inference epoch us-
ing the fixed random initial network with running BNs to ex-
tract all instance features X = {x1,x2, · · · ,xN} ∈ RD×N ;
then we directly assign them to classification weights W =
{w1,w2, · · · ,wN} ∈ RD×N as an initialization. The intu-
ition behind this initialization mechanism is two-fold. First,
running BNs can offer a contrastive prior in the output fea-
tures, since in each inference phase, the features computed
after every BN layer will subtract a running average of other
instance features extracted in previous iterations. Second,
assigning features to weights approximately converts the
classification task to a pair-wise metric learning task in early
epochs, which is relatively easier to converge and offers a
warm start for instance classification.

Figure 4 compares the discriminative ability of different
classifier initialization schemes, i.e., random weight initial-
ization (random init. for short), raw-feature initialization
with fixed BNs (raw with fixed BNs for short), and raw-
feature initialization with running BNs (raw with running
BNs for short). We use ImageNet linear evaluation accu-
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MLP
head

A contrastive
prior

Label
smoothing

ImageNet
Top-1 Top-5

X X 58.6 83.1
X 67.3 87.7
X X 67.6 88.0
X X X 68.2 88.5

Table 2: Ablation study on the effectiveness of different
components in our method.

#Sampled instances Top-1 Top-5
210 64.8 86.3
212 65.3 86.7
214 65.4 86.7
216 65.5 86.8
Full 67.3 87.7

Table 3: Ablation study that compares full instance classifi-
cation and sampled instance classification.

racy (evaluated after 10 epochs training) as well as aver-
age intra- and inter-instance-class similarities as the indica-
tors. As shown in Figure 4, raw with running BNs achieves
the best linear evaluation accuracy, and clearly outperforms
other initialization methods. In addition, raw with running
BNs obtains a much larger similarity gap (∼ 9.3%) between
positive and negative instance pairs than raw with fixed BNs
(∼ 1.5%), validating the assumption that running BNs may
provide a contrastive prior for instance discrimination.

We also note that the instance features extracted by a ran-
dom network with running BNs are also a robust start for
semantic classification. We run an instance retrieval experi-
ment on the train set of ImageNet-1K with a randomly ini-
tialized ResNet-50 network to extract all image features, and
determine whether the searched instance and the query in-
stance are of a same semantic category. We find that a 3%
top-1 accuracy can be achieved, which far exceeds the top-1
accuracy of 0.1% of a random guess.

Smoothing Labels of Hardest Classes

A challenge of instance-level classification is that it intro-
duces a very large number of negative classes, significantly
raising the risk of optimizing over very similar pairs that can
be noisy and make the training hard to converge.

In this work, we handle this problem by applying label
smoothing on a few hardest instance classes. Although other
techniques (e.g., clustering) are also applicable, we choose
label smoothing for its simplicity and efficiency. We no-
tice that the semantically similar instance pairs are relatively
stable across the training process. Therefore, we represent
each instance i as its corresponding classification weights
wi (instead of its unstable features xi), and compute the co-
sine similarities between wi and all other weights Wī =
{w1, · · · ,wi−1,wi+1, · · · ,wN} ∈ RD×(N−1) to find the
top-K hardest negative classesHi

− = {c1, c2, · · · , cK}. The

#Epochs Gaussian
random

A contrastive
prior

10 12.4 27.4 (+15.0)
25 40.8 46.3 (+5.5)
50 56.1 58.0 (+1.9)
100 62.9 64.1 (+1.2)
200 67.3 67.6 (+0.3)
400 69.3 69.7 (+0.4)

Table 4: Ablation study that compares Gaussian random and
a contrastive prior for classifier initialization.

Hard class
number K

Smoothing
factor α Top-1 Top-5

no smoothing 67.6 88.0
100 0.1 67.7 88.2
100 0.2 68.2 88.5
100 0.3 67.5 88.2
50 0.2 68.0 88.5

200 0.2 67.9 88.4

Table 5: Ablation study of label smoothing with different
number of hard classes K and smoothing factor α.

label of class j ∈ {1, 2, · · · , N} is then defined as

yij =


1− α, j = i,

α/K, j ∈ Hi
−,

0, otherwise.

