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1IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
2University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

3Rensselaer Polytechnic Institute, Troy, New York 12144, USA
songtao@ibm.com, kzhang66@illinois.edu, chent18@rpi.edu, basar1@illinois.edu, lhoresh@us.ibm.com

Abstract

This paper deals with distributed reinforcement learning prob-
lems with safety constraints. In particular, we consider that a
team of agents cooperate in a shared environment, where each
agent has its individual reward function and safety constraints
that involve all agents’ joint actions. As such, the agents aim
to maximize the team-average long-term return, subject to all
the safety constraints. More intriguingly, no central controller
is assumed to coordinate the agents, and both the rewards
and constraints are only known to each agent locally/privately.
Instead, the agents are connected by a peer-to-peer communi-
cation network to share information with their neighbors. In
this work, we first formulate this problem as a distributed con-
strained Markov decision process (D-CMDP) with networked
agents. Then, we propose a decentralized policy gradient (PG)
method, Safe Dec-PG, to perform policy optimization based
on this D-CMDP model over a network. Convergence guaran-
tees, together with numerical results, showcase the superiority
of the proposed algorithm. To the best of our knowledge, this
is the first decentralized PG algorithm that accounts for the
coupled safety constraints with a quantifiable convergence rate
in multi-agent reinforcement learning. Finally, we emphasize
that our algorithm is also novel in solving a class of decen-
tralized stochastic nonconvex-concave minimax optimization
problems, where both the algorithm design and corresponding
theoretical analysis are of independent interest.

Introduction
Reinforcement learning (RL) has achieved tremendous suc-
cess in many sequential decision-making problems in (Mnih
et al. 2015; Sutton and Barto 2018), such as operations re-
search, optimal control, bounded rationality, machine learn-
ing, etc., where an agent explores the interactions with an
environment so that it is able to maximize a cumulative re-
ward through this learning process. Beyond applying the clas-
sical RL techniques in control systems, physical constraints
or safety considerations will also be the key components of
determining the performance of an RL system. Especially,
this is more important in multi-agent RL (MARL) that mod-
els the sequential decision-making of multiple agents in a
shared environment, while each agent’s objective and the
system evolution are both affected by the decisions made by
all agents (Nguyen et al. 2014).
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Background of Multi-Agent RL
The studies of MARL can be traced back to Q-learning
in (Claus and Boutilier 1998) and (Wolpert, Wheeler, and
Tumer 1999), with applications to network routing (Boyan
and Littman 1994) and power network control (Schneider
et al. 1999). However, all the algorithms involved in these
works are heuristic without performance guarantees. Recent
empirical results of deep multi-agent collaborative RL algo-
rithms can also be found in (Gupta, Egorov, and Kochenderfer
2017; Lowe et al. 2017; Omidshafiei et al. 2017). One of the
earliest distributed RL algorithm with convergence guaran-
tees was reported in (Lauer and Riedmiller 2000), which is
tailored to the tabular multi-agent Markov decision process
(MDP) setting, and another one (Nguyen et al. 2014). Then,
a distributed Q-learning algorithm was developed with being
provably able to learn the desired value function and the opti-
mal stationary control policy at each network agent through
a consensus network, where each agent can only communi-
cate with their neighbors (Kar, Moura, and Poor 2013). In
the same setup, fully decentralized actor-critic algorithms
with function approximation were developed in (Zhang et al.
2018) to handle large or even continuous state-action spaces.
However, the convergence in (Zhang et al. 2018) was again
established in an asymptotic sense. For a fixed policy, decen-
tralized policy evaluation (value function approximations)
approaches for MARL have been studied in (Wai et al. 2018;
Doan, Maguluri, and Romberg 2019; Qu et al. 2019). (Please
see also the recent surveys (Zhang, Yang, and Başar 2019;
Lee et al. 2020) and references therein.)

Related Work
Decentralized and distributed algorithms with quantifiable
convergence rate guarantees in the optimization community
have been developed for many decades (Nedic, Ozdaglar,
and Parrilo 2010) in various scenarios, including (strongly)
convex and non-convex cases. Recent advances in distributed
non-convex optimization show that decentralized stochastic
gradient descent or tracking (DSGD/DSGT) is able to train
neural networks much faster than the centralized algorithms
in terms of running time numerically (Lian et al. 2017; Lu
et al. 2019). Also, it has been indicated in theory that there is
a linear speed-up of performing decentralized optimization
compared with the centralized one in terms of the number of
nodes (Lian et al. 2017; Tang et al. 2018; Lu and Wu 2020).
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Algorithm Rate Decentralized Implementation

PGSMD (Rafique et al. 2018) O
(
ε−6

)
7 double-loop

GDA (Lin, Jin, and Jordan 2020) O
(
ε−8

)
7 single-loop

Safe Dec-PG (this work) O
(
ε−4

)
3 single-loop

Table 1: A comparison of stochastic non-convex concave minmax algorithms with convergence to the first-order game-stationary
points (FOSPs).

