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Abstract

Many widely-used causal discovery methods such as Greedy
Equivalent Search (GES), although with asymptotic correct-
ness guarantees, have been reported to produce sub-optimal
solutions on finite data, or when the causal faithfulness condi-
tion is violated. The constraint-based procedure with Boolean
satisfiability (SAT) solver, and the recently proposed Sparsest
Permutation (SP) algorithm have shown superb performance,
but currently they do not scale well. In this work, we demon-
strate that optimal score-based exhaustive search is remark-
ably useful for causal discovery: it requires weaker conditions
to guarantee asymptotic correctness, and outperforms well-
known methods including PC, GES, GSP, and NOTEARS. In
order to achieve scalability, we also develop an approxima-
tion algorithm for larger systems based on the A* method,
which scales up to 60+ variables and obtains better results
than existing greedy algorithms such as GES, MMHC, and
GSP. Our results illustrate the risk of assuming the faithful-
ness assumption, the advantages of exhaustive search meth-
ods, and the limitations of greedy search methods, and shed
light on the computational challenges and techniques in scal-
ing up to larger networks and handling unfaithful data.

Introduction
The goal of causal discovery is to find the underlying causal
relations among different variables by analyzing observed
data. Causal discovery has been an important research area
in artificial intelligence, because interventions or controlled
experiments are often impossible or unethical or simply too
expensive. In many cases, a directed acyclic graph (DAG) is
used to represent the underlying causal structure. Constraint-
based methods for causal discovery(Spirtes, Glymour, and
Scheines 2000), which make use of conditional indepen-
dence relations among the variables, can recover a Markov
equivalent class (MEC) of DAGs from the observed data.

The PC algorithm (Spirtes, Glymour, and Scheines 1993)
and FCI (Spirtes, Glymour, and Scheines 2000) are tra-
ditional causal discovery algorithms, and their results are
asymptotically correct under the causal Markov condition
and the causal faithfulness assumption. The condition and
the assumption, put together, imply that two variables are
directly causally related if and only if they are not condi-
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tionally independent given any subset of the remaining vari-
ables. PC starts with a complete graph where an undirected
edge exists between each pair of variables. Then it removes
an edge X −Y where X ⊥ Y |S for some S ⊆ V \ {X,Y },
and keeps removing the edges until no such edge exists. PC
assumes causal sufficiency, that is, there are no unobserved
common causal variables (known as latent confounders).
FCI also makes use of conditional independence relations
to recover causal information and can handle latent con-
founders.

GES (Chickering 2002) is a greedy two-phase search al-
gorithm in the space of MECs that optimizes a model fit-
ting score, such as Bayesian Information Criterion (BIC)
(Schwarz 1978). It first starts with a graph with no edge,
and keeps adding one edge at a time if it improves score the
most, until no edge can be added to further improve score.
Then it checks all edges to eliminate some if removal further
improves score.

Recently, the SAT-based method (SAT) has gained much
attention for its superb performance in causal discovery
(Hyttinen et al. 2013; Hyttinen, Eberhardt, and Järvisalo
2014). It treats causal discovery as a constraint optimiza-
tion problem, encodes conditional independence and depen-
dence as Boolean variables and formula, and tackles causal
discovery with the Boolean satisfiablity solver. In fact, this
constraint optimization can also be seen as a score-based
method, where the score is a particular combination of all
the constraints to be satisfied. This way, SAT is a special
case of score-based exhaustive search. It works very well on
small-scale problems (less than 8 variables).

The sparsest permutation (SP) method tries to solve the
same constraint optimization problem by enumerating all
permutations of variables (Raskutti and Uhler 2018). It con-
siders each permutation as a topological causal ordering
where one variable can only use as parents the variables pro-
ceeding it in the ordering, not any variables that follow it. SP
finds the DAG satisfying the largest number of conditional
independence (CI) relations allowed by each ordering. The
DAG with the least number of edges is the optimal solution.
SP is also a special case of score-based exhaustive search
with the number of edges as score, given that the structure
explains data well. Greedy SP (GSP) is a greedy version of
SP.