(2)

The loss function in Eq. (1) is redefined as

J = − 1

|I|
∑
i∈I

log

∑N
j=1 y

i
j exp(cos(wj ,xi)/τ)∑N

j=1 exp(cos(wj ,xi)/τ)
. (3)

The top-K similarities between instance weights are com-
puted once per epoch, which only amounts for a small frac-
tion of training time. The smoothed softmax cross-entropy
loss reduces the impact of noisy or very similar negative
pairs on the learned representation. This is also verified later
in our ablation study, where smoothing labels of several
hardest classes improves the transfer performance.

Experiments
Experiment Settings
Training Datasets Unless specified, we use ImageNet-
1K to train our unsupervised model for most experiments.
ImageNet-1K consists of around 1.28 million images be-
longing to 1000 classes. We treat every image instance
(along with its various transformed views) in the dataset as a
unique class, and train a 1.28 million-way instance classifier
as a pretext task to learn visual representation.

Evaluation Datasets The learned visual representations
are evaluated in three ways: First, under the linear evaluation
protocol of ImageNet-1K, we fix the representation model
and learn a linear classifier upon it. The top-1/top-5 classi-
fication accuracies are employed to compare different unsu-
pervised methods. Second, we evaluate the semi-supervised
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Method Top-1 Top-5
Supervised 76.3 93.1
Exemplar (Dosovitskiy et al. 2014) 48.6 -
CPC (Oord, Li, and Vinyals 2018) 48.7 73.6
InstDisc. (Wu et al. 2018a) 54.0 -
B.BiGAN (Donahue and Simonyan 2019) 56.0 77.4
NPID++ (Wu et al. 2018b) 59.0 -
L.Agg. (Zhuang, Zhai, and Yamins 2019b) 60.2 -
MoCo (He et al. 2020) 60.6 -
SeLa (Asano, Rupprecht, and Vedaldi
2020) 61.5 84.0

PIRL (Misra and Maaten 2020) 63.6 -
CPCv2 (Hénaff et al. 2019) 63.8 85.3
CMC (Tian, Krishnan, and Isola 2019) 64.1 85.4
SimCLR (Chen et al. 2020a) 69.3 89.0
PIC (Cao et al. 2020) 70.8 90.0
MoCoV2 (Chen et al. 2020c) 71.1 -
Ours 71.4 90.3

Table 6: State-of-the-art comparison of linear classification
accuracy of unsupervised methods on ImageNet-1K.

learning performance on ImageNet-1K, where methods are
required to classify images in the val set when only a small
fraction (i.e., 1% or 10%) of manual labels are provided
in the train set. Third, we evaluate the transferring perfor-
mance by finetuning the representations on several down-
stream tasks and compute performance gains. In our experi-
ments, downstream tasks include Pascal-VOC object detec-
tion (Everingham et al. 2010), iNaturalist18 fine-grained im-
age classification (Van Horn et al. 2018), and many others.

Implementation Details We use ResNet-50 (He et al.
2016) as the backbone in all our experiments. We train our
model using the SGD optimizer, where the weight decay and
momentum are set to 0.0001 and 0.9, respectively. The initial
learning rate (lr) is set to 0.48 and decays using the cosine
annealing scheduler. In addition, we use 10 epochs of linear
lr warmup to stabilize training. The minibatch size is 4096
and the feature dimension D = 128. We set the temperature
in Eq. (1) as τ = 0.15, and the smoothing factor in Eq. (3)
as α = 0.2. For fair comparison, following practices in re-
cent works (Chen et al. 2020a; Cao et al. 2020), we feed two
augmented views per instance for training. All experiments
are conducted on 64 V100 GPUs with 32GB memory.

Ablation Study
This section validates several modeling and configuration
options for our method. We compare the quality of repre-
sentations using ImageNet linear protocol evaluated on the
val set. In each experiment, the linear classifier is trained
with a batch size of 2048 and a lr of 40 that decays during
training under the cosine annealing rule.