Moreover, in practice, the data would be collected through
the sensors over a network, so the distributed learning be-
comes one of the most powerful signal, data, and information
processing tools. (Please see a survey (Chang et al. 2020) of
recent distributed non-convex optimization algorithms and
their applications.) However, the safe RL problem is not on-
ly maximizing rewards but also takes practical issues into
account or introduces some prior knowledge of the mod-
el in advance, where there would be multiple cumulative
long-term reward functions incorporated as the constraints
(Paternain et al. 2019a; Wachi and Sui 2020). Unfortunately,
none of the existing works deal with the safety constraints
that are also non-convex, no need to mention their distributed
implementation over a network.

By the primal-dual optimization framework, the safe RL
problem can be formulated as a min-max saddle point form
by the method of Lagrange multipliers or dualizing the con-
straints (Boyd and Vandenberghe 2004). However, different
from the classical supervised learning, e.g., support vector
machine and least squares regression, the policy in RL is
mostly parametrized by a (deep) neural network so that the
cumulative reward functions are non-convex. Hence, the du-
ality gap in this case is not zero in general, which makes the
optimization process much more difficult than the traditional
convex-concave min-max problem even in the centralized
setting. Interestingly, some recent exciting results illustrate
that the duality gap in safe RL problems could be zero (Pa-
ternain et al. 2019b) by assuming some oracle that can find
the global optimal solution of the Lagrangian with respect to
policy. It is inspiring that safe RL might be solved efficiently
to high-quality solutions by the non-convex min-max solvers.

During the last few years, solving non-convex min-max
saddle-point problems has gained huge popularity and indicat-
ed significant power of optimizing the interest of parameters
in many machine learning and/or artificial intelligence prob-
lems, including adversarial learning, robust neural nets or
generative adversarial nets (GANs) training, fair resource
allocation (Razaviyayn et al. 2020). The main idea of de-
signing these algorithms is to perform gradient descent and
ascent with respect to the objective functions, such as gra-
dient descent ascent (GDA) algorithm (Lin, Jin, and Jordan
2020), multi-GDA (Nouiehed et al. 2019), proximally guided
stochastic mirror descent method (PGSMD) (Rafique et al.
2018), and hybrid block successive approximation (HiBSA)
(Lu et al. 2020). The difference between GDA and multi-
GDA is that the latter performs multiple steps of gradient as-
cent updates instead of one. Among these algorithms, HiBSA
achieves the fastest convergence rate with only a single loop
update rule to optimization variables for the deterministic

non-convex case. However, there is no theoretical guaran-
tee that HiBSA is amenable to handle the stochasticity of
the samples in the non-convex (strongly) concave min-max
problems. Further, all these algorithms are centralized, so
it is not clear whether they can be used for a multi-agent
system. Recently, there are some interesting works regard-
ing the distributed training for a class of GANs (Liu et al.
2020a,b), where the problem is formulated as a decentralized
non-convex saddle-point problem. But both of them require
that the objective function satisfy the Minty variational in-
equality (MVI), otherwise, these methods cannot converge
to an ε-first-order stationary point (FOSP) of the considered
problem even the number of iterations is infinite. While in
RL/MARL there is no evidence which can indicate that dis-
counted cumulative reward function satisfies MVI again due
to the nonconvexity of the loss function when the policy at
each node is parametrized by a neural net.

Main Contributions
In this work, by leveraging the min-max saddle-point formu-
lation, we propose the first safe decentralized policy gradient
(PG) descent and ascent algorithm, i.e., Safe Dec-PG, which
is able to deal with a class of multi-agent safe RL problems
over a graph. Importantly, we provide theoretical results that
quantify the convergence rate of Safe Dec-PG to an ε-first-
order stationary points (FOSP) of the considered non-convex
min-max problem in the order of 1/ε4 (or equivalently the
optimality gap is shrinking in the order of 1/

√
N , where N

denotes the total number of iterations). When the graph is
fully connected in the sense that there is no consensus error
(each agent can know all the other agents’ policy at each
iteration), Safe Dec-PG will reduce to a centralized algorith-
m. Even in this case, the obtained convergence rate is still
the state-of-the-art result to the best of our knowledge. A
more detailed comparison between proposed Safe Dec-PG
and other existing stochastic non-convex concave min-max
algorithm in the centralized setting is shown in Table ??. The
main advantages of Safe Dec-PG are highlighted as follows:
I (Simplicity) The structure of implementing the algorithm

is single-loop, where the parameters that need to be tuned
are only the stepsizes in the minimization and maximiza-
tion subproblems.