NOTEARS (Zheng et al. 2018) formulates structure learn-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8741



ing as a purely continuous optimization problem over real
matrices that avoids the combinatorial constraints, achieved
by a smooth characterization of acyclicity, and impressively
implemented in 60 lines of Python code .

In contrast, there exist a set of methods for Bayesian net-
work learning, aiming at finding the best Bayesian network
from the given data. A* is an efficient score-based exhaus-
tive search algorithm that finds the optimal topological or-
dering by following the shortest path in the order graph
(Yuan, Malone, and Wu 2013), instead of the permutation
space as in the SP algorithm. Each node in the order graph
is a subset of variables. A* uses heuristic to prune some
branches in the order graph to cut down computation.

We note that the DAGs learned by Bayesian network
learning methods mentioned above do not necessarily have a
causal interpretation. For instance, suppose that we are given
enough data for two variables which are jointly Gaussian.
Such methods will output a directed edge between them,
while the direction may be arbitrary. In this case we can-
not distinguish different causal structures in the same equiv-
alence class, which share the same (conditional) indepen-
dence relationships. Generally speaking, this set of methods
outputs an arbitrary DAG in this MEC, which, nevertheless,
give a compact representation of the joint distribution. In
order for the output to have a causal interpretation, one may
apply some procedures to generate the MEC from the output
DAG (Meek 1995), as an additional post-processing step.

In this work, we present examples and corresponding
analyses to show the potential risk of using commonly used
causal discovery methods, such as PC and GES, for causal
discovery, because of the rather strong assumptions they re-
quire. We further emphasize the necessity of optimal ex-
haustive search method for the benefit of avoiding local so-
lutions on finite data; furthermore, adopting A* as the search
method, we show that exhaustive search requires milder
assumptions on data to guarantee its asymptotic correct-
ness. Lastly, we extend A* and develop our approximation
method (called Triplet A*) for better scalability. This Triplet
method is rather general and can be used to scale up other
exhaustive search methods as well. Experiments show that
our method is better than baseline methods and can handle
linear Gaussian and non-Gaussian networks.

Limitations of Existing Methods
The Causal Markov condition (CMC) and Causal Faithful-
ness condition (CFC) are the two major assumptions un-
derlying many causal discovery methods (Spirtes, Glymour,
and Scheines 2000).

Definition 0.1. Causal Markov Condition (CMC): Given a
DAG G over variable set V and probability distribution P
over V , G and P satisfy the Causal Markov Condition if and
only if any variable X ∈ V is probabilistically independent
of V \ {descendants(X) ∪ parents(X)} given parents(X).

Definition 0.2. Causal Faithfulness Condition (CFC): Given
a DAG G over variable set V and probability distribution P
over V , G is faithful to P if and only if every conditional
independence relation true in P is entailed by the Causal
Markov Condition applied to G.

a) True DAG b) PC result

c) GSP result d) GES result

Figure 1: An unfaithful DAG where CFC fails, X ⊥ Z. Re-
sults of different algorithms are in b), c), d). The numbers
on edges in a) are linear coefficients, not correlations. Data
sample size 5000.

A complete DAG where each variable is connected with
all other variables automatically satisfies CMC for all prob-
ability distributions, because it implies no CI relation at all,
hence no useful information for causal discovery. On the
other hand, CFC mandates that all the CIs in the distribu-
tion P should be entailed by the true DAG. The DAGs that
satisfy both CMC and CFC are the optimal DAGs.

While CMC is widely accepted, CFC has been debated
and found sufficient but too restrictive. It is not unusual to
see violations or near-violations of CFC, as we will discuss
next.

When CFC Fails
To illustrate the failure of some algorithms when CFC is vi-
olated, we use the following structural equation model:

X = BX + e (1)
where X is the vector of observed random variables, e is the
vector of residual errors, and B is the causal coefficient ma-
trix. X and e are assumed to follow Gaussian distribution.