Ablation: Effectiveness of Components Table 2 shows
the linear evaluation results using different combinations
of components in our method, including a two-layer MLP
head, a contrastive prior, and label smoothing. Accuracies
are measured after 200-epochs training. We find that all the
three components bring performance gains, improving the

Method Label Fraction
1% 10%

Supervised 48.4 80.4
Label propagation:

PseudoLabels (Zhai et al. 2019) 51.6 82.4
VAT+Entropy Min. (Miyato et al. 2018) 47.0 83.4
UDA (Xie et al. 2019) - 88.5
FixMatch (Sohn et al. 2020) - 89.1

Representation Learning:
InstDisc. (Dosovitskiy et al. 2014) 39.2 77.4
PIRL (Misra and Maaten 2020) 57.2 83.8
PCL (Li et al. 2020) 75.6 86.2
SimCLR (Chen et al. 2020a) 75.5 87.8
SimCLRv2 (Chen et al. 2020b) 82.5 89.2
PIC (Cao et al. 2020) 77.1 88.7
Ours 81.8 89.2

Table 7: State-of-the-art comparison of semi-supervised
learning accuracy on ImageNet-1K.

top-1 accuracy of our method from 58.6% to a competitive
68.2%. We also observe that a vanilla instance classification
model can already achieve a top-1 accuracy of 67.3%, sug-
gesting that full instance classification is a strong baseline
for unsupervised representation learning. The a contrastive
prior and label smoothing on the top-K hardest classes fur-
ther boost the linear evaluation accuracy by around 1%.

Ablation: Full Instance Classification v.s. Sampled In-
stance Classification Table 3 compares linear classifica-
tion accuracies using representations learned by full instance
classification and by sampled instance classification, with
sampling sizes ranging from 210 to 216. Note we remove
a contrastive prior and label smoothing in the experiments
and only analyze the impact of class sampling. We observe
that full instance classification clearly outperforms sampled
instance classification by a margin of 1.8%, verifying the
benefits of exploring the complete set of negative instances.

Ablation: A Contrastive Prior v.s. Random Initialization
Table 4 compares the linear evaluation performance of our
method using Gaussian random and a contrastive prior for
classifier initialization, with training length increased from
10 to 400 epochs. We observe that a contrastive prior sig-
nificantly speeds up convergence compared to random ini-
tialization, especially in early epochs (i.e., epoch 10, 25,
and 50). Besides, the accuracy of a contrastive prior version
consistently outperforms random initialization counterpart,
showing the robustness of our initialization mechanism.

Ablation: Label Smoothing on Hardest Classes Table 5
shows the impact of label smoothing on representation learn-
ing. We vary the considered number K of hardest negative
classes, and the smoothing factor α. A no smoothing base-
line where K = 0 and α = 0 is also included for com-
parison. We observe that smoothing labels of a few hardest
classes improves linear evaluation performance over non-
smoothing baseline in most hyper-parameter settings. The
best accuracy can be obtained with K = 100 and α = 0.2,
where a 0.6% gain of top-1 accuracy can be achieved.
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Method AP AP50 AP75
Supervised 53.5 81.3 58.8
MoCo (He et al. 2020) 55.9 81.5 62.6
MoCoV2 (Chen et al. 2020c) 57.4 82.5 64.0
PIC (Cao et al. 2020) 57.1 82.4 63.4
Ours 57.2 82.2 64.0

Table 8: Comparison of transferring performance on PAS-
CAL VOC object detection.

Method Top-1 Top-5
Scratch 65.4 85.5
Supervised 66.0 85.6
MoCo (He et al. 2020) 65.7 85.7
PIC (Cao et al. 2020) 66.2 85.7
Ours 66.2 86.2

Table 9: Comparison of transferring performance on iNatu-
ralist fine-grained classification.

Comparison with Previous Results
ImageNet Linear Evaluation Table 6 compares our work
with previous unsupervised visual representation learning
methods under the ImageNet linear evaluation protocol.
We follow recent practices (Chen et al. 2020a,c) to train a
longer length, i.e., 1000 epochs. The proposed unsupervised
learning framework achieves a top-1 accuracy of 71.4% on
ImageNet-1K, outperforming SimCLR (+2.1%), PIC (0.6%)
and MoCoV2 (+0.3%). The results verify that a simple full
instance classification framework can learn very competitive
visual representations. The performance gains can partly be
attributed to the ability of large-scale full negative instance
exploration, which is not supported by previous unsuper-
vised frameworks (Chen et al. 2020a,c; Cao et al. 2020).