I (Theoretical Guarantees) It is theoretically provable that
Safe Dec-PG is able to find an ε-FOSP of the formulated
non-convex min-max problem within O(1/ε4) number
of iterations, matching the standard convergence rate of
centralized stochastic gradient descent (SGD) and decen-
tralized SGD to ε-FOSPs in non-convex scenarios.

I (Applicability) Safe Dec-PG is also a general optimiza-
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tion problem solver, which can be applied for dealing
with many non-convex min-max problems rather than the
RL/MARL problems, and it could be implemented in ei-
ther a decentralized way over a network or on a single
machine.

Multiple numerical results showcase the superiority of the
algorithms applied in the problems of safe decentralized RL
compared with the classic decentralized methods without
safety considerations. Due to the page limitation, proofs of
all the lemmas, the main theorem and additional numerical
results are included in the supplemental materials.

Safe MARL with Decentralized Agents
In this section, we introduce the background and formulation
of the safe MARL problem with decentralized agents.

Multi-Agent Constrained Markov Decision Process
(M-CMDP)
Consider a team of n agents operating in a common envi-
ronment, denoted by N = [n]. No central controller exists
to either make the decisions or collect any information for
the agents. Agents are instead allowed to communicate with
each other over a communication network G = (N , E), with
E being the set of communication links that connect the a-
gents. Such a decentralized model with networked agents
finds broad applications in distributed cooperative control
problems (Fax and Murray 2004; Corke, Peterson, and Rus
2005; Dall’Anese, Zhu, and Giannakis 2013), and has been
advocated as one of the most popular paradigms in decen-
tralized MARL (Zhang et al. 2018; Wai et al. 2018; Doan,
Maguluri, and Romberg 2019; Qu et al. 2019; Zhang, Yang,
and Başar 2019; Lee et al. 2020). More importantly, each
agent has some safety constraints, in the forms of bound-
s on some long term cost, that involve the joint policy of
all agents. We formally introduce the following model of
networked multi-agent constrained MDP (M-CMDP) to char-
acterize this setting.

Definition 1 (Networked Multi-agent CMDP (M-CMDP)).
A networked multi-agent CMDP is described by a tuple
(S, {Ai}i∈N , P, {Ri}i∈N ,G, {Ci}i∈N , γ) where S is the s-
tate space shared by all the agents, Ai is the action space of
agent i, and G is a communication network (a well-connected
graph). Let A =

∏n
i=1Ai be the joint action space of al-

l agents; then, Ri : S × A → R and Ci : S × A → R
are the local rewards and cost functions of agent i, and
P : S ×A× S → [0, 1] is the state transition probability of
the MDP. γ ∈ (0, 1) denotes the discount factor. The states sss
and actions aaa are globally observable, while the rewards and
costs are observed locally/privately at each agent.

The networked M-CMDP proceeds as follows. At time
t, each agent i chooses its own action aaati given ssst, accord-
ing to its local policy πi : S → ∆(Ai), which is usually
parametrized as πwi

by some parameter wi ∈ Θi with di-
mension di. The networked agents try to learn a joint policy
πwi

: S → ∆(A) given by πθθθ(sss,aaa) =
∏
i∈N πwi

(sss,aaai)

with θθθ = [w>1 . . .w
>
n ]> ∈ Rd, where d =

∑n
i=1 di denotes

the whole problem dimension. As a team, the objective of all

agents is to collaboratively maximize the globally average
return over the network (equivalently to minimize the oppo-
site of it), dictated by R(sss,aaa) = n−1 ·

∑
i∈N Ri(sss,aaa), with

only its local observations of the rewards, subject to some
safety constraints dictated by Ci(sss,aaa). At each node, there
would be multiple safety constraints. These rewards describe
different objectives that the agent is required to achieve, such
as remaining with a region of the state space, or not running
out of memory/battery. Here, we assume that each agent is
associated with m cost functions, so Ci(sss,aaa) is a mapping
from S × A to Rm. Specifically, the team aims to find the
joint policy πθθθ that

min
θθθ∈Θ

JR0 (θθθ),E
(
− 1

n

∑
t≥0

γt
∑
i∈N

Ri(sss
t, aaat)

∣∣∣∣sss0, πθθθ

)
(1a)

s.t. JCi (θθθ),E
(∑
t≥0

γtCi(sss
t, aaat)

∣∣∣∣sss0, πθθθ

)
≥ ci, ∀i ∈ N

(1b)

where Θ =
∏N
i=1 Θi is the joint policy parameter space,

JR0 (θθθ) corresponds to the negative team-average discount-
ed long-term return, JCi (θθθ) : Rd → Rm denotes the long-
term costs of agent i, ci ∈ Rm, ∀i are the lower-bounds of
JCi (θθθ), ∀i that impose the safety constraints, and E is taken
over all randomness including the policy and the underlying
Markov chain. Each agent i only has access to its own re-
ward and cost Ri and Ci, and the desired bound ci. Note that
our ensuing results can be straightforwardly generalized to
the setting where each agent has different number of costs,
at the expense of unnecessarily complicated notations. In
general, the long-term return JR0 (θθθ) is non-convex with re-
spect to the policy parameter θθθ (Zhang et al. 2020; Liu et al.
2019; Agarwal et al. 2020), so do the constraint functions
JCi (θθθ), ∀i, which makes the problem challenging to solve
using the first-order PG methods.