Our first example is shown in Figure 1 where structure a)
is the true DAG used to generate data. The coefficients of
matrix B are labeled on corresponding edges. Data contains
an additional CI X ⊥ Z despite the causal edge X → Z in
the true DAG. The results by PC and GSP miss edgeX−Z.
A*, SP, SAT, and Triplet A* all produce the correct original
MEC. GES returns a different MEC with the same number
of edges as the true graph but a slightly worse BIC score
-10801 vs the optimal -10806. The score difference is far
greater than the double precision numeric error 10−15, there-
fore, the GES result is unambiguously sub-optimal.

The second example is shown in Figure 2 where structure
a) is the true DAG. There is an additional CI X ⊥ Y |Z
despite the causal edgeX → Y . PC and GES both miss edge
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a) True DAG b) PC result

c) A*, SAT, SP, GSP d) GES result

Figure 2: An unfaithful DAG where CFC fails, X ⊥ Y |Z.
Results of different algorithms are in b), c), d). The numbers
on edges in a) are linear coefficients, not correlations. Data
sample size 5000.

X − Y . GES also adds spurious edges X − V and Y − Z.
A*, Triplet A*, SAT, SP, and GSP all recover the true MEC.
As shown in the two examples, PC, GES and GSP do not
guarantee optimal solution when CFC fails. The exhaustive
methods, SAT, SP, and A*, on the other hand, find optimal
MECs in both cases.

Finite Size Effect
In addition to CFC failures, greedy methods like GES can
get trapped in local optima, even when the data set size is
large. To see this, we generated 30 random linear Gaussian
networks, 20 variables each network, and 4 neighbors per
variable on average. Then we run A* and GES on n data
points generated by the causal model, where n = 50, 100,
200, 500, 1k, 2k, 5k, 10k, 20k, 50k, 100k, 200k. The perfor-
mance metrics, precision, recall, and F1 score are averaged
over 30 networks for each sample size n.

The result is shown in Figure 3. The left three figures are
plotted on log scale on x-axis so that we can see all the sam-
ple sizes better. We calculated standard deviations for all
metrics, but can only show the more informative error bar
plots (GES precision, PC recall, and A* F1-score) on the
right hand side due to space limit (not on log scale). We run
GES and A* on λ = 0.5, 1, 2, where λ is the penalization
coefficient in the BIC score function Equation 2. The curves
are similar in shape for these λ values, so we only show
λ = 1 in the plots for better readability.

The performances of PC and A* improve as the sample
size n increases, which is expected. The F1 score by GES
increases to around 90% and oscillates in that region, does
not approach to 1 while its recall curve approaches 1. The
GES precision curve peaks around n = 200− 500, and then
surprisingly decreases and remains flat with standard devia-
tion around 20% as the sample size n increases. On the other

hand, the PC precision increases steadily when the sample
size increases, but its recall plateaus around 94% with stan-
dard deviation around 5%. The NOTEARS does very well
on precision, but its recall remains low around 67% even
at large sample sizes. Starting at sample size 1000, the PC
precision and F1 score exceed those of GES with various λ
values. A* has very high precision and recall, both approach
100% quickly when n increases, and the standard deviation
is very small, indicating that A* is clearly more reliable on
randomly generated data.

To confirm that this behavior of GES is repeatable, we
also generated different data sets under other parameter set-
ting, and still observed the same behavior. We run GES with
three phases (forward, backward, turning)(Kalisch et al.
2012) and two phases (forward, backward) (Chickering
2002) and the behavior is consistent. The plots show the re-
sult with three phases.

The high standard deviation in the GES precision and F1
score suggests that the GES precision is very low in a sig-
nificant number of data sets. This may be partially because
of violation of faithfulness on finite data. However, this does
not seem to be the only reason why GES does not work well,
in light of the observation that PC produces more accurate
results than GES on large samples, as seen from the higher
F1 score. It is possible that GES may suffer from some sys-
tematic issues in the optimization procedure on particular
types of data sets.

