
PULNS: Positive-Unlabeled Learning with Effective Negative Sample Selector

Chuan Luo,1,* Pu Zhao,1,* Chen Chen,1,2 Bo Qiao,1 Chao Du,1 Hongyu Zhang,3 Wei Wu,4
Shaowei Cai,5,6 Bing He,5,6 Saravanakumar Rajmohan,2 Qingwei Lin1,†

1Microsoft Research, China 2Microsoft 365, United States
3The University of Newcastle, Australia 4L3S Research Center, Leibniz University Hannover, Germany

5State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
6School of Computer Science and Technology, University of Chinese Academy of Sciences, China

{chuan.luo, puzhao, v-chch22, boqiao, chaodu, saravar, qlin}@microsoft.com,
hongyu.zhang@newcastle.edu.au, william.third.wu@gmail.com, {caisw, hebing}@ios.ac.cn

Abstract

Positive-unlabeled learning (PU learning) is an important
case of binary classification where the training data only
contains positive and unlabeled samples. The current state-
of-the-art approach for PU learning is the cost-sensitive ap-
proach, which casts PU learning as a cost-sensitive classifi-
cation problem and relies on unbiased risk estimator for cor-
recting the bias introduced by the unlabeled samples. How-
ever, this approach requires the knowledge of class prior and
is subject to the potential label noise. In this paper, we pro-
pose a novel PU learning approach dubbed PULNS, equipped
with an effective negative sample selector, which is optimized
by reinforcement learning. Our PULNS approach employs an
effective negative sample selector as the agent responsible for
selecting negative samples from the unlabeled data. While the
selected, likely negative samples can be used to improve the
classifier, the performance of classifier is also used as the re-
ward to improve the selector through the REINFORCE al-
gorithm. By alternating the updates of the selector and the
classifier, the performance of both is improved. Extensive ex-
perimental studies on 7 real-world application benchmarks
demonstrate that PULNS consistently outperforms the current
state-of-the-art methods in PU learning, and our experimental
results also confirm the effectiveness of the negative sample
selector underlying PULNS.

Introduction
In a binary classification problem, the classifier is trained on
a dataset with both positive and negative samples. In prac-
tice, the training data may only contain positive samples (P)
and unlabeled samples (U). For instance, while we can label
subscribers who had watched at least one Star Wars movie
as being interested in this genre, we cannot be sure about
the interests of a subscriber who never watched a Star Wars
movie before. Similar examples can be found in many ap-
plications, including information retrieval, recommendation

*Chuan Luo and Pu Zhao contributed equally to this work and
share the first authorship of this work.

†Qingwei Lin is the corresponding author of this work.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

system, medical diagnosis, text classification and outlier de-
tection (Blanchard, Lee, and Scott 2010; Nguyen, Li, and Ng
2012; Fei and Liu 2015; Schnabel et al. 2016). Classification
using such dataset is called positive-unlabeled (PU) learn-
ing, which has attracted huge attention from both academia
and industry in recent years.

Lacking of labeled negative samples (N), information es-
sential for constructing the classifier must be learnt from the
unlabeled samples. Depending on how the unlabeled sam-
ples are treated, most of the recent works on PU learning
can be grouped into two categories, which we term as the
cost-sensitive approach and the sample-selection approach.

Pioneered by (Elkan and Noto 2008), the cost-sensitive
approach has emerged as the state-of-the-art method in PU
learning during recent years (du Plessis, Niu, and Sugiyama
2014, 2015; Kiryo et al. 2017; Kato, Teshima, and Honda
2019; Hsieh, Niu, and Sugiyama 2019; Li et al. 2019).
Following a cost-sensitive classification framework, this
approach essentially treats each unlabeled sample as the
weighted combination of positive and negative sample, and
relies on unbiased risk estimator to correct the bias intro-
duced by unlabeled data. Still, to apply cost-sensitive meth-
ods, one often needs to estimate the class prior first. This is
not a simple task and is the focus of many studies (du Plessis
and Sugiyama 2014; Jain, White, and Radivojac 2016; Ra-
maswamy, Scott, and Tewari 2016; Bekker and Davis 2018;
Li et al. 2019; Perini, Vercruyssen, and Davis 2020; Zeiberg,
Jain, and Radivojac 2020; Jain et al. 2020). Moreover, label
noise caused by treating unlabeled positive samples as nega-
tive ones may still degrade the performance of cost-sensitive
approach in practice.

In contrast, the sample-selection approach uses heuristic
methods to select likely negative samples from the unlabeled
data. The chosen negative samples are then merged with the
positive data to train a supervised classifier. Methods for
selecting negative samples include Naı̈ve Bayes (Liu et al.
2002), Rocchio method (Li and Liu 2003), 1-DNF method
(Yu, Han, and Chang 2004), k-NN (Zhang and Zuo 2009),
and k-means (Chaudhari and Shevade 2012). While miti-
gating the issues faced by the cost-sensitive approach, the
sample-selection approach lacks the mechanisms for opti-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8784

mizing the negative samples selector which is crucial for its
performance.

In this work, we propose a new sample-selection approach
named Positive-Unlabeled Learning with Effective Negative
Sample Selector (PULNS). Our PULNS approach is com-
posed of a negative sample selector and a binary classi-
fier which are optimized in a reinforcement learning based
framework. Specifically, we treat the selector as the agent,
the selection of negative samples as the action, and the per-
formance of the classifier as the reward. This setup allows
us to update the selector via reinforcement learning, which
can then be used to train a better classifier. By iterating be-
tween the optimization of the classifier and the selector, this
method improves both the selector and the classifier together
to achieve better performance than the state-of-the-art cost-
sensitive approach.

We summarize the main contributions of this work below:
• We propose an effective strategy to train and optimize

the negative sample selector based on the performance of
classifier. We also conduct experiments and show that our
selector is more effective in selecting negative samples
than the selectors used in other sample-selection methods.