Primal-Dual for Safe M-CMDP
Viewing the team as a single agent, the problem above falls
into the regime of the standard constrained MDP (Altman
1999), which has been widely studied in single-agent safe
RL. Nonetheless, in a decentralized paradigm, standard RL
algorithms for solving CMDP are not applicable, as they
require the instantaneous access to the team-average reward
and all cost functions {Ci}i∈N (Borkar 2005; Prashanth and
Ghavamzadeh 2016; Achiam et al. 2017; Yu et al. 2019;
Paternain et al. 2019b). Instead, we re-formulate the problem
as a decentralized non-convex optimization problem with
non-convex constraints, in order to develop decentralized
policy optimization algorithms. In particular, letting JRi (θθθ) ,
E(−

∑
t≥0 γ

tRi(sss
t, aaat) |sss0, πθθθ), we have the networked M-

CMDP as

min
{θθθi∈Θ}

1

n

∑
i∈N

JRi (θθθi) (2)

s.t. θθθi = θθθj j ∈ Ni, ci − JCi (θθθi) ≤ 0, ∀i ∈ N ,
where Ni ⊆ N denotes the set of the neighboring agents of
agent i over the network, and θθθi is the local copy of the policy
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parameter θθθ (i.e., the concatenation of all the agents’ parame-
ters). By the Lagrangian method (Boyd and Vandenberghe
2004), the problem (2) can be written as

min
{θθθi∈Θ}

max
λλλ≥0

L(θθθ1, . . . , θθθn,λλλ1, . . . ,λλλn) (3a)

s.t. θθθi = θθθj j ∈ Ni, ∀i, (3b)

where

L(θθθ1, . . . , θθθn,λλλ1, . . . ,λλλn) ,
1

n

∑
i∈N

JRi (θθθi)+〈gi(θθθi),λλλi〉,

(4)
gi(θθθi) , ci − JCi (θθθi), and λλλ1, . . . ,λλλn denote the dual vari-
ables.

Main Challenges of Solving Safe Decentralized RL
To this end, the multi-agent safe RL problem has been for-
mulated as (3). Unfortunately, there is no existing work that
is able to solve this problem to its FOSPs with any theoret-
ical guarantees. The main difficulties here are four-fold as
follows:
I There are two types of constraints in this problem: one is

the consensus equality constraint and the other one is the
long term cumulative reward related inequality constraint.

I The constraints and loss functions are both in an expected
discounted cumulative reward form and possibly non-
convex, while most of the classical non-convex algorithms,
e.g., neural nets training, are designed for the case where
only the loss functions are non-convex.

I The problem is stochastic in nature and the PG estimate
is biased instead of unbiased due to the finite-horizon
approximation, so we need extra efforts to quantify how
biased estimates affect the convergence results.

I From a min-max saddle-point perspective, the minimiza-
tion problem is non-convex and the maximization problem
is concave (linear), while there would be also a consensus
error coupled with both minimization and maximization
optimization variables. Disentangling this error from the
minimization and maximization processes will result in a
significant different theorem proving technique compared
with the existing theoretical works.

Therefore, solving this family of stochastic non-convex prob-
lems over a graph is much more challenging than the classical
ones, e.g., centralized min-max saddle-point problems, de-
centralized consensus problems, stochastic non-convex prob-
lems, and so on. Next, we will propose the new gradient
tracking based single loop primal dual algorithm to deal with
this M-CMDP problem.

Safe M-CMDP Algorithm
First, we introduce the safe policy gradient used in Safe Dec-
PG as the following.

Safe Policy Gradient
The search for an optimal policy can thus be performed by
applying the gradient descent-type iterative methods to the
parametrized optimization problem (3). The gradient of each

agent’s cumulative loss JRi (θθθi) in (3) can be written as (Bax-
ter and Bartlett 2001)

∇θθθiJRi (θθθi)=E

[ ∞∑
t=0

(
t∑

τ=0

∇ log πi(aaa
τ
i |sssτ ;θθθi)

)
γtRi(sss

t, aaat)

]
where {aaat, ssst} are obtained from each trajectory under the
joint policy (parametrized by {θθθi, ∀i}). When the MDP mod-
el is unknown, the stochastic estimate of PG is often used,
that is

∇̂θθθiJRi (θθθi) =
∞∑
t=0

(
t∑

τ=0

∇ log πi(aaa
τ
i |sssτ ;θθθi)

)
γtRi(sss

t, aaat),

which was proposed in (Baxter and Bartlett 2001) and called
the gradient of a partially observable MDP (abbreviated as
G(PO)MDP PG). The G(PO)MDP gradient is an unbiased
estimator of the PG (Papini et al. 2018; Xu, Gao, and Gu
2020).