To analyze this phenomenon of GES not converging in
large sample size, we count the number of edges for each
learned DAGs by GES and A* per sample size (50, 100,
200, 500...) for each of the 30 graphs. We plot the learned
BIC scores for GES and A* (here we use the same score
function for both methods), and the number of edges in the
learned networks in Figure 4. The first plot shows that the
A* and GES scores are rather close. The second plot shows
that A* scores are always better than or equal to GES scores.
Here, better scores means lower scores because A* mini-
mizes the score. This verifies that GES may not be able to
produce the globally optimal scores. The third one, scattered
plot for number of edges, reveals that, the networks learned
by GES have significantly more edges than those by A* in
most cases, indicating that GES often enters some local op-
tima and obtains some very different networks that contain
more spurious edges. It is unclear why GES behaves this
way. One possible explanation is that, GES does not calcu-
late scores for all possible parent sets, so that it may often be
misled by local scores and get trapped in local optima.

Scalability Issue
We have seen that exhaustive search methods give remark-
able search results, especially when CFC does not hold. But
Bayesian learning is NP-hard (Chickering 1996), and these
exhaustive search methods do not scale well. Let N denote
the number of variables. The SP time complexity grows as
O(N !) because it enumerate all permutations. SP can han-
dle Bayesian networks up to 10 variables. The SAT space
complexity grows as O(2N(N−1)/2). SAT can handle up to
8 variables. A* is more efficient; the space complexity grows
O(N2N−1) for scores and time O(2N ). A* can scale up to
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Figure 3: Finite Size Effect, average over 30 random DAGs,
20 variables each DAG, 4 neighbors per variable on average.
λ = 1 in BIC for A*. GES was run with λ = 0.5, 1, 2, only
λ = 1 shown.

Figure 4: Score and edge comparison, the same 30 random
DAGs as in Figure 3, 20 variables each DAG, 4 neighbors
per variable on average. λ = 1 in BIC for A* and GES .
Sample size n = 10, 000.

30 variables for any networks or more variables with sparser
networks. So it is very desirable to scale up these methods
to handle larger systems.

Weaker Condition for Exhaustive Search
As shown in Figures 1 and 2, exhaustive search methods
such as A*, SAT, and SP, outperform PC, GES and GSP,
when CFC fails. These exhaustive search algorithms guar-
antee optimal solution under the Frugality condition (Forster
et al. 2018), which is strictly weaker than CFC.
Definition 0.3. Frugality Condition: Given a probability
distribution P on V , the true DAG over V is in the set of
maximally frugal DAGs for V .

A DAG G is more frugal than DAG G′ if G has fewer edges
than G′. The maximally frugal DAGs have the least number
of edges while satisfying CMC. The Frugality condition ac-
knowledges that there might be unfaithful conflicting CIs in
the data, and it chooses the MEC that allows maximum num-
ber of CIs while ignoring the rest of CIs.

Here we will show that BIC score-based exhaustive search
guarantees optimal solution asymptotically under a similar
condition to Frugality. The BIC score (Schwarz 1978) is de-
fined as

BIC = − logL+ λk log n (2)
where L is the maximized value of the likelihood function
of the model based on the observed data, k is the number of
parameters in the model, and n is the number of observed
data points. The second term in BIC penalizes the number
of parameters k, avoiding over-fitting by favoring simpler
models. The parameter λ = 1

2 in the original definition of
BIC, but larger values are often used to adjust penalty. In
our DAG case, each directed edge corresponds to at least
one parameter. So k increases strictly monotonically with
the number of edges.

When n → ∞, BIC will select the most parsimonious
model if the true model is in the class of models under con-
sideration (Nishii 1984; Shibata 1981). BIC Score has the
following asymptotic consistency.

1. As n → ∞, the true structure G* (or any I-equivalent
structure ) minimizes the score.

2. Asymptotically, spurious edges will not contribute to like-
lihood and will be penalized.

3. Required edges will be added due to linear growth of
likelihood term compared to logarithmic growth of model
complexity.
BIC score is calculated per variable per parent set. That is,

for each variable X ∈ V , BIC(X|S) is calculated for each
S ⊂ V . Then the BIC scores of all variables are summed up
in a DAG. The goal is to find the DAG that minimizes the
total BIC score.