• We construct an optimization framework based on rein-
forcement learning to enable end-to-end updates on both
selector and classifier.

• We conduct extensive experiments on seven benchmarks
to compare PULNS against other methods and show that
PULNS can consistently outperform the state-of-the-art
cost-sensitive approach.

Related Work
As the current state of the art in PU learning, the cost-
sensitive approach adopts the framework of cost-sensitive
classifier where unbiased risk estimator is constructed to
correct the bias introduced by training a classifier over the
positive and unlabeled samples. Since the first unbiased risk
estimator was introduced for solving PU learning problem
(du Plessis, Niu, and Sugiyama 2014), many works were
done to enhance this technique. Notably, convex unbiased
risk estimator can be used to reduce computational cost
(du Plessis, Niu, and Sugiyama 2015). Non-negative risk es-
timator can be used to overcome the over-fitting issue when
the model is too flexible (Kiryo et al. 2017). Similar unbi-
ased risk estimator can also be constructed if a small subset
of negative samples (which can be a biased representation of
the negative population) is available for training the classi-
fier (Hsieh, Niu, and Sugiyama 2019). While most PU learn-
ing methods assume that the labeled positive data follows the
same distribution as the unlabeled positive data (no selection
bias), a modified cost-sensitive approach can be applied to
the scenario with selection bias (Kato, Teshima, and Honda
2019). Still, in order to make the proposed risk estimator be
truly unbiased, the sampling procedure needs to satisfy cer-
tain assumptions, and the class prior should be known or at
least can be accurately estimated. When these assumptions
do not hold, the performance of the cost-sensitive approach
might suffer from the label noise issue introduced by the un-
labeled samples. In this work, we show that, by selecting a

reliable set of negative samples, our method can outperform
state-of-the-art approaches discussed in this category.

Our method is not the only approach that utilizes iterative
procedure for improving the selection of negative samples.
In fact, most sample-selection methods discussed in the in-
troduction section employ iterative procedures to enlarge the
set of the selected negative samples based on the prediction
of trained classifier. Still, such procedures do not choose nor
improve the initial selector, while PULNS is capable of op-
timizing the selector directly. These approaches cannot ex-
plore different class assignments for unlabeled data either, a
feature that is naturally supported by PULNS. Moreover, as
pointed out by (Gong et al. 2018), iterative procedure that
gradually enlarges the set of negative sample cannot guaran-
tee to improve the classifier unless the positive samples are
located far away from decision boundary.

Our Proposed Approach
We present a new sample-selection approach for PU learn-
ing, dubbed Positive-Unlabeled Learning with Effective
Negative Sample Selector (PULNS). First, we introduce
the problem setting of PU learning. Then we provide an
overview of PULNS and describe the major algorithmic
components underlying PULNS. Finally, we discuss the
training process of PULNS.

Problem Setting
We represent the training dataset in PU learning as a se-
quence of n samples: T = {t1, . . . , tu, . . . , tn}, where
ti = (xi, yi) is a feature-label pair (i ∈ {1, . . . , n}). For
each sample ti = (xi, yi), xi ∈ Rd is the raw feature vec-
tor; yi ∈ {0, 1} is the class indicator: yi = 0 means that
sample ti belongs to the negative class, and yi = 1 indi-
cates that sample ti belongs to the positive class. The first
u samples are assumed to be unlabeled with unknown yi
(1 ≤ i ≤ u) whose ground truth can be either positive or
negative. The rest p = n−u samples are labeled. In the con-
text of PU learning, all labeled samples are positive. Thus
we have yi = 1 for u + 1 ≤ i ≤ n. For simplicity, we
use U = {t1, · · · , tu} to represent the set of all unlabeled
samples, and P = {tu+1, · · · , tn} to represent the set of
all labeled, positive samples. The task of PU learning is to
train a classifier based on the positive sample set P and the
unlabeled sample set U .

Approach Overview
In this subsection, we provide an approach overview of
PULNS, which is illustrated in Figure 1. Our PULNS ap-
proach is based on a reinforcement learning framework with
four important components: 1) state (i.e., features extracted
from unlabeled samples); 2) agent (i.e., negative sample se-
lector); 3) environment (i.e., classifier); 4) reward.

PULNS consists of two alternating phases: the update of
selector and the update of classifier. In the first phase, the
agent (i.e., the selector underlying PULNS) traverses the un-
labeled samples in U sequentially. For each sample ti ∈ U ,
the selector takes its state si as input and generates an action
ai (whether ti is chosen as a negative sample or not). The

8785

T t1 t2 … tu tu+1 … tN }{ ,, ,,,,

Action

Environment

Not select

Classifier

U Unlabeled
samples

Positive
samplesP

Negative
samplesN

Select

P N+
Reward

Training
dataset

State

Agent

Selector

s1 s2 … su

Terminal Reward

+

Intermediate
Reward

Σri

αru+1

? Updateclf

Figure 1: Approach Overview of PULNS.

environment (i.e., classifier) generates rewards based on the
actions. Also, the selector is updated using the REINFORCE
algorithm (Sutton et al. 1999). In the second phase, the up-
dated selector generates a negative sample set N from U .
Both P and N are then used to update the classifier clf .

In this way, PULNS combines the selector and the classi-
fier in an integral manner. Also, the interaction between the
selector and the classifier forms an effective feedback loop,
so the performance of the selector and the classifier can be
improved together.

Components Underlying PULNS
In this subsection, we describe the major components under-
lying PULNS in detail.