Likewise, the stochastic PG estimate of each agent’s
JCi (θθθi) in (3) can be written as

∇̂θθθiJCi (θθθi) =
∞∑
t=0

(
t∑

τ=0

∇ log πi(aaa
τ
i |sssτ ;θθθi)

)
γtCi(sss

t, aaat).

Let fi(θθθi,λλλi) , JRi (θθθi)+〈ci−JCi (θθθi),λλλi〉, ∀i for notational
simplicity. Then, the policy gradients with respect to primal
variables are

∇̂θθθifi(θθθi,λλλi) = ∇̂θθθiJRi (θθθi)− 〈∇̂θθθiJCi (θθθi),λλλi〉, ∀i (5)

and the policy gradients with respect to dual variables are

∇̂λλλi
fi(θθθi,λλλi) = ci − ĴCi (θθθi), ∀i (6)

where ĴCi (θθθi) ,
∑∞
t=0 γ

tCi(sss
t, aaat|sss0, πθθθ). Note that the s-

tochastic gradients in (5) and (6) use only one trajectory of
the Markov chain, which may incur large variance. Akin
to mini-batch in SGD, a natural solution is to average over
K trajectories to obtain the policy gradient with respect to
the primal variables denoted as ∇̂Kθθθifi(θθθi,λλλi), ∀i, and with
respect to the dual variables denoted as ∇̂Kλλλi

fi(θθθi,λλλi), ∀i.
In simulations, sampling an infinite trajectory may not be
tractable, and a finite-horizon approximation of the PGs (5)
and (6) is usually used (Chen et al. 2018), which are denoted
as ∇̂T,Kθθθi

fi(θθθi,λλλi) and ∇̂T,Kλλλi
fi(θθθi,λλλi). Also, we can have

a set of globally observable states and actions denoted by
{aaaτk, sssτk}, where k denotes the index of trajectories and τ
denotes the index of time. Consequently, the stochastic esti-
mate of PG withK trajectories (samples) and a finite-horizon
truncation of length T can be expressed as

∇̂T,Kθθθi
fi(θθθi,λλλi)=∇̂T,Kθθθi

JRi (θθθi)− 〈∇̂T,Kθθθi
JCi (θθθi),λλλi〉, (7a)

∇̂T,Kλλλi
fi(θθθi,λλλi)=ci − (ĴCi )T,K(θθθi) , ĝi(θθθi) (7b)

where

∇̂T,Kθθθi
JRi (θθθi) ,

1

K

K∑
k=1

T∑
t=0

(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtRi(sss

t
k, aaa

t
k), (8)
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∇̂T,Kθθθi
JCi (θθθi) ,

1

K

K∑
k=1

T∑
t=0

(
t∑

τ=0

∇ log π(aaaτi,k|sssτk;θθθi)

)
γtCi(sss

t
k, aaa

t
k), (9)

and (ĴCi )T,K(θθθi) , K−1
∑K
k=1

∑T
t=0 γ

tCi(sss
t
k, aaa

t
k). Note

that the finite length horizontal truncation will make the s-
tochastic estimate PG become biased.

Safe Dec-PG: Safe Decentralized Policy Gradient

After getting the PG estimates, Safe Dec-PG algorithm we
proposed is given below. For notational simplicity, in the
following we assume the problem dimension is 1. We first
update the parameters of the parametrized policy at each node
by

θθθr+1
i =

∑
j∈Ni

Wijθθθ
r
j − βrϑϑϑri , (10)

where r denotes the index of the iterations, βr is the stepsize
of PG descent, ϑϑϑri is an auxiliary (tracking) variable (which
will be introduced with more details later in (11)), and Wij

is a weight matrix that characterizes the relations among the
nodes over graph G.

Next, we provide detailed descriptions about W and ϑϑϑ:
1) The weight matrix is double stochastic (i.e., the graph
is well-connected.), which is defined as follows: if there
exists a link between node i and node j, then Wij > 0,
otherwise Wij = 0, and W satisfies W1 = 1 and 1>W =
1>. There are many ways of designing the weight matrix
based on the connectivity of the graph. The standard ones
include Metropolis-Hasting weight, maximum-degree weight,
Laplacian weight (Xiao and Boyd 2004; Boyd, Diaconis, and
Xiao 2004); 2) due to the partial observability of each agent,
the variableϑϑϑri here is proposed for approximating the full PG
of the network (i.e., n−1