Semi-supervised Learning Following (Kolesnikov, Zhai,
and Beyer 2019), we sample a 1% or 10% fraction of labeled
data from ImageNet, and train a classifier starting from our
pretrained model to evaluate the semi-supervised learning
performance. For 1% labels, we train the backbone with a lr
of 0.001 and the classifier with a lr of 15. For 10% labels,
the lrs for the backbone and the classifier are set to 0.001 and
10, respectively (Li et al. 2020). Table 7 compares our work
with both representation learning based and label propaga-
tion based methods. We obtain performance comparable to
SimCLRv2, which uses three steps training (pretrain, fine-
tune, and distill) and momentum contrast, which are not used
in our method. The results suggest the strong discriminative
ability of our learned representation.

Transfer Learning To further evaluate the learned repre-
sentation, we apply the pretrained model to several down-
stream visual tasks (including detection, fine-grained classi-
fication, and many others) to evaluate the transferring per-
formance.

PASCAL VOC Object Detection: Following (He et al.
2020), we use Faster-RCNN (Ren et al. 2015) with ResNet-
50 backbone as the object detector. We initialize ResNet-
50 with our pretrained weights, and finetune all layers

Method CIFAR10 CIFAR100 SUN397 DTD
Scratch 95.9 80.2 53.6 64.8
Supervised 97.5 86.4 64.3 74.6
SimCLR 97.7 85.9 63.5 73.2
Ours 97.8 86.2 64.2 77.6

Table 10: Transferring performance of different pretrained
models on more downstream visual tasks.

end-to-end on the trainval07+12 set of the PASCAL VOC
dataset (Everingham et al. 2010). We adopt the same experi-
ment settings as MoCoV2 (Chen et al. 2020c). The AP (Av-
erage Precision), AP50, and AP75 scores on the test2007 set
are used as indicators. Table 8 shows the results. Our trans-
ferring performance is significantly better than supervised
pretraining counterpart (+3.7% in AP), and is competitive
with state-of-the-art unsupervised learning methods.

iNaturalist fine-grained classification: We finetune the
pretrained model end-to-end on the train set of iNaturalist
2018 dataset (Van Horn et al. 2018) and evaluate the top-1
and top-5 classification accuracies on the val set. Results are
shown in Table 9. Our method is closely competitive with
the ImageNet supervised pretraining counterpart as well as
previous state-of-the-art unsupervised methods. The results
indicate the discriminative ability of our pretrained represen-
tation in fine-grained classification.

More downstream tasks: Table 10 shows transferring re-
sults on more downstream tasks, including image classi-
fication on CIFAR10, CIFAR100 (Krizhevsky and Hinton
2009), SUN397 (Xiao et al. 2010), and DTD (Cimpoi et al.
2014). To summarize, our method performs competitively
with ImageNet supervised pretraining as well as state-of-
the-art unsupervised pretraining.

Conclusion
In this work, we present an unsupervised visual represen-
tation learning framework where the pretext task is to dis-
tinguish all instances in a dataset with a parametric classi-
fier. The task is similar to supervised semantic classifica-
tion, but with a much larger number of classes (equal to
the dataset size) and finer granularity. We first introduce a
hybrid parallel training framework to make large-scale in-
stance classification feasible, which significantly reduces the
GPU memory overhead and speeds up training in our ex-
periments. Second, we propose to improve the convergence
by introducing a contrastive prior to the instance classifier.
This is achieved by initializing the classification weights as
raw instance features extracted by a fixed random network
with running BNs. We show in our experiments that this
simple strategy clearly speeds up convergence and improves
the transferring performance. Finally, to reduce the impact
of noisy negative instance pairs, we propose to smooth the
labels of a few hardest classes. Extensive experiments on
ImageNet classification, semi-supervised classification, and
many downstream tasks show that our simple unsupervised
representation learning method performs comparable or su-
perior than state-of-the-art unsupervised methods.
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