In order to discuss the condition under which BIC score-
based exhaustive search guarantees optimal solution asymp-
totically, we introduce the following definition.
Definition 0.4. Optimal BIC Condition (OBC): Given a
probability distribution P on V , the true DAG G∗ over
V satisfies the Optimal BIC Condition if for every DAG
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G that is Markov relative to P and G 6∈ MEC(G∗) then
BIC(G) > BIC(G∗).

We will follow similar arguments in (Raskutti and Uhler
2018) to show that BIC score-based exhaustive search algo-
rithms only require OBC.

Theorem 0.1. BIC score-based exhaustive search algo-
rithms find the MEC of the true DAG if and only if the true
DAG satisfies the Optimal BIC Condition.

Proof. If the true DAG G∗ satisfies the Optimal BIC Con-
dition and the DAG returned by exhaustive search GES 6∈
MEC(G∗) then BIC(GES) > BIC(G∗), contradicting min-
imizing BIC score by exhaustive search. Hence, we must
have GES ∈ MEC(G∗).

Suppose the true DAG does not satisfy the Optimal BIC
Condition, there must exist G that is Markov relative to P
, G 6∈ MEC(G∗) and BIC(G) ≤ BIC(G∗). If BIC(G) =
BIC(G∗), then exhaustive search will return an arbitrary one
or both of them. If BIC(G) < BIC(G∗) then exhaustive
search will return G. In both cases, G 6∈ MEC(G∗).

Remark. With the BIC asymptotic consistency on spurious
edges and required edges, at large sample sizes, the learned
graph GES with the optimal BIC has all the required edges
and no spurious edges, therefore, GES shares the same skele-
ton as G∗, E(GES) = E(G∗). Since both GES and G∗ have
the likelihood, it is very tempting to claim that the two DAGs
must share the same v-structures, hence belong to the same
Markov equivalent class, and we can drop the requirement of
Optimal BIC Condition in Theorem 0.1. How can two DAGs
with the same skeleton but different v-structures (hence dif-
ferent set of CIs) have the same likelihood ? Theoretically
we cannot rule out the case, or need more in-depth proof to
show that the probability of multiple Markov in-equivalent
DAGs at optimal BIC score approaches zero asymptotically.
That is why we require MEC(G∗) is the only Markov equiv-
alent class that gives the optimal BIC score. This is not an
overly restrictive requirement by any means. Similar to the
Frugality, OBC is strictly weaker than CFC (See Figures 1
and 2).

In the unthinkable case where there are multiple Markov
in-equivalent DAGs with the same skeleton at the optimal
BIC score, they should all be considered true DAGs because
they all have the same likelihood. Exhaustive search algo-
rithms cannot distinguish these Markov in-equivalent DAGs
based on BIC score.

In Figure 1, the true DAG 1a) entails X ⊥ V |Y and Y ⊥
Z|{X,V }, while the GES DAG 1d) entails X ⊥ Z and
Y ⊥ Z|{X,V }. They both satisfy CMC because the data
contains all three CIs. They are both maximally frugal with
4 edges. But they do not have the same BIC score. So the
BIC score-based exhaustive search is able to select the true
MEC.

Challenges in Scaling up Exhaustive Search
There have been enormous amount of effort to scale up the
exact exhaustive search algorithms to handle larger networks

by divide-and-conquer (Kojima et al. 2010; Friedman, Nach-
man, and Peér 1999). However, no attempt has been success-
ful or practical. Friedman, Nachman, and Peér (1999) pro-
posed a divide-and-conquer approach to a digraph ( directed
graph, not a regular un-directed skeleton ) with a small sub-
set of variables that partitions the digraph into two clusters,
called sepset. Their scheme also requires that all the poten-
tial parents of the variables in a sepset must be on the same
side of the partition. It is quite restricted to require a skeleton
to be fully directed as input to Bayesian learning problem.
In most cases, data are collected without knowing the full
causal relations among them, hence, no directions. Even if
the input is a directed graph, a partition has to be carefully
chosen so that, for each boundary variable, all its parents are
in one cluster. But such an ideal partition might not exist.