Classifier For each sample ti, the classifier takes the fea-
ture vector xi as input and calculates the probability of xi be-
longing to the positive class, denoted by p(xi). The classifier
also needs to generate a vector representation x′i for each xi,
which can be the output of the last hidden layer in a neural
network classifier. It is recommended to choose a classifier
that fits the data best. In our experiments, we use different
classifiers for different benchmarks and achieve state-of-the-
art performance on all benchmarks. Detailed descriptions on
the classifiers used in our experiments can be found in the
Experiments section.

State For each sample ti ∈ U , to effectively represent ti’s
status, its state si needs to encode the following information.

• Representation of current sample x′i: The classifier
adopted by PULNS is responsible for extracting the vec-
tor representation of the given sample ti, denoted by x′i.
Incorporating x′i into state si can make full use of the bet-
ter feature extracting ability of the classifier and transfer
learned knowledge from classifier to reduce the difficulty
in training our selector.

• Representation of selected, negative samples ci: It is the
average of the vector representations of current negative

samples in N , i.e., ci = 1
|N |

∑
tj∈N x

′
j .

1

• Representation of positive samples p: It is the average of
the vector representations of all positive samples inP , i.e.,
p = 1

|P |
∑
tj∈P x

′
j . We note that the representation p is a

fixed vector in each episode.
For each sample ti ∈ U , its state si is designed as si =
(x′i, ci, p), in order to incorporate the above representations.

Negative Sample Selector In principle, for each sample
ti, the negative sample selector underlying our PULNS ap-
proach is required to take its state si and to output a real
number ranging from 0 to 1 as ti’s predicted selection prob-
ability. In this work, our selector fθ is specified as a multi-
layer perceptron (MLP)2. For our selector fθ, the activation
function of each hidden layer is ReLu, while we use sigmoid
as the output layer’s activation function. In a word, for each
sample ti, based on its state si our selector computes ti’s
predicted selection probability fθ(si) (0 ≤ fθ(si) ≤ 1).

The main focus of our selector is to provide an action ai ∈
{0, 1} to decide whether the corresponding sample ti would
be chosen as negative one. In particular, ai = 1 indicates
that ti is selected as negative one; otherwise (ai = 0), ti
would not be selected. The policy function is as follows:

πθ(si, ai) = Pθ(ai|si) = aifθ(si) + (1− ai)(1− fθ(si))

Reward Since our PULNS approach is based on reinforce-
ment learning, a core problem is how to design effective re-
ward function to better train our negative sample selector.

In the l-th episode of PULNS’s training process, after se-
lecting the negative sample set N ′ by our selector, PULNS
trains a classifier based on P andN ′, and evaluates the accu-
racy of the trained classifier on a validation dataset, denoted
by z(l). Since our ultimate goal is to improve the accuracy
of the classifier, thus it is advisable to design a terminal re-
ward by incorporating the accuracy z(l). A natural way is to
directly treat z(l) as the reward; however, since the accuracy
of the trained classifier is always non-negative, directly us-
ing zl as the terminal reward would hinder the convergence
of our negative sample selector. Hence, our terminal reward
is designed as r(l)u+1 = z(l)− b(l), where b(l) is a baseline re-
ward, i.e., b(l) = max{z(0), . . . , z(l−1)}; here z(0) denotes
the accuracy of the initial classifier trained based on P and
U by treating all samples in U as negative ones.

Moreover, as we can only get the terminal reward at
the end of each episode after taking u actions, it is recog-
nized that the sparse reward issue would make reinforcement
learning based approaches less effective (Riedmiller et al.
2018). To address this challenge, inspired by the success
of reward shaping mechanism in other research fields (Ng,
Harada, and Russell 1999; Pocius et al. 2018), we propose a
new reward shaping mechanism to provide the selector with
more guidance. In particular, in each episode, besides the
terminal reward, PULNS calculates an intermediate reward

1If N = ∅, we use the average of the vector representations of
all unlabeled samples in U , i.e., ci = 1

|U|
∑
tj∈U x

′
j .

2More specially, the architecture of our adopted MLP is d-64-
32-1, where d denotes the dimension of the input vector.

8786

for each action. That is to say, in the l-th episode, for sample
ti, once our selector takes an action ai, then the intermediate
reward r(l)i is computed as follows:

r
(l)
i =

C(−1, log 1−p(xi)

p(xi)
, 1) if ai = 1,

C(−1, log p(xi)
1−p(xi)

, 1) if ai = 0.

where p(xi) is given by the classifier based on xi, and
C(−1, ·, 1) is a clamping function: a) C(−1, x, 1) = −1
if x < −1; b) C(−1, x, 1) = 1 if x > 1; c) otherwise,
C(−1, x, 1) = x.

Since our selector aims to choose negative samples, the
intuition behind our intermediate reward design is: for each
unlabeled sample ti, if the classifier tends to identify ti as
a negative sample, then our selector should receive positive
rewards when ai = 1, and receive negative rewards when
ai = 0; if the classifier tends to identify ti as a positive
sample, then our selector should receive negative rewards
when ai = 1, and receive positive rewards when ai = 0.

It is worth noting that a small validation dataset contain-
ing both labeled positive and negative samples is needed
for evaluating the performance of classifier. In real appli-
cations, while collecting large amount of negative samples
can be impractical, labelling a small portion of negative data
for validation is generally quite feasible and is commonly
used. Moreover, as suggested by (Hsieh, Niu, and Sugiyama
2019), a small set of negative samples can bring consider-
able improvement in PU learning even if this set is a biased
representation of the negative population.

Model Training

In this subsection, we first introduce how to optimize the
selector, and then describe how to conduct the end-to-end
training process on the whole PULNS framework.