∑n
i=1 ∇̂θθθifi(θθθi,λλλi)), and is updated

locally as

ϑϑϑr+1
i =

∑
j∈Ni

Wijϑϑϑ
r
j

+ ∇̂T,Kθθθi
fi(θθθ

r+1
i ,λλλri )− ∇̂

T,K
θθθi

fi(θθθ
r
i ,λλλ

r
i ), ∀i (11)

with ϑϑϑ0
i , 000, ∀i. This update rule is similar to the (stochas-

tic) gradient tracking technique proposed for both classi-
cal consensus based (deterministic or stochastic) distributed
optimization problems (Di Lorenzo and Scutari 2016; Sun,
Daneshmand, and Scutari 2019). But here since we also have
dual variable updates, at each time the evaluated gradient is
also dependent on λλλri , so it is not clear whether the tracked
full PG by ϑϑϑri is still accurate enough so that the resulting
sequence can converge to the stationary points of problem
(3). In our performance analysis section, we will show the
conditions that can ensure the convergence of Safe Dec-PG
in solving problem (3).

In this work, instead of performing a vanilla dual update,
we propose to add a (quadratic) perturbation term (a.k.a.
smoothing technique) to the maximization procedure as fol-

Algorithm 1 Safe Dec-PG

Input: θθθ0
i , ϑϑϑ0

i = λλλ0
i = 000, ∀i

for r = 1, . . . do
for Each agent i do

Update θθθr+1
i by (10)

Perform rollout to get ∇̂T,Kθθθi
fi(θθθ

r
i ,λλλ

r
i )

Update ϑϑϑr+1
i by (11)

Calculate (ĴCi )T,K(θθθr+1
i )

Update λλλr+1
i by (13)

end for
end for

lows:

λλλr+1
i = arg max

λλλi≥0

〈
∇̂T,Kλλλi

fi(θθθ
r+1
i ,λλλri ),λλλi − λλλri

〉
− 1

2ρ
‖λλλi − λλλri ‖2 −

γr

2
‖λλλi‖2, ∀i (12)

where ρ > 0 is the stepsize of PG ascent in updating λλλri ,
γr (to be defined later) is a diminishing parameter. The per-
turbation term γr/2‖λλλi‖2 plays one of the most key roles
of ensuring the convergence of Safe Dec-PG. It adds some
(desired) curvature to this subproblem (12) in such a way it
is possible to quantify the maximum ascent of our construct-
ed potential function (a Lyapunov-like function that will be
used to measure the progress of the proposed algorithm) after
the update of λλλri . Then, this parameter gradually reduces the
problem curvature to resemble the original subproblem such
that the obtained solution is the FOSP of problem (3) rather a
deviated one. Note that (12) can also be easily implemented
locally by

λλλr+1
i =PΛ

(
(1− ργr)λλλri + ρ∇̂T,Kλλλi

fi(θθθ
r+1
i ,λλλri )

)
, ∀i (13)

where PΛ denotes the projection operator, and Λ = {λλλi|λλλi ≥
0}, ∀i stands for the feasible set.

It can be seen that one of the major advantages of Safe
Dec-PG is regarding its simplicity of updating rules for all the
parameters: 1) a single loop algorithm; 2) each variable can be
only updated locally through exchanging the parameters over
the communication channel. From the following convergence
analysis, we will show that when some mild conditions hold,
Safe Dec-PG is guaranteed to find the FOSPs of problem
(3) by controlling the stepsizes used in the minimization and
maximization procedures properly.

Performance Analysis of Safe Dec-PG
Before showing our theoretical results, we first give the stan-
dard assumptions as follows.

Assumptions
To begin with, we assume that fi, gi, ∀i satisfy a Lipschitz
continuous condition. To be more specific, we have
Assumption 1. Assume functions ∇fi(θθθi,λλλi), ∀i have L-
Lipschitz continuity with respect to θθθi, ∀i and functions
gi(θθθi), ∀i have L′-Lipschitz continuity with respect to θθθi, ∀i.
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Next, we assume the connectivity of the graph, which
specifies the topology of the communication channel so that
the consensus step can be performed in a decentralized way.
Assumption 2. Assume the network is well-connected (a.k.a.
strongly-connected), i.e., W is a double stochastic matrix. Al-
so

¯
λmax(W) , η < 1, where

¯
λmax(W) denotes the second

largest eigenvalue of the weight matrix W.
Assumption 3. We assume that the rewards in both ob-
jective and constraints are upper bounded by G, i.e.,
max{Ri(ssst, aaat), Ci(ssst, aaat), ∀i} ≤ G, and the true PG is up-
per bounded by G′, i.e., ‖∇ log πi(aaa

τ
i |sssτ ;θθθi)‖ ≤ G′, ∀i, τ .

The first part of Assumption 3 requires the boundedness of
the instantaneous reward, which makes sense in practice since
the physical systems commonly output finite magnitudes of
responses. The second part requires the partial derivatives
of the log function of the policies, i.e., ‖∇ log πi(aaa

τ
i |sssτ ;θθθi)‖

to be bounded, which can be satisfied by e.g., parametrized
Gaussian policies.
Assumption 4. Assume that the Slater condition is satisfied
and the size of Λ is upper bounded by σλ, i.e., Λ = {λλλi|λλλi ≥
0, ‖λλλi‖ ≤ σλ}, ∀i.