The intrinsic difficulty of the divide-and-conquer ap-
proach is that, there are always boundary variables when di-
viding a strongly connected graph, and there is simply no
way to put all potential parent variables on one side of a par-
tition for each boundary variable. Therefore, when applying
exhaustive search in one cluster, there is no guarantee that
the optimal parents can be found for boundary variables. As
a consequence, not all edges in the search result for a partial
cluster can be trusted.

Algorithm: Scaling up A*
To overcome the difficulty in scaling up exhaustive search,
we propose an approximation method based on exhaustive
search method A*. By CMC, we assume that in a clus-
ter containing variables X,Y, Z, and all their parents and
children, the exhaustive search methods can find the opti-
mal edges among X,Y, Z, equivalent to those in the glob-
ally optimal DAG. We can run exhaustive search algorithms
on smaller clusters locally to discover the causal networks
around each variable, combine the results, and resolve con-
flict if any. The combined result, however, is not exact, be-
cause of potential conflicts among the DAG’s of all clusters.

The most natural choice of cluster for scaling up is
the Markov Blanket (MB). The MB for a variable i in-
cludes its parents Pa(i), children and spouses (other par-
ents of children). We can obtain a MB through some
methods such as the PC-algorithm (Spirtes, Glymour,
and Scheines 1993), Max-Min Markov Blanket algorithm
(MMMB)(Tsamardinos, Aliferis, and Statnikov 2003). We
can run A* on each Markov blanket and combine the results.
However, this single MB method has several drawbacks. The
first drawback is that it may produce spurious V-structures
when missing spouses. IfX → Y in the true DAG, but other
parents of Y are missing in the MB, then the edgeX−Y can
take any direction, because Score(X|Y ) = Score(Y |X).
The second drawback is the big size of MB when a vari-
able has many children, because all spouses are included.
This happens in denser networks.

Triplet Method
To avoid the drawbacks of the single Markov blanket
method, we propose a new approach by combining neigh-
bors around each tripleX−Y −Z. Here is a brief description
of the algorithm.
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First, obtain initial guess of parents and children for each
variable. Second, for each variableX and each pair of neigh-
bors (Y,Z) of X , form a cluster consisting of X,Y, Z and
their direct neighbors, and run exhaustive search on each
cluster. Third, combine the results from all clusters.

Because only X,Y, Z have all their parents present in the
triplet cluster, we can only trust the edges among these three
variables. If there is a V-structure, record the directed edges.
Otherwise, record the undirected edges. If an edge is already
undirected, and later it joins a V-structure, then it becomes
directed consistent with the V-structure. If an edge is already
directed by some V-structure, then it will not become undi-
rected any more. This is not a perfect approach to resolve
conflicts among clusters, as some edge orientation might de-
pend on order of traversal. But it is simple and effective, and
works pretty well in our experiments. More sophisticated ap-
proaches can also be devised with more book keeping.

While examining the triple X−Y −Z, exhaustive search
might choose the optimal network by adding edge X − Z,
directed or undirected, if X ⊥ Z|Y is an unfaithful CI from
the data and edge X − Z improves score. This is how it can
handle some missing edges caused by a common type of
unfaithfulness. This addresses the first drawback of single
MB approach.

The triplet clusters are usually smaller than the biggest
MB in a dense network. For example, when each variable
has 5 neighbors, for tripleX−Y −Z, the triplet cluster size
is 4 (neighbors of X) + 3 (neighbors of Y ) + 4 (neighbors
of Z) + 3 (X,Y, Z) = 14. The largest single MB (including
the variable itself) for Y , assuming 5 children, can contain
5*4 (spouses) + 5 (children) + 1 (Y itself) = 26 variables.
It will take much longer (over 226−14 = 4096 times) to run
exhaustive search on a cluster of 26 variables than that of 14
variables. This partially addresses the second drawback of
single MB approach.

Suppose a variable hasm neighbors at most, then we need
run A* routine at most m(m− 1)/2 times for each variable,
and the total number of A* runs is at most Nm(m − 1)/2
for a system of N variables. The total running time upper
bound is O(Nm223m). As long as m is reasonably small,
for example, m ≤ 7, which is much larger than the tree
width used in many large networks (usually m = 2), the
running time is proportional to N .