Selector Optimization As discussed before, in each
episode, our selector traverses the unlabeled samples in U
sequentially: for each sample ti ∈ U , our selector takes ac-
tion ai based on state si, and collects intermediate reward
ri. Then trajectory τ = {(s1, a1, r1), ..., (su, au, ru)} and
terminal reward ru+1 can be obtained. Our selector aims to
maximize the expected total reward including all intermedi-
ate rewards and the terminal reward. We define the objective
function of our selector as follows:

J(θ) = E[
u∑
i=1

ri + αru+1|πθ] =
∑
τ

Pθ(τ)(

u∑
i=1

ri + αru+1)

where α is a weight to emphasize terminal reward ru+1, and
Pθ(τ) is the probability of the trajectory under current pol-
icy. We use the REINFORCE algorithm (Sutton et al. 1999)
to update the policy parameter θ of our selector in each

Algorithm 1: End-to-End Training Process of
PULNS

Input: Positive sample set, P ; Unlabeled sample set,
U ; Validation dataset, V ; Episode number, L;

Output: Optimized selector, f∗θ ; Optimized
classifier, clf ∗;

1 Initialize a classifier clf which is trained based on P
and U (treating all samples in U as negative ones);

2 Initialize a selector fθ randomly;
3 f∗θ ← fθ, clf ∗ ← clf ;
4 for l← 1 to L do
5 Shuffle the unlabeled sample set U ;
6 for step i← 1 to |U | do
7 Get state si;
8 Sample action ai ∼ πθ(si, ai);
9 Obtain intermediate reward ri;

10 Compute terminal reward ru+1;
11 Update selector fθ based on all rewards;
12 f∗θ ← fθ;
13 Get calibrated negative sample set N from U by

the updated selector f∗θ ;
14 Update classifier clf based on N and P ;
15 if clf performs better than clf ∗ then clf ∗ ← clf ;
16 return f∗θ , clf ∗;

episode. The objective function with respect to θ is:

OθJ(θ) =
∑
τ

OθPθ(τ)(
u∑
i=1

ri + αru+1)

=
∑
τ

Pθ(τ)Oθ logPθ(τ)(
u∑
i=1

ri + αru+1)

= E[
u∑
i=1

Oθ log πθ(si, ai)(
u∑
i′=i

ri′ + αru+1)|πθ]

where (
∑u
i′=i ri′ + αru+1) is the total future reward at step

i after action ai is taken.
In PULNS, we employ factor β ∈ [0, 1] to discount the in-

termediate rewards, and emphasize the terminal reward ru+1

with weight α. We estimate the value-action function at step
i after taking action ai as vi =

∑u
t=i β

t−irt + αru+1, and
approximate the gradient as follows:

OθJ(θ) ≈
u∑
i=1

viOθ log πθ(si, ai)

Then, our PULNS approach updates the current policy pa-
rameters as follows:

θ ← θ +

u∑
i=1

viOθ log πθ(si, ai)

End-to-End Training As discussed before, the interac-
tion between the selector and the classifier forms an effec-
tive feedback loop, and they are trained jointly and enhanced
together through reinforcement learning. This subsection in-
troduces the end-to-end training process. To update the se-

8787

lector underlying PULNS, we employ the REINFORCE al-
gorithm (Sutton et al. 1999), while to update the classifier,
we adopt gradient descent to minimize its own loss function.

The end-to-end training process of our PULNS approach
is outlined in Algorithm 1, and is described as follows. First
of all, our classifier is pre-trained based on P and U by
treating all samples in U as negative ones, and our selector
is initialized randomly. Then PULNS conducts an iterative
process to jointly train our selector and classifier. In each
episode, PULNS first shuffles the unlabeled sample set U .
Then, for each sample ti ∈ U , PULNS gets state si, takes ac-
tion ai, and obtains intermediate reward ri. After all samples
in U are processed, the terminal reward for this episode can
be computed. Subsequently, the selector underlying PULNS
can be updated based on all rewards (including all interme-
diate ones and the terminal one). After that, PULNS employs
the updated selector to obtain the calibrated negative sample
set N from U . Finally, the classifier underlying PULNS can
be updated based on P and N , and the next episode starts.
The end-to-end training process is stopped once the maxi-
mum episode number L is reached.

Experiments
In this section, we conduct extensive experiments on 7 pub-
lic, application benchmarks to evaluate the performance of
our PULNS approach along with 4 state-of-the-art competi-
tors. We first describe the benchmarks, the competitors, and
our experimental setups. Then we report and analyze the ex-
perimental results to present the effectiveness of PULNS.

Benchmarks
In the context of PU learning, seven benchmarks are
commonly used to evaluate PU learning approaches
(Kato, Teshima, and Honda 2019): 1) CIFAR-103 and
2) six benchmarks collected from UCI4,5, including
MNIST, mushrooms, shuttle, spambase, usps and
landsat. Following the common practice, we adopt those
seven benchmarks to evaluate the performance of PULNS
and its competitors. As the CIFAR-10, MNIST, shuttle,
usps and landsat benchmarks all contain multiple
classes (10, 10, 7, 10 and 6 classes, respectively), we prepro-
cess these benchmarks following the existing conventions
(Kato, Teshima, and Honda 2019), as shown in Table 1.

A brief summary of the benchmarks used in our experi-
ments, including the numbers of positive and negative sam-
ples and dimension of features, are listed in Table 2.

Competitors
In our experiments, we compare our proposed PULNS ap-
proach against 4 recent, state-of-the-art and open-source
competitors, including uPU (du Plessis, Niu, and Sugiyama
2015), nnPU (Kiryo et al. 2017), PUSB (Kato, Teshima,
and Honda 2019) and PUbN (Hsieh, Niu, and Sugiyama
2019). We briefly describe those competitors as follows.

3https://www.cs.toronto.edu/∼kriz/cifar.html
4https://archive.ics.uci.edu/ml/index.php
5https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

Benchmark Positive class Negative class

CIFAR-10
airplane, truck,

automobile, ship
bird, cat, deer,

dog, frog, horse
MNIST 0, 2, 4, 6, 8 1, 3, 5, 7, 9

shuttle 5, 6, 7 1, 2, 3, 4
usps 6, 7, 8, 9, 10 1, 2, 3, 4, 5

landsat 4, 5, 7 1, 2, 3

Table 1: Preprocessing of the benchmarks.