Convergence Rate
Since functions JRi and JCi , ∀i are possibly non-convex, find-
ing the global optimal solution for this min-max problem is
NP-hard in general (Nouiehed, Lee, and Razaviyayn 2018).
It is of interest to obtain the FOSPs of problem (1). First, we
define the optimality gap as

G({θθθi,λλλi, ∀i}) =

∥∥∥∥∥ 1

n

n∑
i

∇fi(θθθi,λλλi)

∥∥∥∥∥
1

n

n∑
i=1

‖λλλi − PΛ[λλλi + gi(θθθi)]‖+
1

n

n∑
i=1

‖θθθi − θ̄θθ‖, (14)

where the first and second terms of the right hand side of
(14) are the standard optimality gap of non-convex min/max
problems while the third term is the consensus violation gap
that characterizes the difference among the weights over the
network, where θθθ , n−1

∑n
i=1 θθθi.

Definition 2. If a point ({θθθ∗i ,λλλ∗i , ∀i}) satisfies
‖G({θθθ∗i ,λλλ∗i , ∀i})‖ ≤ ε, then we call this point as an
ε-approximate first-order stationary points of (3), abbreviat-
ed as ε-FOSP.

Remark 1. Note that points ({θθθ∗i ,λλλ∗i , ∀i}) satisfying con-
dition G({θθθ∗i ,λλλ∗i , ∀i}) = 0 is also known as “quasi-Nash
equilibrium” points (Pang and Scutari 2011) or “first-order
Nash equilibrium” points (Nouiehed et al. 2019).

The convergence results of Safe Dec-PG are given below.
Theorem 1. Suppose Assumption 1 to Assumption 4 hold
and the iterates {θθθri ,ϑϑϑri ,λλλri , ∀i} are generated by Safe Dec-
PG. If the total number of iterations of the algorithm is N
and

T ∼ Ω(log(N)), γr ∼ O
(

1√
r

)
, βr ∼ O

(
1√
r

)
,

(15)

then we have

E[G2({θθθr
′

i ,λλλ
r′

i , ∀i})] ≤ O
(

log(N)√
N

)
+O(σ2

g(T,K))

(16)
where constant σ2

g(T,K) denotes the variance of PG esti-
mate with respect to function g(·), and r′ is picked randomly
from 1, . . . , N .

Theorem 1 says that Safe Dec-PG is able to find the solu-
tion of (1) at a rate of at leastO(log(N)/N1/2) to a neighbor-
hood of the ε-FOSP of this problem, where the radius of this
ball is determined by the number of trajectories and length
of the horizon approximation. The number of trajectories is
or the longer the length is, the smaller the radius will be.
Corollary 1. Suppose Assumption 1 to Assumption 4 hold
and the iterates {θθθri ,ϑϑϑri ,λλλri , ∀i} are generated by Safe Dec-
PG. When T, γr, βr satisfy (15) and K ∼ O(

√
N), then we

have

E[G2({θθθr
′

i ,λλλ
r′

i , ∀i})] ≤ O
(

log(N)√
N

)
(17)

where the total number of iterations of the algorithm is N ,
and r′ is picked randomly from 1, . . . , N .

Note that the proposed Safe Dec-PG is not only appli-
cable to constrained MDP problems, but also amenable to
solve a wide class of stochastic non-convex concave min-max
optimization problems.

Remark 2. To the best of our knowledge, our results are
new in both RL and optimization communities.
I When T is infinitely large, i.e., εf (T ) = εg(T ) = 0,

Safe Dec-PG is reduced to a decentralized stochastic non-
convex min-max optimization algorithm. In this regime,
Safe Dec-PG also provides the state-of-the-art conver-
gence rate to a neighborhood of FOSPs.

I When K and T are both infinitely large, i.e., εf (T ) =
εg(T ) = σ2

f (T,K) = σ2
g(T,K) = 0, Safe Dec is re-

duced to a deterministic decentralized non-convex min-
max algorithm. The convergence rate of Safe Dec-PG
is still O(log(N)/N1/2) but with guarantees to the ε-
FOSPs, matching the convergence rate of HiBSA in the
centralized case.

Remark 3. The number of nodes, n, is not shown up in the
numerator of the convergence rate result, indicating that the
achievable rate in (17) will not be slowed down by increasing
the number of agents and the radius of the neighborhood in
(16) will not be magnified as well.