Simulations and Experiments
For comparison with other methods on handling unfaithful
networks, we run Triplet A* on the unfaithful network in
Figure 1 and Figure 2. Triplet A* finds the correct MEC.

To compare the performances of GES, SAT, GSP, MMHC
(Tsamardinos, Brown, and Aliferis 2006), A*, and Triplet
A*, we use the R package by (Hyttinen, Eberhardt, and
Järvisalo 2014) to generate random DAGs. First, we start
with seven variables, due to the restriction of SAT. We use
the ‘ges’ and ‘pc’ functions in the R package pcalg, the
’mmhc.skel’ function in R package MXM, and the ’gsp’
function in the Python package causaldag (Solus et al. 2020).

Figure 5 shows the performance plots vs edge density. F1,
the harmonic mean of precision and recall, is a better mea-

Figure 5: SAT, GES, GSP, SP, A*, and Triplet A* perfor-
mance on 7-variable networks. Each plot is averaged over
50 random DAGs, 500 data points each DAG

sure than precision and recall alone. The SAT method per-
forms very well, but A* and Triplet A* can match SAT on
the balanced F1 plot. GES also performs as well as SAT on
sparse networks, but under-performs on denser networks.

After demonstrating its good performance on small net-
works, we also apply GES, GSP, PC, LiNGAM (Shimizu
et al. 2006), and Triplet A* on larger networks with 60
variables, with various edge densities, shown in Figure 6.
Triplet A* performs as well as GES on sparse networks, and
slightly outperforms GES on denser networks. We then use
the squared Gaussian distribution for the noise distribution
in the BIC score, with the search results given in Figure 7.
One can see that the BIC score is rather robust to Gaussian
and non-Gaussian noises, as there is no clear performance
difference between Figure 6 with Gaussian noise and Figure
7 with squared Gaussian noise.

The GES precision also decreases with edge density, but
the Triplet A* precision is relatively stable. The Triplet A*
orientation recall is lower than GES, partially because edges
are oriented only by V-structures.

Since we use the MMMB skeleton before running A*, the
quality of the skeleton is important. The simulation result
shows that when the skeleton does not miss any edge, the
Triplet A* precision and recall are much higher than GES.
When there is some unfaithful edge missed in the MMMB
skeleton, the Triplet performance can be affected, but it can
recover some missing edges.

Note that each method has some parameter to tune. For
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Figure 6: 60-variable networks, Gaussian noise. Each graph
is averaged over 50 random DAGs, 500 data points each
DAG.

Figure 7: 60-variable networks. Gaussian noise squared, but
sign unchanged. Each graph is averaged over 50 random
DAGs, 500 data points each DAG.

GES and A*, the λ in BIC score affects the performance at
small sample sizes. For large sample sizes, we find that λ
has no clear impact on the learned structures. In our experi-
ments, we use λ = 0.5, 1, 2. For PC, SAT, and SP, the α in
CI test is important for performance, and it varies dramat-
ically for different methods. We find α = 0.0001 optimal
for GSP on networks of 60 variables at sample size 500. For
SAT and SP, we use α ∈ [0.2, 0.4] to get optimal perfor-
mance. For PC, we try α = 0.01, 0.05, 0.1, and α = 0.05
gives the highest F1 score. It seems that different methods
require different optimal α for CI test.

Conclusion
For small networks, exhaustive methods such as A*, SAT,
and SP outperform PC, GES, GSP, and NOTEARS. A*
scales better than SAT and SP. Greedy methods such as
GES and GSP suffer from local optima. For larger networks,
Triplet A* performs at least as well as GES, and outperforms
GES in denser networks.

These findings are worth emphasizing. First, in practice
it might be risky to assume faithfulness. Second, score-
based methods, especially when equipped with an opti-
mal search procedure, demonstrate certain advantages, com-
pared to constraint-based methods, as they are less suscep-
tible to data unfaithfulness than conditional independence
test. Third, greedy methods may frequently give sub-optimal
results on finite data. Fourth, the proposed triplet method
works well in practice. For future work, we will investigate
the precision-saturation phenomenon of GES, discussed in
Section 2, and accordingly develop its improved version.
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