Benchmark #Samples Dim. #P / #N

CIFAR-10 60,000 3072 24,000 / 36,000
MNIST 70,000 784 34,418 / 35,582

mushrooms 8,124 22 3,916 / 4,208
shuttle 58,000 9 12,414 / 45,586
spambase 4,601 57 1,813 / 2,788

usps 9,298 256 4,876 / 4,422
landsat 67,557 36 44,473 / 23,084

Table 2: Details of the benchmarks in our experiments.

uPU is an effective approach for PU learning based on
a general unbiased risk generator. nnPU adopts a non-
negative risk estimator and exhibits good performance on
the CIFAR-10 and MNIST benchmarks. PUSB is a recent,
high-performance PU learning approach capable of allevi-
ating the impact of selection bias and shows competitive
performance on a number of benchmarks. PUbN is a re-
cent, powerful PU learning approach based on empirical risk
minimization, which achieves state-of-the-art performance
on the CIFAR-10 and MNIST benchmarks. The source
codes for these four state-of-the-art competitors (i.e., uPU6,
nnPU6, PUSB7, PUbN8) are all available online.

Experimental Setup
Here we introduce: 1) how we construct the positive sample
set P and the unlabeled sample set U for each benchmark;
2) the evaluation metric we adopt in our experiments; 3) the
classifier we specify for each benchmark.

Construction of P and U For each benchmark, the train-
ing dataset is divided into P consisting of |P | positive sam-
ples, and U that contains |U | samples with both positive
and negative ones. All class labels in U are removed in
the follow-up analysis. Samples in P are randomly selected
from the population of positive samples in the benchmark.
As for U , we use γ to denote the proportion of positive
samples, and randomly select |U | · γ positive samples and
|U | · (1− γ) negative samples from the corresponding pop-
ulations respectively.

The values of |P | and |U | are adopted from the setup
used by (Kato, Teshima, and Honda 2019): for bench-
marks mushrooms, shuttle, spambase, usps and

6https://github.com/kiryor/nnPUlearning
7https://github.com/MasaKat0/PUlearning
8https://github.com/cyber-meow/PUbiasedN

8788

γ Benchmark uPU nnPU PUSB PUbN PULNS

0.2

CIFAR-10 12.03 (0.013) 11.04 (0.013) 10.01 (0.013) 9.76 (0.009) 7.98 (0.007)
MNIST 8.48 (0.010) 7.01 (0.016) 6.24 (0.015) 6.17 (0.011) 3.63 (0.006)

mushrooms 5.23 (0.019) 5.21 (0.019) 4.97 (0.020) 4.78 (0.019) 3.13 (0.011)
0.2 shuttle 7.00 (0.019) 6.79 (0.019) 4.91 (0.007) 4.11 (0.020) 2.74 (0.017)

spambase 12.38 (0.021) 12.22 (0.021) 12.20 (0.020) 14.78 (0.013) 9.59 (0.076)
usps 9.44 (0.003) 8.63 (0.016) 7.77 (0.005) 7.51 (0.007) 5.43 (0.008)

landsat 8.19 (0.017) 7.96 (0.015) 6.48 (0.024) 6.35 (0.012) 4.22 (0.026)

0.4

CIFAR-10 16.01 (0.015) 15.37 (0.017) 14.59 (0.013) 13.93 (0.017) 11.44 (0.011)
MNIST 15.45 (0.018) 8.62 (0.011) 11.54 (0.011) 8.10 (0.013) 5.27 (0.009)

mushrooms 8.64 (0.018) 8.41 (0.018) 5.68 (0.020) 6.45 (0.019) 4.30 (0.024)
shuttle 10.01 (0.022) 8.97 (0.021) 6.31 (0.012) 5.78 (0.018) 4.43 (0.016)
spambase 20.94 (0.021) 20.78 (0.022) 19.40 (0.027) 17.31 (0.011) 15.70 (0.014)

usps 12.77 (0.009) 10.26 (0.004) 9.51 (0.005) 10.13 (0.009) 8.53 (0.010)
landsat 9.30 (0.010) 8.77 (0.014) 8.10 (0.014) 7.60 (0.013) 7.03 (0.009)

0.6

CIFAR-10 17.39 (0.016) 16.56 (0.015) 15.82 (0.014) 14.96 (0.013) 11.73 (0.014)
MNIST 27.30 (0.019) 10.37 (0.010) 13.80 (0.017) 10.90 (0.014) 6.54 (0.016)

mushrooms 9.68 (0.021) 9.16 (0.020) 7.69 (0.021) 8.32 (0.013) 5.72 (0.026)
shuttle 10.88 (0.020) 9.58 (0.019) 8.38 (0.011) 8.25 (0.006) 5.39 (0.039)
spambase 29.45 (0.018) 29.87 (0.020) 20.84 (0.031) 25.69 (0.017) 22.39 (0.013)

usps 13.08 (0.012) 11.11 (0.012) 11.10 (0.003) 10.93 (0.013) 7.71 (0.012)
landsat 10.28 (0.012) 10.08 (0.014) 9.38 (0.013) 9.24 (0.022) 8.03 (0.015)

Table 3: Comparative results of PULNS, uPU, nnPU, PUSB, and PUbN on all benchmarks with γ =0.2, 0.4 and 0.6. For each
cell ‘x (y)’, x, y denote the average error rate of binary classification in test data (%), and the standard deviation, respectively.

landsat, |P | and |U | are fixed at 400 and 800, respec-
tively. For benchmarks CIFAR-10 and MNIST, |P | and
|U | are fixed at 2000 and 4000, respectively. To better sim-
ulate the practical scenarios and to comprehensively evalu-
ate all competing approaches, we use 3 different settings for
γ = {0.2, 0.4, 0.6} to resemble the different proportions of
positive samples within the unlabeled samples.