Numerical Results
Problem setting To show the performance of safe decen-
tralized RL, we test our algorithm on the environment of the
Cooperative Navigation task in (Lowe et al. 2017), which is
built on the popular OpenAI Gym paradigm (Brockman et al.
2016). The experiments were run on the NVIDIA Tesla V100
GPU with 32GB memory. In the first experiment, we have
n = 5 agents aiming at finding their own landmarks, and all
agents are connected by a well-connected graph as shown
in Figure 1(a), where every agent can only exchange their
parameters θθθi with its neighbors through the communication
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agent 1

agent 2

agent 3

agent 5

agent 4

(a) Network structure
number of iterations

(b) Constrained reward (averaged)
number of iterations

(c) Objective reward

Figure 1: (a) Diagram of a decentralized safe RL system, where the green line denotes the communication graph G, the red star
represents the landmark, the blue circle stands for the agents; (b) long-term cumulative reward of the constraints v.s. the number
of iterations; (c) long-term cumulative reward of the objective functions v.s. the number of iterations. The initial stepsizes of Safe
Dec-PG and DSGT are both 0.1 and ci = 0.8, ∀i.

channel (denoted by the green lines). Furthermore, each a-
gent has 5 action options: stay, left, right, up, and down. We
assume the states and actions of all the agents to be globally
observable. The goal of the teamed agents is to find an op-
timal policy such that the long term discounted cumulative
reward averaged over the network is maximized under a min-
imum number of collisions with other agents in a long term
perspective.

Environment Different from the existing simulation en-
vironment, we create a new one based on the cooperative
navigation task, where we set the agent and landmark as pairs
and require that each agent only targets its own corresponding
landmark. The rewards considered in the objective function
include two parts: i) the first one is based on the distance be-
tween the location of the node to its desired landmark, which
is a monotonically decreasing function of the distance, (i.e.,
the smaller the distance, the higher the reward will be); ii)
the second one is determined by the minimum distance be-
tween two agents. If the distance between two agents is lower
than a threshold, then we consider that a collision happens,
and both of the agents will be penalized by a large negative
reward value, i.e., −1. Finally, the reward at each agent is
further scaled by different positive coefficients, representing
the heterogeneity, e.g., priority levels, of different agents. The
rewards considered in the constraints of (3) are monotoni-
cally increasing functions of the minimum distance between
two agents, i.e., the closer the two agents are, the lower the
reward will be. Here, since only the minimum distance is
taken into account at each node, so m = 1.

Parameters The policy at each agent is parametrized by a
neural network, where there are two hidden layers with 30
neurons in the first layer and 10 neurons in the second. The
states of each agent include its position and velocity. Thus,
the dimension of the input layer is 20, and the output layer is
5. The discounting factor γ in the cumulative loss is 0.99 in
all the tests, and for each episode, the length of the horizon
approximation of PG is T = 20. Also, we runK = 10 Monte
Carlo trials independently to compute the approximate PG at
each iteration.

In this section, we only show the results of comparing
Safe Dec-PG and DSGT without safety considerations in
Figure 1(b) and Figure 1(c), and additional results with more
problem settings, e.g., larger networks, are included in the
supplemental materials. From Figure 1(b), it can be observed
that the averaged network constrained rewards obtained by
Safe Dec-PG are much higher than the ones achieved by
DSGT and Safe Dec-PG converges faster than DSGT as
well. From the statistic perspective, this long term cumulative
rewards in the constraints could be interpreted as some prior
knowledge accounted in MDP. From Figure 1(c), we can
see that the rewards in objective function achieved by both
Safe Dec and DSGT are similar, implying that the added
constraints would not affect the loss of the objective rewards.

Concluding Remarks
In this work, we have proposed the first algorithm of being
able to solve multi-agent CMDP problems, where the cu-
mulative rewards in both loss function and constraints are
included. By leveraging the primal-dual optimization frame-
work, the proposed Safe Dec-PG is to maximize the averaged
network long term cumulative rewards and take the safety
related constraints as well. Theoretically, we provide the first
convergence rate guarantees of the decentralized stochastic
gradient descent ascent method to an ε-FOSP of a class of
non-convex min-max problems at a rate of O(1/ε4). Numer-
ical results show that the obtained constraint rewards by Safe
Dec-PG are indeed much higher than the case where the
safety consideration is not incorporated without loss of both
convergence rate and final objective rewards.
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Ethical Impact
Our main contributions are regarding the theoretical result-
s for solving a non-convex min-max optimization problem
over a graph/network. The algorithm design and convergence
analysis are both new. Although Safe Dec is developed in
this paper for dealing with a constrained Markov decision
process related problem, it can be also applied to solve other
min-max optimization problems. Our theoretical analysis in-
cludes multiple new theorem proving techniques that would
be used for performing convergence analysis for other algo-
rithms. This works would be beneficial for students, scientists
and professors who are conducting research in the areas of
reinforcement learning, optimization, data science, finance,
etc. We haven’t found any negative impact of this work on
both ethical aspects and future societal consequences.
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