For each benchmark, the validation dataset and the testing
dataset are generated through the same sampling method for
U in the training dataset with the same values for γ. For
benchmarks mushrooms, shuttle, spambase, usps
and landsat, the total numbers of samples in the valida-
tion set and the testing set are set to 100 and 1000, respec-
tively. For benchmarks CIFAR-10 and MNIST, the total
numbers of samples in the validation set and the testing set
are set to 500 and 5000, respectively.

Evaluation Metric To assess the performance of PULNS
and its competitors, we adopt the error rate of classification
(i.e., 1−accuracy) on testing dataset as our evaluation met-
ric following the common practice in the literature (Kato,
Teshima, and Honda 2019; Zhang, Hou, and Zhang 2020).
Hence, in our experiments, the smaller the error rate, the bet-
ter the performance. For each benchmark with a particular
value of γ, 20 independent runs are performed for PULNS
and its 4 competitors. The average error rate and the standard
deviation across the 20 runs are reported.

Classifier Specification In PU learning, different classi-
fiers are often adopted for dealing with different bench-
marks. Therefore, following the work (Kato, Teshima, and
Honda 2019), the following two classifiers are adopted: 1)

for the CIFAR-10 benchmark, we adopt a convolutional
neural network as the classifier; 2) for the remaining bench-
marks, we adopt a multilayer perceptron (MLP) with a
single-hidden-layer of 100 neurons as the classifier. More-
over, to ensure a fair comparison, for each benchmark, the
same classifier is used by all the competing methods.

Experimental Results
We conduct extensive experiments on 7 application bench-
marks to study the performance of PULNS and the effective-
ness of its selector. Note that in all the experiments, the true
value of class prior γ is assumed to be known. This value is
needed for all the 4 state-of-the-art competitors but not our
PULNS approach and has to be estimated in practice.

Comparing PULNS Against Competitors Table 3 re-
ports the comparative results of PULNS and its 4 state-of-
the-art competitors (i.e., uPU, nnPU, PUSB and PUbN) on
7 application benchmarks with 3 different values of γ (0.2,
0.4, and 0.6). In Table 3, for each benchmark with a par-
ticular γ, the best result across all five competing methods
is indicated in boldface. From Table 3, PULNS stands out
as the best method on all benchmarks with all γ values.
In particular, on the MNIST benchmark with γ = 0.2, 0.4
and 0.6, PULNS achieves the average error rates of 3.63%,
5.27% and 6.54%, respectively, while the second best av-
erage error rates are 6.17% (PUbN), 8.10% (PUbN) and
10.37% (nnPU), respectively. Similarly, on the shuttle
benchmark with γ = 0.2, 0.4 and 0.6, PULNS yields the av-
erage error rates of 2.74%, 4.43% and 5.39%, respectively,
while the average error rates for the second best approach

8789

γ Method CIFAR-10 MNIST mushrooms shuttle spambase usps landsat

0.2
PULNS alt 12.92 7.48 7.42 9.06 17.78 17.44 6.63

PULNS 7.98 3.63 3.13 2.74 9.59 5.43 4.22
Oracle 7.20 3.00 1.61 0.52 8.87 4.74 4.15

0.4
PULNS alt 18.84 12.28 20.75 16.41 27.51 24.20 18.24

PULNS 11.44 5.27 4.30 4.43 15.70 8.53 7.03
Oracle 10.72 4.32 2.10 0.75 14.52 5.80 5.72

0.6
PULNS alt 48.26 38.58 41.20 44.35 43.43 37.65 44.30

PULNS 11.73 6.54 5.72 1.90 22.39 7.71 8.03
Oracle 11.10 4.78 3.72 0.91 19.87 5.36 6.08

Table 4: Comparative results of PULNS, PULNS alt and Oracle on all benchmarks with γ = 0.2, 0.4 and 0.6. In this table, the
metric is the average error rate of binary classification on testing set (%).

γ Selector
mushrooms shuttle spambase landsat usps

NPV TNR NPV TNR NPV TNR NPV TNR NPV TNR

0.2

Selector 1 96.71 73.44 81.71 89.38 91.74 62.50 95.31 92.03 95.50 89.53
Selector 2 95.88 90.94 91.83 93.12 83.00 94.58 95.73 94.69 95.39 90.62
Selector 3 91.50 84.06 87.12 88.75 92.09 89.79 95.80 92.66 96.30 85.47
Selector 4 91.52 64.06 87.80 90.00 77.99 88.59 91.73 39.84 91.98 64.53
Selector 5 97.34 85.62 84.79 94.06 89.96 93.33 97.24 93.44 95.87 91.88

Selector PULNS 98.26 97.03 97.03 96.88 92.17 95.63 98.23 95.47 96.41 96.56

0.4

Selector 1 89.80 73.33 80.04 95.21 92.42 76.25 86.41 88.75 89.42 89.79
Selector 2 90.31 85.42 82.01 96.88 88.76 82.29 90.58 87.19 91.98 90.83
Selector 3 80.51 86.04 74.17 92.71 82.58 85.94 82.42 85.00 90.17 86.04
Selector 4 77.60 90.94 71.63 96.25 76.32 81.56 83.28 79.38 84.47 64.58
Selector 5 83.13 86.25 83.67 91.25 87.23 91.04 88.60 92.29 88.62 92.50

Selector PULNS 90.32 93.33 91.39 97.29 92.48 92.29 95.54 93.75 92.07 98.54

0.6

Selector 1 77.16 55.94 63.45 94.38 67.81 80.31 79.33 88.75 75.46 89.38
Selector 2 78.01 83.12 79.33 88.75 63.36 83.75 75.46 89.38 79.33 88.75
Selector 3 66.28 88.44 75.46 89.38 55.89 87.50 78.14 89.38 63.36 83.75
Selector 4 53.96 96.50 67.81 80.31 64.65 86.88 75.14 81.25 70.43 81.88
Selector 5 78.90 85.31 80.71 85.42 67.55 87.19 83.28 88.75 81.82 84.38

Selector PULNS 80.56 97.03 85.08 96.25 73.20 92.19 90.68 91.25 92.24 92.81

Table 5: Comparative results of our selector underlying PULNS and 5 representative, effective selectors on all benchmarks with
γ = 0.2, 0.4 and 0.6. In this table, the metrics are NPV and TNR of binary classification on U data (%).

(i.e., PUbN) are 4.11%, 5.78% and 8.25%, respectively. The
experimental results in Table 3 clearly present the superior-
ity of PULNS over state-of-the-art competitors on those 7
application benchmarks, which indicates that PULNS might
bring benefits in practice.

Effectiveness of the Selector Underlying PULNS To
demonstrate the effectiveness of the selector underlying
PULNS, we modify PULNS by removing our proposed se-
lector, resulting in an alternative version called PULNS alt.
We conduct experiments to directly compare PULNS against
PULNS alt on all benchmarks with γ = 0.2, 0.4 and 0.6,
and summarize the results in Table 4. According to Table
4, it is apparent that PULNS can achieve significantly lower
error rate than PULNS alt. Moreover, as γ becomes larger,
the performance of PULNS alt decreases significantly. In
contrast, PULNS can still maintain reasonably good perfor-
mance for large γ. All these evidences clearly demonstrate

the effectiveness and the crucial role of our selector for han-
dling the label noise introduced by unlabeled data.

Also, based on PULNS, we replace our selector with a
(virtual) ideal selector, which can perfectly select negative
samples from U data, to form an ideal approach named Ora-
cle. The results achieved by Oracle can then be treated as the
empirical performance upper bound of PULNS. We demon-
strate the experimental results of PULNS and Oracle in Ta-
ble 4. From Table 4, it is clear that, on all benchmarks with
all γ settings, the average error rates achieved by PULNS
are quite close to those achieved by Oracle, confirming the
effectiveness of the selector underlying PULNS.

Comparing Selector Underlying PULNS Against Ex-
isting Selectors Here we would like to verify whether
the trained selector underlying PULNS can accurately se-
lect negative samples from unlabeled samples. We con-
duct extensive experiments to directly compare the selec-

8790

tor underlying PULNS, which we name Selector PULNS,
against five effective selectors chosen from literature for
classifying unlabeled samples in U on 5 application bench-
marks (i.e., mushrooms, shuttle, spambase, usps
and landsat). These 5 selectors are named Selector 1
(Liu et al. 2002), Selector 2 (Li and Liu 2003), Selector 3
(Li, Liu, and Ng 2010), Selector 4 (Chaudhari and She-
vade 2012) and Selector 5 (Zhang and Zuo 2009). Both
CIFAR-10 and MNIST are excluded from experiments be-
cause all competing selectors do not support images as their
inputs. In this experiment, we adopt the metrics of Nega-
tive Predictive Value (denoted by ‘NPV’) and True Negative
Rate (denoted by ‘TNR’), which are calculated as follows:

NPV =
#Selected N

#Selected
, TNR =

#Selected N
#N

where ‘#Selected N’ denotes the number of negative sam-
ples among all selected samples, ‘#Selected’ denotes the to-
tal number of selected samples, and ‘#N’ denotes the to-
tal number of negative samples in U . Since the role of the
selector in PU learning is to select negative samples from
unlabeled samples, NPV provides a good measure on the
accuracy of the selector, and TNR allows us to check how
complete the selector can select negative samples. For both
metrics, the larger the values, the better the performance.

The related experimental results are shown in Table 5,
with NPV and TNR as the evaluation criteria. As can be seen
from Table 5, Selector PULNS can achieve much higher pre-
cision and recall than all the 5 competing selectors, which
confirms that training process of PULNS is capable of opti-
mizing the underlying selector to accurately select negative
samples from the unlabeled data.

Conclusion
In this paper, we propose a novel PU learning approach
dubbed PULNS, which is equipped with an effective neg-
ative sample selector. We utilize reinforcement learning,
along with reward shaping strategy, to optimize the negative
sample selector and train the whole framework through an
end-to-end manner. We conduct extensive experiments on
seven public application benchmarks, and our results con-
firm the effectiveness of PULNS over the current state-of-
the-art approaches in PU learning. More encouragingly, we
have applied our PULNS approach to the project of failure
prediction in cloud systems (including Microsoft Azure and
Microsoft 365’s cloud system), in order to address the la-
bel noise issue. In practice, after the deployment of PULNS,
the accuracy of failure prediction has been significantly im-
proved. Besides, with the help of proactive mitigation ac-
tions, our PULNS approach can help considerably enhance
the service reliability of Microsoft Azure and Microsoft
365’s cloud system.

For future work, we plan to explore the extension of the
proposed approach to semi-supervised learning.

Acknowledgments
We express our deep gratitude to Dongmei Zhang, Girish
Bablani, Robert Gu, Jim Kleewein, Yingnong Dang, Murali

Chintalapati, Thomas Moscibroda, Melur Raghuraman, Yo-
gesh Bansal, Marcus Fontoura and Andrew Zhou for their
great support and sponsorship. Furthermore, we would like
to thank Susy Yi and Paul Wang for the collaboration on the
project of failure prediction in Microsoft 365, and to thank
Youjiang Wu, Xukun Li, and Sebastien Levy for the collab-
oration from Microsoft Azure.

References
Bekker, J.; and Davis, J. 2018. Estimating the Class Prior in
Positive and Unlabeled Data Through Decision Tree Induc-
tion. In Proceedings of AAAI 2018, 2712–2719.
Blanchard, G.; Lee, G.; and Scott, C. 2010. Semi-Supervised
Novelty Detection. Journal of Machine Learning Research
11: 2973–3009.
Chaudhari, S.; and Shevade, S. K. 2012. Learning from
Positive and Unlabelled Examples Using Maximum Margin
Clustering. In Proceedings of ICONIP 2012, 465–473.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2014. Analysis
of Learning from Positive and Unlabeled Data. In Proceed-
ings of NIPS 2014, 703–711.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2015. Convex
Formulation for Learning from Positive and Unlabeled Data.
In Proceedings ICML 2015, 1386–1394.
du Plessis, M. C.; and Sugiyama, M. 2014. Class Prior Esti-
mation from Positive and Unlabeled Data. IEICE Transac-
tions on Information & Systems 97-D(5): 1358–1362.
Elkan, C.; and Noto, K. 2008. Learning Classifiers from
Only Positive and Unlabeled Data. In Proceedings of KDD
2008, 213–220.
Fei, G.; and Liu, B. 2015. Social Media Text Classification
under Negative Covariate Shift. In Proceedings of EMNLP
2015, 2347–2356.
Gong, T.; Wang, G.; Ye, J.; Xu, Z.; and Lin, M. 2018. Margin
Based PU Learning. In Proceedings of AAAI 2018, 3037–
3044.
Hsieh, Y.; Niu, G.; and Sugiyama, M. 2019. Classification
from Positive, Unlabeled and Biased Negative Data. In Pro-
ceedings of ICML 2019, 2820–2829.
Jain, S.; Delano, J.; Sharma, H.; and Radivojac, P. 2020.
Class Prior Estimation with Biased Positives and Unlabeled
Examples. In Proceedings of AAAI 2020, 4255–4263.
Jain, S.; White, M.; and Radivojac, P. 2016. Estimating the
Class Prior and Posterior from Noisy Positives and Unla-
beled Data. In Proceedings of NIPS 2016, 2685–2693.
Kato, M.; Teshima, T.; and Honda, J. 2019. Learning from
Positive and Unlabeled Data with a Selection Bias. In Pro-
ceedings of ICLR 2019.
Kiryo, R.; Niu, G.; du Plessis, M. C.; and Sugiyama, M.
2017. Positive-Unlabeled Learning with Non-Negative Risk
Estimator. In Proceedings of NIPS 2017, 1675–1685.
Li, T.; Wang, C.; Ma, Y.; Ortal, P.; Zhao, Q.; Stenger, B.; and
Hirate, Y. 2019. Learning Classifiers on Positive and Unla-
beled Data with Policy Gradient. In Proceedings of ICDM
2019, 399–408.

8791

Li, X.; and Liu, B. 2003. Learning to Classify Texts Using
Positive and Unlabeled Data. In Proceedings of IJCAI 2003,
587–594.
Li, X.; Liu, B.; and Ng, S. 2010. Negative Training Data
Can be Harmful to Text Classification. In Proceedings of
EMNLP 2010, 218–228.
Liu, B.; Lee, W. S.; Yu, P. S.; and Li, X. 2002. Partially Su-
pervised Classification of Text Documents. In Proceedings
of ICML 2002, 387–394.
Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy In-
variance Under Reward Transformations: Theory and Ap-
plication to Reward Shaping. In Proceedings of ICML 1999,
278–287.
Nguyen, M. N.; Li, X.; and Ng, S. 2012. Ensemble Based
Positive Unlabeled Learning for Time Series Classification.
In Proceedings of DASFAA 2012, 243–257.
Perini, L.; Vercruyssen, V.; and Davis, J. 2020. Class Prior
Estimation in Active Positive and Unlabeled Learning. In
Proceedings of IJCAI 2020, 2915–2921.
Pocius, R.; Isele, D.; Roberts, M.; and Aha, D. W. 2018.
Comparing Reward Shaping, Visual Hints, and Curriculum
Learning. In Proceedings of AAAI 2018, 8135–8136.
Ramaswamy, H. G.; Scott, C.; and Tewari, A. 2016. Mixture
Proportion Estimation via Kernel Embeddings of Distribu-
tions. In Proceedings of ICML 2016, 2052–2060.
Riedmiller, M. A.; Hafner, R.; Lampe, T.; Neunert, M.; De-
grave, J.; de Wiele, T. V.; Mnih, V.; Heess, N.; and Sprin-
genberg, J. T. 2018. Learning by Playing Solving Sparse
Reward Tasks from Scratch. In Proceedings of ICML 2018,
4341–4350.
Schnabel, T.; Swaminathan, A.; Singh, A.; Chandak, N.; and
Joachims, T. 2016. Recommendations as Treatments: De-
biasing Learning and Evaluation. In Proceedings of ICML
2016, 1670–1679.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 1999. Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation. In Proceedings of NIPS,
1057–1063.
Yu, H.; Han, J.; and Chang, K. C. 2004. PEBL: Web Page
Classification without Negative Examples. IEEE Transac-
tions on Knowledge and Data Engineering 16(1): 70–81.
Zeiberg, D.; Jain, S.; and Radivojac, P. 2020. Fast Non-
parametric Estimation of Class Proportions in the Positive-
Unlabeled Classification Setting. In Proceedings of AAAI
2020, 6729–6736.
Zhang, B.; and Zuo, W. 2009. Reliable Negative Extracting
Based on kNN for Learning from Positive and Unlabeled
Examples. Journal of Computers 4(1): 94–101.
Zhang, C.; Hou, Y.; and Zhang, Y. 2020. Learning from
Positive and Unlabeled Data without Explicit Estimation of
Class Prior. In Proceedings of AAAI 2020, 6762–6769.

8792

